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Abstract—This paper describes an approach to robust signal inherently robust with respect to the sources of variapilit
analysis using iterative parameter re-estimation of a mixtire and distortion present in real-world signals. This topic is
autoregressive (AR) model. The model's focus can be adjuste ,qqressed in the present study by first introducing a general
by initialization of the target and non-target states. The \ariant L - L .
examined in this study uses an i.i.d. mixture AR model and is pl’.InCIp|e for stocha§t|C linear predictive analysis baseda
designed to tackle the spectral biasing effect caused by theice Mixture autoregressive model. We demonstrate that theadeth
excitation in speech signals with variable fundamental frquency. leads to iteratively generated temporal weighting of tlymai
In our speaker verification experiments, this method perfomed information based on initial autoregression templatesarget
competitively against standard spectrum analysis techniges in - tampjate to look for and a non-target template to avoid.
non-mlsmatch cpndltlons and. §howed significant improvemds The application being studied is text-independent speaker
in vocal effort mismatch conditions. e T .

verification under vocal effort variability and mismatchO F
increase is known to be one of the main acoustical effectsiwhe
vocal effort is raised from soft to loud [2], [3]. With the agtvt
of real machine learning applications for speech signatk-t

. INTRODUCTION ling vocal effort mismatch is becoming increasingly impmitt

PECTRUM analysis is essential in most signal processiiyj, [5]. Previously, feature-level solutions have beeapgmsed

applications. Methods such as the fast Fourier transfom compensate for the effects of vocal effort other than FO,
(FFT) and linear prediction (LP) perform well under ideasuch as spectral tilt [6], [7]. However, previous studiesF@n
conditions but their performance typically degrades ingies-  robustness have concentrated primarily on formant estimat
ence of distortions. In audio signal processing, the distos (e.g., [1], [8], [9]). Given the recent success of time-vtay
include background noise (additive) and channel distortidinear prediction in robust feature extraction under adelit
(convolutive). Inspeech signal processing, spectral informanoise (e.g., [10], [11]), it is justified to study the propdse
tion is further affected by many speaker-related effectshss stochastic, time-weighted linear predictive modelingrapgh
speaking style, vocal effort, and fundamental frequen®).(F in feature extraction by customizing it to produce spectss |
For instance, the formant locations produced by LP for highiffected by FO variation than standard methods.
pitch speech are biased towards the nearest FO harmonics [1]

Distortion and speaker-related variability are particyla Il LINEAR PREDICTIVE SPECTRUMESTIMATION
detrimental in speech applications that use machine legyniA- Linear Prediction Weighted in Time
such as automatic speech and speaker recognition, in whicliinear predictive modeling assumes that the sigsal
short-time spectra are parametrized using statisticaleisotf follows a zero-mean autoregressive (AR) process =
the conditions of the model training differ from their adtua~}_, axs,_r + Gu, of order p, which in the = domain
usage in the test phase, thesmatch in the spectral feature corresponds to an all-pole filtéf (z) = G/(1->__, axz~").
statistics between the training and test might severelyatty Here, u,, is the excitation signal and: is its optional gain
the performanceMulti-condition training is often found to [12]. Linear prediction (LP) solves the predictor coeffiti®
improve the performance, even in adverse conditions, it th, by minimizing the prediction error energy", (s, —
use of this approach is limited by the difficulty and cost 0§~} _, axs,—x)?, where each prediction is a linear combina-
collecting sufficient training data in order to cover alleel tion of the a; and the previous samples. In this work, sums
vant usage conditions. Therefore, in order to improve signevern follow the autocorrelation method [12]. Weighted linear
analysis performance in mismatched and variable conditioprediction (WLP) generalizes LP by instead minimizing a
it is necessary to study spectrum analysis methods that &énee-weighted energyey = >, (sn — > hy arSn—1)* Wy,

Covri _ o _ d[9], which emphasizes “reliable” signal segments and de-
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STE weighting emphasizes, within the pitch period, the® a non-target type. Before parameter estimation using the
beginning of the glottal closed phase, where formants aterative expectation-maximization (EM) principle [24)e of
prominent (see Fig. 1). However, each closed phase bedihs states is designatedtasget, the other one(s) asn-target
with transient, high-amplitude samples at the glottal eles and the AR parameters of these states are initialized with
instant (GCI) as the main acoustical excitation of the vocalmplified, characteristic descriptions of desired andesired
tract is generated. These transient samples at GCls do sighal qualities, respectively. Because EM increases thaem
contain formant information. As FO increases, they covéikelihood with each iteration, it will converge towards a
a larger proportion of the frame. In the frequency domaifgcal likelihood maximum whose location on the parameter
this is marked by the spectral harmonic structure becomihgpersurface is determined by the initial parameter values
sparse, with FO harmonics biasing the modeling of formants2) Dynamics of the Hidden State Process: In this study, we
using conventional spectrum analysis techniques. STEhkeiginvestigateGaussian mixture linear prediction (GMLP) [25],
ing does not specifically downweight GCls, resulting in F& simple implementation of the targeted mixture principle.
bias persisting also in such WLP models. It was recentljhe probability law governing,, is assumed to be i.i.d. and
demonstrated in [1] that FO bias in formant estimates can parametrized with component weights ; = P;, similarly to
reduced by, instead, designing a weighting functidf that Gaussian mixture models (GMMs) [26]. The GMLP signal
downweights the squared residual around the GCls. Howevwapdel is thus specified by the set of parametessiLp =
while algorithms have been proposed to explicitly estimaté®:, ..., Py, ao.1,01,1,--,0p1,002s---,Ap J, 0%y, 0%),

GCls, these epochs are difficult to estimate reliably. In [lieratively re-estimated by applying the EM principle [24]
the GCI information was obtained in an oracle-like manner by 1) |n the E step, estimate the excitationg; as prediction
using synthetic vowels as test material. In the next sestion residualse, ; = s, — ao; — Yob_, ak.iSn_k. Then,

we propose an automatic method sonultaneously estimate determine the hidden stat@osterior probabilities
an appropriate weighting function and the all-pole coedfits. Yoi = Plgn = ilsn,. s 5n_p AaMLp) =
i(1/+/2mc2) exp (—€2 /(202
. . - max ( 0.01, Pi1/y/2mo,) oxp (“en.i/(207)) and
B. Mixture Linear Prediction

> Pi(1//2m0%) exp (—€2 ;/(202)
renormalize so thad |, v,; = 1 Vn (a lower limit of

1) The General Mixture Autoregressive Model: The signal e )
0.01 is imposed to avoid occurrence of unused states).

sn, n > 0, can be modeled as a mixture gfautoregressive

processes with conditional density(s,|sn_1, ..., 50,\) = ) In thezM step, re-estimate the component wei29hts as
> Tnig-¢ (=), where\ is the model's parameter set b = "%fl and the variances asg’ = Z":V%en

and ¢(-) is the standard normal density function,,; = For ay;, definez,o, = 1 (for the intercept) and
P(gn = i|8n-1,---,80,A), 1 <i < J,istheprior distribution Tnk = Sn—k, k > 1, and solve the normal equations
of a hidden state variable, € {1,...,J} that determines D b0 Qi Don YniTn kTnj = D p YniSnTn,j, 0 < j <
which one of theJ AR processes, p. Barring the intercept term, the latter equations are

equivalent to standard WLP (Section II-A) weighted by
P corresponding state posterior probabiliti®g, (= v, ;).
Sp = ag,i + Z Ak,iSn—k + Un,is 1<i<J, (1) Equivalentformulas are given in [13]. Notably, setting i@
k=1 orderp = 0 makes the intercepts behave like Gaussian means
generates samplg,. The ag; are intercept (constant) termsand leads to conventional GMM re-estimation formulas [26].
and theu,, ; ~ N(0,c?) are Gaussian white noise excitations. In each iteration of GMLP, the time complexity of the E step
Two main approaches to modeling the latent state pragess(determination ot,, ; and~,, ;, 1 < i < J) is O(JNp), where
exist and have been previously studied in time series aisalyd’ is the number of samples within the analysis frame. In the
and econometricsg, can be considered i.i.d. and modeled step, re-estimation oP; ando? is O(JN). Apart from the
usingcomponent weights asm,, ; = P, Vn, leading to ari.i.d. factor J (the number of states), the above operations are of
mixture AR model [13], or it can be assumed to follow a firstthe same order as windowing and correlation in both GMLP
order Markov process, leading to a linear predictive hiddeand classical linear predictive methods [27]. The remajinin
Markov or Markov-switching AR model [14], [15], [16], [17]. computation in one iteration is due to solving theroups of
In speech processing, mixture AR models appear not to haveighted normal equations for the AR coefficieajs;, which
been previously applied to frame-level spectrum analysis, is O(Jp?) by using the Cholesky decomposition, also used
similar models have been used for parametrizing utteraincesvith the covariance method of LP [27]. The computation load
recognition applications. Some of them work on the featurd GMLP relative to standard methods thus depends linearly
vector level, [18], [19], while others, [20], [21], work oimé on the number of iterations and states.
signal level but apply the AR dynamics in separate frames.In Markov-switching linear prediction (MSLP), the com-
Some Markov-switching recognition models, [22], [23], arponent weightsP; are replaced by two sets of parameters:
similar to the current signal model in that they considerheastate transition probabilitieg; ; and initial state probabilities
sample and its associated hidden state The current method p; [16]. Again, parameter estimation is iterative and based
differs from previous studies both by applying the signan EM. However, it needs to use the computationally more
model to frame-level spectrum analysis and by being ditectexpensive forward—backward algorithm [26], or another-sim
towards finding an AR model of a target type as opposddr approach [17], to compute the probabilities required f



re-estimating the model parameters. In preliminary tests the generality of the tests. Gender-dependent UBMs (usader
different systems, this noticeably increased the featanepri- background models) with 512 Gaussians are trained using
tation time, but did not improve the verification performanc the NIST SRE05, SRE06, and Switchboard corpora. Negative
Thus, only GMLP is evaluated in this study. examples (background speakers) to train speaker-dependen
3) Role of the Constant Terms: In conventional LP, inter- SVMs are selected from the SRE03 and SREO04 corpora (395
cept terms are not used. The intercept is zero for a zero-meaale and 577 female speech files). NAP matrices are trained
AR process [16] and can thus be omitted. For speech, the asing 2020 male and 2017 female utterances from SREO06. In
sumption of a zero mean approximately holds true when usiadapting the mean vectors, relevance facter 8 is used.

analysis frames large enough to cover more than one pitchn the i-vector [30] system, we use gender-dependent UBMs
period, since speech does not contain important frequenci@ith 1024 Gaussians, trained on the same material as those
below FO. In mixture linear prediction, however, the inatus for the GMM-SVM system. Gender-dependent T-matrices (or
of the intercept term (Eq. 1), even if initialized with zemrf j.vector extractors) are trained with 5 EM iterations using
each state, allows the AR models the freedom to focus @fe SRE04, SRE05, SRE06, Fisher, and Switchboard corpora
subsets of the analysis frame without implicitly assumimgjit (19084 male and 24237 female utterances). 600-dimensional
samples to add to zero. Moreover, it is possible that thedrafyhitened and length-normalized i-vectors are extracted fo
would have a non-zero mean due to low-frequency distortieidch utterance and compared using a probabilistic LDA
components. Despite the inclusion of the intercept ternsen (pL.DA) back-end with a 200-dimensional speaker subspace.

EM iteration, this term is not included in the final target all Mel-frequency cepstral coefficients (MFCCs) for the classi

ichi _ —k

pole modgl W_h'Ch 1S chosen_alﬁ(z) = 1/(1—Z£:_1 ak,1% ) fiers are computed in Hamming-windowed frames with length
4) Application to Speech with Variable FO: While different 34 1.5 and overlap 15 ms. Spectra given by FFT, P-(20),

initializations of the mixture model lead to different tatg \y, p (p = 20), or the described variant of GMLR» (= 20)

models, in this study, we concentrate on downweighting GClge rocessed as follows: 1) square the magnitude spectrum,
[1]. With J = 2, we initialize the target model (state 1) withyy itinly it by 27 triangular filters spaced evenly on thelme
ag1 = 0, k # 1, anda,; = 0'97'1 It thus corresponds geqje  3) take the logarithm of the filterbank output enegie

to Fhe single-pole f!lterl/(l - 0'97[1 ), the inverse of the and 4) apply discrete cosine transform to obtain 18 MFCCs
typical pre—emphaS|s f|IFe1 — 0.9727 us_,ed to Com_pensatewithout the zeroth coefficient. Next, the MFCCs are RASTA
for the spectral tilt of voiced speech. This can be viewed agjfareq across frames an/AA features are appended to the
rough approximation of the characteristic low-pass SP@CIr o1 re vectors [11]. Finally, utterance-level cepstremand
envelope of voiced speech. For the non-target state 2, iance normalization and voice activity detection based

lagged AR parameters are initialized with > = 0, k > 1, frame energies are applied to the feature vector sequence.
and the intercept withug » = max(s,). This filter has a flat

spectrum, like the spectrum envelope of an impulse traid, an

a focus on large signal values typical at GCls. As Fig. 1 shows

during the EM iteration the target state 1 gravitates towar@. Results

signal segments that have low-pass spectral charaatsrésiid

smaller amplitudes, while state 2 concentrates on GCIs, col The systems are evaluated at two operating points (detectio
lecting their effects and preventing the harmonics of F@nfrothresholds) determined by the miss and false alarm rates
biasing the target model spectrum. For this initializatibhas p,.;ss and pg,. Tables | and 1l show equal error rates (EER;
been found beneficial to perform one preliminary iteratién @.,;;s = pra) @and minimum decision cost function (MinDCF;
EM where onlyP; ands? are updated (from the initial valuesminimal 0.1pyiss + 0.99p,) values, respectively. Auxiliary

of P, =0.5 ando? = 0.01, 1 <i < 2). GMM-SVM tests suggest that more GMLP iterations may be
optimal for mismatched female speech than otherwise \ikel
I1l. EXPERIMENTS due to greater FO bias. Statistical analyses of differemtes

0.5pmiss +0.5pg, at 95 % confidence [31], for the i-vector sys-

. _ tem at both thresholds separately for male and female speech
The experiments are carried out on core tasks of the 20&& cases), show GMLP to significantly outperform FFT, LP

NIST SRE corpus involving conversational telephone speegfiy wip on female speech with vocal effort mismatch (DET
sampled at 8 kHz. We examine three vocal effort conditiong: .4 pET 8), while FFT outperforms the other methods in the
« Det 5: Normal vocal effort in both training and test, test DET 8 male case. GMLP is in the best performing group (with
data containing 708 target and 29655 impostor trials. no significant differences) for DET 5 male at both thresholds
« Det 6: Normal vocal effort in training andhigh vocal and for DET 5 female and DET 6 male at the EER and
effort in test (361 target and 28311 impostor trials). MinDCF thresholds, respectively. These results suggest th
« Det 8: Normal vocal effort in training andlow vocal  thijs variant of GMLP performs competitively in matched vbca
effort in test (289 target and 28306 impostor trials).  effort conditions — still containing FO variation and pdieh
A GMM-supervector/support vector machine (SVM) submismatch — and especially support its use for improving
system [28] with channel compensation by nuisance at&ibugystem robustness against mismatch caused by raised vocal
projection (NAP) [29] is used as a quick-to-train classitier effort. Such conditions can easily occur in noisy real-@dorl
experiment with the number of GMLP iterations and to add tnvironments due to, e.g., the Lombard reflex [32].

A. Experiment Setup
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Fig. 1. Left: A Hamming-windowed speech frame (vowel fromeanfile speaker sampled at 16 kHz) with different weightimcfions. STE is the weighting
scheme generally used with WLP. GMLP weights, which tendvtwdaGCls, result from iterative EM re-estimation, with timitial autoregression templates
chosen according to Section II-B4. Right: Correspondingcsp of FFT, LP, WLP, and GMLPp(= 20), including the initial spectra of the GMLP states.

TABLE |
EQUAL ERROR RATES(%) FOR TWO SPEAKER VERIFICATION SYSTEMS IN VARIABLE TEST CONDIIONS, USING DIFFERENT SPECTRUM ANALYSES IN
MFCC COMPUTATION. GMLP WAS FIXED AT 3 AND 5 ITERATIONS FOR MALE AND FEMALE SPEAKERSRESPECTIVELY PRIOR TO THE FVECTOR
EXPERIMENTS FOR WHICH THE METHODS WITH STATISTICALLY SIGNIFICANT IMPROVEMENT [31] OVER THE OTHER THREE ARE SHOWN IN BOLDFACE

Training Test Speake| GMM-SVM system i-vector system

vocal effort  vocal effort subset| FFT LP WLP GMLP (3it) GMLP (5it) GMLP (7it)| FFT LP  WLP GMLP
Male 6.23 5.94 6.13 5.66 6.55 6.87 1.98 1.28 3.06 1.69
Normal Normal Female| 8.13 8.18 8.16 6.76 7.55 8.70 3.38 3.01 3.38 3.09
(DET5) All 7.34 7.06 7.06 6.63 6.89 7.90 3.24 324 429 2.96

Male 3.61 4.22 5.04 2.84 3.52 4.20 0.21 0.84 0.76 0.49

Normal Low Female| 6.70 7.62 6.47 6.34 5.82 6.70 1.66 1.67 1.94 111
(DETS8) All 5.03 6.28 5.70 5.36 5.19 5.51 1.80 1.76 1.67 1.68
Male 7.86 8.96 8.42 7.64 8.56 7.96 3.37 337 402 3.78

Normal High Female| 12.58 13.56 14.75 13.66 10.92 12.01 | 550 4.91 5.34 3.82
(DET®6) All 10.86 11.91 12.01 10.48 9.72 10.38 | 5.81 5.14 6.64 4.98
TABLE 1l

100x MINDCFRESULTS FOR THE TWO SYSTEMS EVALUATED ANALOGOUSLY TATABLE |. STATISTICAL TESTING AT THE MINDCF THRESHOLD
(I-VECTOR SYSTEM IS DONE FOR DIFFERENCES IN).5pmiss + 0.5pf,, ACCORDING TO WHICH ANY SINGLE SUPERIOR METHOD IS SHOWN IN BORFACE.

Training Test Speakel GMM-SVM system i-vector system

vocal effort  vocal effort subset| FFT LP  WLP GMLP (3it) GMLP (5it) GMLP (7it)| FFT LP  WLP GMLP
Male 256 286 290 2.88 3.14 3.07 090 106 1.16 0.81
Normal Normal Female| 3.81 353 3.68 3.41 3.65 3.96 1.66 1.59 1.72 1.50
(DET5) All 325 326 333 3.18 3.40 3.57 1.80 167 2.01 1.80

Male 200 243 218 1.93 1.97 231 0.22 043 041 0.33

Normal Low Female| 2.62 3.19 2.86 3.17 3.02 3.00 0.84 072 080 058
(DET8) All 240 293 259 2.81 2.69 2.75 1.05 0.84 1.11 0.73
Male 458 473 4.96 4.77 4.48 451 1.89 1.53 1.96 1.41

Normal High Female| 6.34 6.16 5.88 5.48 5.43 5.16 329 254 277 173
(DET®6) All 569 539 552 5.22 4.97 4.85 349 289 322 2.35
IV. CONCLUSION to focus on downweighting the effect of voiced speech exci-

Mixt i dicti d toch tation. In speaker verification with vocal effort (and FO)smi
Ixiure Iinear preciction was proposed as a stoc "_"S'ilﬁatch, this method significantly improved performance upon
version of weighted linear prediction for spe_ctra_l modglin standard methods. Both the general principle and its ptesen
It is given target and non-target characteristics in patamevariant thus hold potential for further study and applicasi in

|t_n|t|al|zat|i)_n OI. a m'xg!”ﬁ autoregt:]restswe mo:jel p“ﬁt_r te;ﬁa- robust signal analysis. Software implementations can bado
ve re-estimation, which generates temporal weightingfie athttp://ww. acoustics. hut.fi/research/robustness/.

squared residual. In this study, the initialization wasigiesd
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