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Abstract
Accuracy of speaker verification is high under controlled condi-
tions but falls off rapidly in the presence of interfering sounds.
This is because spectral features, such as Mel-frequency cep-
stral coefficients (MFCCs), are sensitive to additive noise.
MFCCs are a particular realization of warped-frequency rep-
resentation with low-frequency focus. But there are several
alternative, potentially more robust, warped-frequency repre-
sentations. We provide an experimental comparison of five
warped-frequency features. They use exactly the same fre-
quency warping function, the same number of coefficients and
postprocessing, but differ in their internal computations. The
compared variants are (1) conventional MFCCs from discrete
Fourier transform (DFT), followed by Mel-scaled filterbank, (2)
MFCCs via direct warping of DFT, followed by linear-scale fil-
terbank, (3) warped linear prediction features, (4) perceptual
minimum variance distortionless features and (5) recentlypro-
posed sparse Mel-scale histogram features. Experiments car-
ried out on a subset of the SRE 10 corpus using a scaled-down
i-vector system indicate that direct DFT warping outperforms
conventional MFCCs in most of the cases.
Index Terms: speaker recognition, noise, frequency warping

1. Introduction
Thanks to mobile technology, we can nowadays communicate
with each other in a wide range of environments. Unfortunately,
this also sets up challenges in building robust recognizers. De-
spite tremendous amount of research on the topic, mostly in the
context of automatic speech recognition (ASR) [1], recognition
in noisy, unforeseen environments remains challenging. While
back-end techniques such as integrated speaker and noise mod-
els [2] and multicondition training [3, 4] are useful in reducing
mismatch across training and run-time utterances, they areei-
ther specific to a particular model or require careful selection of
additional training utterances representative of the expected op-
erating conditions. We focus on an alternative, potentially more
universal solution to reduce mismatch induced by noise - robust
acoustic front-ends.

There are a number of ways to increase environmental ro-
bustness at the front-end, see [5] for a recent review in speaker
recognition context. First, plug-in speech enhancement meth-
ods such as spectral subtraction or Wiener filter can be used
for increasing signal quality as a pre-processing step [6].Sec-
ond, one may enhance the spectral magnitudes either by weight-

ing reliable regions [7, 8] or by even completely discarding
uncertain time-frequency bins viamissing featuretechniques
[9, 3, 10, 11, 12]. All these techniques require an estimate of
either the noise spectrum or spectral reliability values and, con-
sequently, their utility is largely determined by the quality of
these estimates. Third, feature normalization techniques[13]
can also be useful, when combined with other techniques, but
by no means sufficient by themselves.

The fourth class of methods – our focus – is to revise the
feature extractor itself. As an example, one may use any ro-
bust power spectrum estimator in standard front-ends, suchas
Mel-frequency cepstral coefficient (MFCC) [14] and perceptual
linear prediction (PLP) extractors [15]; see [16] for a recent
comparison. Here we focus on a particular facet of feature ex-
traction, frequency warping, inspired by psychophysical prin-
ciples. New types of auditorily-motivated features including
cochlear [17] and long-term temporal features [18, 19], sparse
coding [17], power normalization [20] and frequency masking
[21] have shown promise recently.

In the context of modern i-vector speaker verification [22],
we present a comparison of five feature extractors involving
Mel-frequency warping. We apply exactly the same frequency
warping, implemented via warped discrete Fourier transform,
and compare different parameterizations. The compared meth-
ods (Fig. 1) include conventional MFCCs and an alternative
implementation via direct warping, two warped all-pole mod-
els [23, 24] and a recent histogram-based technique producing
sparse features [21]. Even though some of the methods have
been studied in both ASR [25] and speaker verification [26, 27],
we feel that it is time to present a self-contained summary and
comparison within a single study, using a modern i-vector sys-
tem [22]. We hope the reader finds our study a useful summary
of methods otherwise scattered across the literature.

2. Feature extractors
2.1. Conventional MFCCs via DFT

Let x[n], n = 0, 1, . . . , N ′ − 1 denote the PCM samples of a
speech frame ofN ′ samples, including possible trailing zeros
so thatN ′ is a power of two. We first compute the windowed
discrete Fourier transform (DFT),

X[k] =

N′−1
∑

n=0

x[n]w[n]e−jωkn, k = 0, 1, . . . , N ′ − 1, (1)
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(a) Original NIST SRE’10 utterance (clean data).

DFT W−DFT W−LP W−MVDR W−HIST

(b) HVAC-style noise at 6 dB signal-to-noise-ratio.

Figure 1: Running spectra of (a) clean and (b) noisy data. Time
runs from bottom to up, frequency axis from left to right. For
DFT, the frequency axis is linear in [0,4000] Hz; for the rest, it
is linear in [0, 35]Mels. DFT: discrete Fourier transform,W-
DFT: warped DFT,W-LP : warped linear prediction (p = 24);
W-MVDR : warped minimum variance distortionless response
(orderp = 24), W-HIST : warped histogram (B = 20).

wherew[n] = 1
2
{1 − cos(2πn/N ′)} is the Hann window

and ωk = 2πk/N ′ denotes the discrete frequency sampled
uniformly on [0, 2π]. The DFT operation can also be writ-
ten asX = Fx, whereX = (X[0], . . . , X[N ′ − 1])T,
x = (x[0]w[0], . . . , w[N ′−1]x[N ′−1])T andFk,n = e−jωkn

is the (k, n)th element of the complex-valued DFT matrix,
F ∈ C

N′×N′

. In practice, DFT is obtained using the fast
Fourier transform (FFT). For alternatives to DFT, refer to [16].

The next step is to locally integrate the spectral energy us-
ing a frequency-domain filterbank. Due to spectral symmetry,
we only need to process the first half of the power spectrum. Let
s = (|X[0]|2 , . . . , |X[N ]|2)T, whereN = N ′/2, to denote
theN + 1-point DFT power spectrum and letH ∈ R

M×(N+1)

be a filterbank matrix with real and nonnegative elements. It
containsM triangular-shaped filter responses in its rows. The
MFCC extractor is written asc = D log(Hs), wherec ∈ R

M

is the MFCC vector,log(·) is applied element-by-element and
D ∈ R

M×M is the orthonormal DCT matrix containing cosine
bases on its rows. The MFCC vector is further cut to include
the first 12 to 20 elements appended with delta and double delta
features.

A key element of any MFCC extractor is the filterbank ma-
trix, H. We follow a classical design (e.g. [28]), whereby the
center frequencies of the triangular filters are uniformly placed
on the Mel-frequency axis. LetMel(fHz) = 2595 log10(1 +

fHz/700) andMel−1(fMel) = 700(10fMel/2595 − 1) denote,

respectively, the mapping and its inverse from Hertz to Mel
scale. Given the desired number of filters,M , we find the fil-
ter centerpoints in Mel-scale asµm = m

M
× Mel(fs/2), m =

1, 2, . . . ,M wherefs is the sampling rate, in our casefs =
8 kHz. The uniformly spaced valuesµm are then mapped back
to the Hertz domain usingMel−1(·) and rounded off to the in-
dex of the nearest DFT bin. The support region of each fil-
ter spans from the center frequencies of the neighboring filters,
with shape defined by piecewise linear function. The filters
are normalized to have approximately constant energy per each
band, implying that the high-frequency filters have smallerpeak
response1.

2.2. MFCCs via Direct Warping of DFT (W-DFT)

In all the remaining four methods, we consider an alterna-
tive frequency warping strategy bydirect warping of the spec-
trum, rather than the filterbank. We start again from the Hann-
windowed framex but apply awarpedDFT (WDFT) matrix to
obtain a warped spectrum:̃X = F̃x. Here,X̃ ∈ C

N′

and
F̃ ∈ C

N′×N′

are, respectively, the complex-valued warped
spectrum and the WDFT matrix. Its elements are given by
Fk,n = e−jω̃kn, whereω̃k = 2π

N′
k̃, k̃ being uniformly placed

on the Mel scale. The direct computation via matrix-vector mul-
tiplication of complexityO(N ′2) is more CPU-intensive than
conventional DFT utilizingO(N ′ log2 N

′) FFT implementa-
tion. One alternative way to achieve direct frequency warping
is re-mapping FFT bins following spectral interpolation (e.g.
[24]). But as our primary focus is not computational efficiency,
we prefer the direct computation due to its direct analogy to
conventional DFT. Indeed, as seen in Fig. 1, the warped spec-
tra (W-DFT) have similar features like the conventional DFT
spectra, but more frequency bins assigned to the important low-
frequency region.

The warped power spectrum,(|X̃[0]|2, . . . , |X̃[N ]|2)T

with N = N ′/2, undergoes exactly the same steps as
conventional MFCC extraction – filterbank integration, log-
compression and DCT. But since the spectrum is already pre-
warped, the triangular filters are now uniformly spaced in the
Hertz, rather than Mel, scale. They require no energy normal-
ization as the bandwidths (and area) are nearly equal by con-
struction.

2.3. Warped Linear Prediction (W-LP)

Linear prediction(LP) [29] is a classic parametric spectral mod-
eling technique. In the time domain, LP predictor equation is
x̂[n] = −

∑p
m=1 amx[n − m], where thenth speech sample

is predicted from the pastp values, using predictor coefficients
am. The coefficients are solved by minimizing the residual en-
ergy,

∑

n(x[n]− x̂[n])2 =
∑

n(x[n] +
∑p

m=1 akx[n−m])2.
In the autocorrelationmethod of LP, the solution turns out to
bea = −R

−1
r, whereR andr are, respectively, Toeplitz au-

tocorrelation matrix and autocorrelation vector. Given the so-
obtained predictor coefficients,a = (a1, a2, . . . , ap), the LP
spectral envelope sampled at frequency binsk = 0, 1, . . . , N ′−
1 is obtained asSlp[k] = 1/|1 +

∑p
m=1 ame−jωkm|2 where

ωk = 2πk/N ′ as above.
WarpedLP (W-LP) modeling dates back to at least [23];

see [30] for a general overview of warped audio signal process-
ing. In our case, the warped LP variant is easily obtained by
noting that autocorrelation sequence can be computed as the

1We used RASTAmat to implement the filterbank:http://
labrosa.ee.columbia.edu/matlab/rastamat/



inverse DFT of the squared DFT magnitude spectrum. Thus,
we first compute the warped DFT spectrum̃X as above, take
its squared modulus and use inverse DFT to obtain a warped
autocorrelation sequence. The warped LP coefficients, say
bm,m = 1, . . . , p, are then obtained using Levinson-Durbin
and converted into a warped LP envelope the same way as
above, usingbm’s in place ofam’s in Slp[k]. As Fig. 1 indi-
cates, W-LP spectra contain similar features as W-DFT, picking
up F0 harmonics and formants. However, due to reduced de-
grees of freedom in all-pole modeling (p = 24 coefficients vs.
N ′ = 256 bins), the spectra are generally much smoother. This
potentially results in improved noise robustness over W-DFT.

2.4. Warped MVDR (W-MVDR)

Minimum variance distortionless response(MVDR) [31] is
another popular all-pole technique with attractive properties.
MVDR defines a filter that leaves the signal at frequency of in-
terest undistorted (i.e. with unity gain) while suppressing the
other frequencies in an optimal way. Given LP coefficients
am, the MVDR coefficients,µm, are computed via straight-
forward non-iterative mapping,µm = 1

Pe

∑p−m
i=0 (p + 1 −

m − 2i)aiai+m for m = 0, 1, . . . , p and µm = µ−m for
m = −p, . . . ,−1. Here,Pe is the predictor error variance. The
MVDR spectrum is then obtained from theµm coefficients as,
Smvdr[f ] = 1/|(

∑p
m=−p µke

−jωkm|2 whereωk = 2πk/N ′

as before.
To obtain awarpedMVDR model (see [24]), we proceed

the most obvious way: the warped LP coefficientsbk defined
in the previous subsection are converted to the MVDR coeffi-
cients using the above formula forµk, by usingbks in place of
aks. These are then substituted toSmvdr[f ] as above. As seen
from Fig. 1, the W-MVDR spectra obtained this way are even
smoother than W-LP spectra.

2.5. Warped Histogram (W-HIST)

This interesting recent method [21], which initially inspired us
to explore frequency warping in detail, uses a radically different
approach to compute features. It is roughly based on the idea
that the human auditory system can form a critical band around
any frequency, not just around the arbitrarily-fixed centerpoints
of a typical MFCC filterbank. The starting point is the warped
DFT spectrumX̃ = (|X̃[0]|2, . . . , |X̃[N ]|2) as above. Let

kmax(ℓ,B) = ℓ+ arg max
0≤p<B

|X̃ [ℓ+ p]|2 (2)

be theindex of a local maximum of warped spectrum in the
index range[ℓ, ℓ+B−1] whereB defines the search bandwidth
(in units of W-DFT bins). Whileargmax(·) chooses the index
of maximum, addingℓ ensures indexing relative to the original
bins of X̃. We incrementℓ in steps of one bin and count the
total number of times each of the spectral bins was activated.

Whenever the warped spectrum contains a prominent spec-
tral peak at a certain bin, it tends to be theargmax(·) in
multiple overlapping spectral windows. The nonnegative and
integer-valued power-spectrum like representation obtained this
way favors locally dominant spectral values, such as speech
harmonics, while effectively suppressing or zeroing out low-
magnitude components. The bandwidth parameterB can be
used for controlling spectral sparsity; high values ofB produce
highly sparse representations that may also remove useful com-
ponents. As the right-most columns in Fig. 1 indicate, this
method indeed picks up the frequency locations of the promi-

nent W-DFT components. They correspond roughly to the lo-
cation of harmonics in W-DFT spectra.

3. Experimental setup
For the experiments, we adopt female trials (more difficult than
males) in the common condition 5 of the NIST 2010 SRE cor-
pus involving normal vocal effort telephone conversations. It
consists of 3704 target and 233077 nontarget trials. In addition,
we have two simulated noise conditions involvingheating, ven-
tilation and airconditioning(HVAC) andcrowdnoises at signal-
to-noise ratio (SNR) of 6 dB added using FaNT2. HVAC noises
are taken from FreeSound3 and crowd noises by summing up
hundreds of random conversations. We report both the equal
error rate (EER) and the normalized minimum detection cost
(MinDCF), which isminθ{0.10Pmiss(θ) + 0.99Pfa(θ)}, with
the “classical” cost values used4. Here,Pmiss(θ) andPfa(θ) are
the miss and false alarm rates at thresholdθ.

We adopt an i-vector recognizer [22] to compare the five
feature sets. One gender-independent universal background
model with 512 diagonal covariances Gaussians is trained
from telephone data in NIST 2004–2005 SRE. One gender-
independent 200-dimensional i-vector extractor is trained on the
same data. The i-vectors are scaled down to 150 dimensions us-
ing linear discriminant analysis (LDA) and normalized to unity
length [32]. Full-rank probabilistic LDA (PLDA) is trainedon
the resulting vectors. Both matrices are gender-independent and
estimated on the same data as the i-vector extractor. For details,
see [33]. We use the following short-hands for the methods:

DFT: Conventional MFCCs from discrete Fourier transform
(DFT), followed by Mel-scaled filterbank, log and DCT.

W-DFT: MFCCs from warped DFT, followed by linear-scale
filterbank, log and DCT.

W-LP: Warped linear prediction spectrum from WDFT, fol-
lowed by linear-scale filterbank, log and DCT.

W-MVDR: Warped MVDR spectrum followed by linear-
scale filterbank, log and DCT.

W-HIST: Warped histogram features [21], followed by DCT.

All the five methods lead to a set of base coefficients com-
puted using a 25 ms Hann window every 10 ms. We retain the
19 first coefficients appended further with log-energy. The 20-
dimensional feature vector then undergoes short-time meanand
variance normalization over a 3-sec sliding window. Deltasand
double deltas are estimated from the context of 5 frames to give
60-dimensional features. Speech activity detection uses BUT’s
Hungarian phoneme recognizer [34] and relative average en-
ergy thresholding. Short segments are pruned out and speech
segments merged together.

As we do not use multicondition training, any front-end is
expected to experience severe degradation under noise. Since
standard speech enhancement can be effective in reducing mis-
matches introduced by noise [14, 6], we include a simple spec-
tral oversubtraction method. Given observed noisy speech
power, |X|2 (we omit frame and frequency indices) and esti-
mated noise power,|N̂ |2, we form Wiener gain,g = max

(

1−

α |N̂ |2

|X|2
, min(gh, β

|N̂ |2

|X|2
)
)

, whereα is an oversubtraction factor,

2http://dnt.kr.hsnr.de/download.html
3www.freesound.org
4http://www.itl.nist.gov/iad/mig//tests/sre/

2010/NIST_SRE10_evalplan.r6.pdf
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Figure 2: Comparison of conventional MFCCs via warped fil-
terbank (black) and MFCCs via direct spectrum warping and
linear-frequency filterbank (gray) oncleandata (SRE 10 with-
out added noise) for different number of triangular filters.

gh = 1.00 is maximum gain for noise floor andβ = 0.01 de-
termines maximum noise attenuation. Noisy speech magnitude
is multiplied with g, combined with noisy phase and reverted
to time domain with overlap-and-add. In our implementation5

the maximum oversubtraction factor is set to 1 and the noise
estimate|N̂ |2 obtained using MMSE method of [35].

4. Results
We first compare the two variants to compute MFCCs, DFT
(conventional MFCCs) and W-DFT (warped spectrum) in Fig.
2 on the original SRE 10 data without added noise, in terms of
EER (same trends hold for MinDCF). There is a slight improve-
ment due to direct warping. This could be due to the increased
computational precision at the low frequency range. The num-
ber of triangular filters does not have much effect, which might
be because the number of cepstral coefficients is 19, which lim-
its detail in the corresponding Mel filter outputs. We fix the
number of filters for all the methods toM = 24.

The two all-pole model variants, W-LP and W-MVDR, re-
quire setting the model orderp. Speaker verification studies
involving non-warped all-pole models [36, 37] suggest useful
values fromp = 18 to p = 22 and speech recognition experi-
ments with warped MVDR [24] fromp = 20 to p = 24. We
arbitrarily fix p = 24 based on these earlier studies.

The histogram method requires setting the spectral
bandwidth B for searching the local maxima. Using
N ′ = 256 point warped spectrum, we tried valuesB =
{10, 15, 20, 25, 30, 40, 50} on clean data. We fixB = 20 as
this gave the lowest EER on clean data. We also tried includ-
ing the filterbank and/or use log-compression on the histogram
counts, analogous to steps in the four other methods. These at-
tempts lead to increased error rates. Taking simply the DCT of
the histogram counts, as suggested in [21], was chosen.

With all the parameters fixed on clean data as described
above, the complete results on all data are summarized in Ta-
bles 1 (no speech enhancement) and 2 (with speech enhance-
ment). For noisy data without speech enhancement, EERs in-
crease roughly 4- and 6-fold over clean conditions for HVAC
and crowd noises, respectively. HVAC appears more challeng-
ing noise type. Speech enhancement improves accuracy con-
siderably, though the error rates under noise remain high. The
results on clean data also slightly improve, because the initial
tunings of spectral subtraction were done on clean data. Com-
paring DFT and W-DFT, the same ordering as in Fig. 2 holds

5Taken from Voicebox, http://www.ee.ic.ac.uk/hp/
staff/dmb/voicebox/voicebox.html

Table 1: Comparison of feature extractors without speech en-
hancement. HVAC: heating, ventilation and air-conditioning.

EER (%) MinDCF
Clean HVAC Crowd Clean HVAC Crowd

DFT 5.79 32.9 21.1 0.25 0.98 0.82
W-DFT 5.31 32.5 20.2 0.24 0.98 0.76
W-LP 5.13 30.7 18.1 0.22 0.96 0.75

W-MVDR 4.82 29.3 17.3 0.22 0.95 0.70
W-HIST 6.75 38.0 18.8 0.33 0.99 0.77

Table 2: Same as Table 1 but with speech enhancement.
EER (%) MinDCF

Clean HVAC Crowd Clean HVAC Crowd

DFT 5.38 28.0 19.7 0.24 0.94 0.78
W-DFT 5.03 26.1 18.4 0.23 0.91 0.74
W-LP 4.90 25.3 17.2 0.22 0.88 0.69

W-MVDR 4.94 24.3 15.3 0.22 0.88 0.64
W-HIST 6.75 30.0 17.6 0.32 0.97 0.74

for noisy data as well. Comparing W-DFT and W-LP, all-pole
modeling provides a systematic boost as one might hypothesize
from Fig. 1. Interestingly, further variance reduction from W-
LP to W-MVDR conversion improves recognition accuracy fur-
ther. As Fig. 1 suggests, W-MVDR spectra has reduced peaki-
ness over W-LP – a known property of MVDR processing.

Unlike in [21], the histogram method does not perform well
in our case; it outperforms conventional MFCCs only in EER
for crowd noise. While the reasons for the discrepancy should
be studied carefully, we note that [21] involved different corpus,
spoken language, channel conditions and a classifier without
session compensation. It may also be that such features would
require different types of feature normalization or classifier.

5. Conclusions
We compared five alternative Mel-frequency warped feature
representations using a modern i-vector recognizer. MFCCs
computed through directly warped spectrum showed improve-
ment slightly over conventional MFCCs. The two parametric
warped all-pole models, on the other hand, outperformed con-
ventional MFCCs. Especially the warped MVDR method ap-
pears promising for further studies. The sparse histogram fea-
tures were not found robust and reasons for this should be stud-
ied. Overall, alternative warping variants show some promise,
though with increased computation. Immediate future work,
therefore, should address speeding up the computations.

Our results were presented for female trials only. A recent
study [38] on SRE 2010 found that females may actually ben-
efit from linear-scale, rather than Mel-scale filterbank. This
suggest to address both male experiments and alternatives to
Mel-warping to find a possible joint effect of the gender and the
choice of the warping function.
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