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Abstract

Accuracy of speaker verification is high under controlleddie
tions but falls off rapidly in the presence of interferingugds.
This is because spectral features, such as Mel-frequensy ce
stral coefficients (MFCCs), are sensitive to additive noise
MFCCs are a particular realization of warped-frequency rep
resentation with low-frequency focus. But there are sévera
alternative, potentially more robust, warped-frequeneyre-
sentations. We provide an experimental comparison of five
warped-frequency features. They use exactly the same fre-
quency warping function, the same number of coefficients and
postprocessing, but differ in their internal computatiofihe
compared variants are (1) conventional MFCCs from discrete
Fourier transform (DFT), followed by Mel-scaled filterbaitR)
MFCCs via direct warping of DFT, followed by linear-scale fil
terbank, (3) warped linear prediction features, (4) pexcp
minimum variance distortionless features and (5) receity
posed sparse Mel-scale histogram features. Experiments ca
ried out on a subset of the SRE 10 corpus using a scaled-down
i-vector system indicate that direct DFT warping outperisr
conventional MFCCs in most of the cases.

Index Terms: speaker recognition, noise, frequency warping

1. Introduction

Thanks to mobile technology, we can nowadays communicate
with each other in a wide range of environments. Unfortugate
this also sets up challenges in building robust recogniZees
spite tremendous amount of research on the topic, mosthein t
context of automatic speech recognition (ASR) [1], rectigni

in noisy, unforeseen environments remains challengingiléNh
back-end techniques such as integrated speaker and naise mo
els [2] and multicondition training [3, 4] are useful in resitg
mismatch across training and run-time utterances, thegiare
ther specific to a particular model or require careful seeadf
additional training utterances representative of the ebgueop-
erating conditions. We focus on an alternative, potentiaibre
universal solution to reduce mismatch induced by noiseusbb
acoustic front-ends.

There are a number of ways to increase environmental ro-
bustness at the front-end, see [5] for a recent review inkgpea
recognition context. First, plug-in speech enhancemerhme
ods such as spectral subtraction or Wiener filter can be used
for increasing signal quality as a pre-processing step $&lkc-
ond, one may enhance the spectral magnitudes either bytweigh

ing reliable regions [7, 8] or by even completely discarding
uncertain time-frequency bins viaissing featurgechniques

[9, 3, 10, 11, 12]. All these techniques require an estiméte o
either the noise spectrum or spectral reliability valued, aon-
sequently, their utility is largely determined by the qtialbf
these estimates. Third, feature normalization technidlidp

can also be useful, when combined with other techniques, but
by no means sufficient by themselves.

The fourth class of methods — our focus — is to revise the
feature extractor itself. As an example, one may use any ro-
bust power spectrum estimator in standard front-ends, aach
Mel-frequency cepstral coefficient (MFCC) [14] and percegbt
linear prediction (PLP) extractors [15]; see [16] for a mdce
comparison. Here we focus on a particular facet of feature ex
traction, frequency warpinginspired by psychophysical prin-
ciples. New types of auditorily-motivated features inchegd
cochlear [17] and long-term temporal features [18, 19]rspa
coding [17], power normalization [20] and frequency magkin
[21] have shown promise recently.

In the context of modern i-vector speaker verification [22],
we present a comparison of five feature extractors involving
Mel-frequency warping. We apply exactly the same frequency
warping, implemented via warped discrete Fourier tramsfor
and compare different parameterizations. The compared-met
ods (Fig. 1) include conventional MFCCs and an alternative
implementation via direct warping, two warped all-pole mod
els [23, 24] and a recent histogram-based technique pnogluci
sparse features [21]. Even though some of the methods have
been studied in both ASR [25] and speaker verification [2§, 27
we feel that it is time to present a self-contained summady an
comparison within a single study, using a modern i-vectsr sy
tem [22]. We hope the reader finds our study a useful summary
of methods otherwise scattered across the literature.

2. Feature extractors
2.1. Conventional MFCCs via DFT

Letz[n],n = 0,1,..., N’ — 1 denote the PCM samples of a
speech frame ofV' samples, including possible trailing zeros
so thatN’ is a power of two. We first compute the windowed
discrete Fourier transform (DFT),

N'—1
X[k] = Z z[nJwlnle 7", k=0,1,...,N' —1, (1)

n=0
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Figure 1: Running spectra of (a) clean and (b) noisy dataeTim
runs from bottom to up, frequency axis from left to right. For
DFT, the frequency axis is linear in [0,4000] Hz; for the rdist

is linear in [0, 35]Mels DFT: discrete Fourier transfornvy-
DFT: warped DFTW-LP: warped linear predictionp(= 24);
W-MVDR : warped minimum variance distortionless response
(orderp = 24), W-HIST : warped histogramig = 20).

wherew[n] = 3{1 — cos(2wn/N’)} is the Hann window
andw, = 2wk/N’ denotes the discrete frequency sampled
uniformly on [0, 27x]. The DFT operation can also be writ-
ten asX = Fx, whereX = (X[0],...,X[N — 1))7T,

x = (z[0]w[0], ..., w[N' —1]z[N' —1)T andFy ,, = e 7"

is the (k,n)th element of the complex-valued DFT matrix,
F € CV'*Y'_ In practice, DFT is obtained using the fast
Fourier transform (FFT). For alternatives to DFT, referX6]f

The next step is to locally integrate the spectral energy us-
ing a frequency-domain filterbank. Due to spectral symmetry
we only need to process the first half of the power spectrurh. Le
s = (IX[0],...,|X[N]|*)", whereN = N’/2, to denote
the N + 1-point DFT power spectrum and [Bf ¢ RM*(~+1)
be a filterbank matrix with real and nonnegative elements. It
containsM triangular-shaped filter responses in its rows. The
MFCC extractor is written ae = D log(Hs), wherec € R
is the MFCC vectorlog(-) is applied element-by-element and
D € RM*M js the orthonormal DCT matrix containing cosine
bases on its rows. The MFCC vector is further cut to include
the first 12 to 20 elements appended with delta and doubla delt
features.

A key element of any MFCC extractor is the filterbank ma-
trix, H. We follow a classical design (e.g. [28]), whereby the
center frequencies of the triangular filters are unifornmibcpd
on the Mel-frequency axis. Létlel(fu.) = 2595log,,(1 +

fi12/700) andMel ™! (fare1) = 700(10M1/2595 _ 1) denote,

respectively, the mapping and its inverse from Hertz to Mel
scale. Given the desired number of filteid, we find the fil-

ter centerpoints in Mel-scale as, = §; x Mel(fs/2),m =
1,2,..., M where fs is the sampling rate, in our cage =

8 kHz. The uniformly spaced valugs,, are then mapped back
to the Hertz domain usiniyfel *(-) and rounded off to the in-
dex of the nearest DFT bin. The support region of each fil-
ter spans from the center frequencies of the neighboriregdilt
with shape defined by piecewise linear function. The filters
are normalized to have approximately constant energy jpdr ea
band, implying that the high-frequency filters have smadksak
responsk

2.2. MFCCs via Direct Warping of DFT (W-DFT)

In all the remaining four methods, we consider an alterna-
tive frequency warping strategy ljrect warping of the spec-
trum, rather than the filterbank. We start again from the Hann
windowed framex but apply avarpedDFT (WDFT) matrix to
obtain a warped spectrunX = Fx. Here,X € CV and
F € CV'*N are, respectively, the complex-valued warped
spectrum and the WDFT matrix. Its elements are given by
Frn = e 79" whered, = 2%k, k being uniformly placed
on the Mel scale. The direct computation via matrix-vectai-m
tiplication of complexity®(N'?) is more CPU-intensive than
conventional DFT utilizingO(N' log, N') FFT implementa-
tion. One alternative way to achieve direct frequency wagpi
is re-mapping FFT bins following spectral interpolationg(e
[24]). But as our primary focus is not computational efficign
we prefer the direct computation due to its direct analogy to
conventional DFT. Indeed, as seen in Fig. 1, the warped spec-
tra (W-DFT) have similar features like the conventional DFT
spectra, but more frequency bins assigned to the impoant |
frequency region.

The warped power spectrum(|X[0]%,...,|X[N]*)"
with N = N’/2, undergoes exactly the same steps as
conventional MFCC extraction — filterbank integration, -log
compression and DCT. But since the spectrum is already pre-
warped, the triangular filters are now uniformly spaced & th
Hertz, rather than Mel, scale. They require no energy nermal
ization as the bandwidths (and area) are nearly equal by con-
struction.

2.3. Warped Linear Prediction (W-LP)

Linear prediction(LP) [29] is a classic parametric spectral mod-
eling technique. In the time domain, LP predictor equat®n i
z[n] = —>°P _, amz[n — m|, where thenth speech sample

is predicted from the pagtvalues, using predictor coefficients
am. The coefficients are solved by minimizing the residual en-
ergy, >, (z[n] — 2[n])* = 3, (z[n] + X%, axzln — m]).

In the autocorrelationmethod of LP, the solution turns out to
bea = —R™!'r, whereR andr are, respectively, Toeplitz au-
tocorrelation matrix and autocorrelation vector. Givea #o-
obtained predictor coefficients, = (a1, a2, ...,ap), the LP
spectral envelope sampled at frequency birs0,1,..., N'—

1 is obtained assi,[k] = 1/|1 + Y7 _, ame 7“*™|*> where

wr = 2mk/N’ as above.

WarpedLP (W-LP) modeling dates back to at least [23];
see [30] for a general overview of warped audio signal peces
ing. In our case, the warped LP variant is easily obtained by
noting that autocorrelation sequence can be computed as the

We used RASTAmat to implement the filterbankattp://
| abr osa. ee. col unbi a. edu/ mat | ab/ r ast amat /



inverse DFT of the squared DFT magnitude spectrum. Thus,
we first compute the warped DFT spectrinas above, take

its squared modulus and use inverse DFT to obtain a warped
autocorrelation sequence. The warped LP coefficients, say
bm,m = 1,...,p, are then obtained using Levinson-Durbin
and converted into a warped LP envelope the same way as
above, using,,’s in place ofa.,’s in Si,[k]. As Fig. 1 indi-
cates, W-LP spectra contain similar features as W-DFT,pick

up FO harmonics and formants. However, due to reduced de-
grees of freedom in all-pole modeling & 24 coefficients vs.

N’ = 256 bins), the spectra are generally much smoother. This
potentially results in improved noise robustness over WFDF

2.4. Warped MVDR (W-MVDR)

Minimum variance distortionless respong®lVDR) [31] is
another popular all-pole technique with attractive prtiper
MVDR defines a filter that leaves the signal at frequency of in-
terest undistorted (i.e. with unity gain) while suppregsihe
other frequencies in an optimal way. Given LP coefficients
am, the MVDR coefficients,u.,, are computed via straight-
forward non-iterative mappingum = - >1_"(p + 1 —
m — 2i)aiai+m for m = 0,1,...,p and pm = p—_m for
m = —p,...,—1. Here,P. is the predictor error variance. The
MVDR spectrum is then obtained from the, coefficients as,
Smvar[f] = 1/|20—, pre”39s™ |2 wherewy, = 2nk/N’
as before.

To obtain awarpedMVDR model (see [24]), we proceed
the most obvious way: the warped LP coefficiebitsdefined
in the previous subsection are converted to the MVDR coeffi-
cients using the above formula fay,, by usingbss in place of
axS. These are then substituted$@.q4.[f] as above. As seen
from Fig. 1, the W-MVDR spectra obtained this way are even
smoother than W-LP spectra.

2.5. Warped Histogram (W-HIST)

This interesting recent method [21], which initially insgd us

to explore frequency warping in detail, uses a radicallfedént
approach to compute features. It is roughly based on the idea
that the human auditory system can form a critical band atoun
anyfrequency, not just around the arbitrarily-fixed centenp®i

of a typical MFCC filterbank. The starting point is the warped
DFT spectruniX = (| X[0])%, ..., |X[N]|?) as above. Let

B = 2
kmax (£, B) = £ + arg Jmax, | X[¢+ p]| @

be theindex of a local maximum of warped spectrum in the
index rangd/, ¢+ B — 1] whereB defines the search bandwidth
(in units of W-DFT bins). Whilearg max(-) chooses the index
of maximum, adding ensures indexing relative to the original
bins of X. We increment in steps of one bin and count the
total number of times each of the spectral bins was activated
Whenever the warped spectrum contains a prominent spec-
tral peak at a certain bin, it tends to be thezmax(-) in
multiple overlapping spectral windows. The nonnegativd an
integer-valued power-spectrum like representation abththis
way favors locally dominant spectral values, such as speech
harmonics, while effectively suppressing or zeroing owt-lo
magnitude components. The bandwidth paramé&eran be
used for controlling spectral sparsity; high valuegbproduce
highly sparse representations that may also remove usaful ¢
ponents. As the right-most columns in Fig. 1 indicate, this
method indeed picks up the frequency locations of the promi-

nent W-DFT components. They correspond roughly to the lo-
cation of harmonics in W-DFT spectra.

3. Experimental setup

For the experiments, we adopt female trials (more difficudint
males) in the common condition 5 of the NIST 2010 SRE cor-
pus involving normal vocal effort telephone conversatiofts
consists of 3704 target and 233077 nontarget trials. Irtiadli
we have two simulated noise conditions involvimeating, ven-
tilation and airconditioningHVAC) andcrowdnoises at signal-
to-noise ratio (SNR) of 6 dB added using FaNFVAC noises
are taken from FreeSouridand crowd noises by summing up
hundreds of random conversations. We report both the equal
error rate (EER) and the normalized minimum detection cost
(MinDCF), which isming {0.10Puiss (6) 4+ 0.99 P (6) }, with
the “classical” cost values uskHere, Priss (8) and P, (6) are
the miss and false alarm rates at thresttold

We adopt an i-vector recognizer [22] to compare the five
feature sets. One gender-independent universal backgroun
model with 512 diagonal covariances Gaussians is trained
from telephone data in NIST 2004—2005 SRE. One gender-
independent 200-dimensional i-vector extractor is trdiorethe
same data. The i-vectors are scaled down to 150 dimensiens us
ing linear discriminant analysis (LDA) and normalized tatyn
length [32]. Full-rank probabilistic LDA (PLDA) is trainedn
the resulting vectors. Both matrices are gender-indeperatel
estimated on the same data as the i-vector extractor. Faifgjet
see [33]. We use the following short-hands for the methods:

DFT: Conventional MFCCs from discrete Fourier transform
(DFT), followed by Mel-scaled filterbank, log and DCT.

W-DFT: MFCCs from warped DFT, followed by linear-scale
filterbank, log and DCT.

W-LP: Warped linear prediction spectrum from WDFT, fol-
lowed by linear-scale filterbank, log and DCT.

W-MVDR: Warped MVDR spectrum followed by linear-
scale filterbank, log and DCT.

W-HIST: Warped histogram features [21], followed by DCT.

All the five methods lead to a set of base coefficients com-
puted using a 25 ms Hann window every 10 ms. We retain the
19 first coefficients appended further with log-energy. T@e 2
dimensional feature vector then undergoes short-time medn
variance normalization over a 3-sec sliding window. Dettag
double deltas are estimated from the context of 5 frames/® gi
60-dimensional features. Speech activity detection us£E'€83
Hungarian phoneme recognizer [34] and relative average en-
ergy thresholding. Short segments are pruned out and speech
segments merged together.

As we do not use multicondition training, any front-end is
expected to experience severe degradation under noisee Sin
standard speech enhancement can be effective in reduc#g mi
matches introduced by noise [14, 6], we include a simple-spec
tral oversubtraction method. Given observed noisy speech
power, | X |?> (we omit frame and frequency indices) and esti-
mated noise powefN |2, we form Wiener gaing = max (1-

[N |2 ; |N|2
x> min(gn, 8

W))’ whereq is an oversubtraction factor,

2http://dnt.kr. hsnr. de/ downl oad. ht m

Swwy. f reesound. or g

4http://ww.itl.nist.gov/iad/nmigl//tests/srel
2010/ NI ST_SRE10_eval pl an. r 6. pdf
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Figure 2: Comparison of conventional MFCCs via warped fil-
terbank (black) and MFCCs via direct spectrum warping and
linear-frequency filterbank (gray) aleandata (SRE 10 with-
out added noise) for different number of triangular filters.

gn = 1.00 is maximum gain for noise floor anél = 0.01 de-
termines maximum noise attenuation. Noisy speech magnitud
is multiplied with g, combined with noisy phase and reverted
to time domain with overlap-and-add. In our implementation
the maximum oversubtraction factor is set to 1 and the noise
estimate N|? obtained using MMSE method of [35].

4. Results

We first compare the two variants to compute MFCCs, DFT
(conventional MFCCs) and W-DFT (warped spectrum) in Fig.
2 on the original SRE 10 data without added noise, in terms of
EER (same trends hold for MinDCF). There is a slight improve-
ment due to direct warping. This could be due to the increased
computational precision at the low frequency range. The-num
ber of triangular filters does not have much effect, whichhhig
be because the number of cepstral coefficients is 19, which li
its detail in the corresponding Mel filter outputs. We fix the
number of filters for all the methods fo = 24.

The two all-pole model variants, W-LP and W-MVDR, re-
quire setting the model order. Speaker verification studies
involving non-warped all-pole models [36, 37] suggest ukef
values fromp = 18 to p = 22 and speech recognition experi-
ments with warped MVDR [24] fromp = 20 top = 24. We
arbitrarily fix p = 24 based on these earlier studies.

The histogram method requires setting the spectral
bandwidth B for searching the local maxima. Using
N’ 256 point warped spectrum, we tried valués =
{10, 15, 20, 25, 30,40, 50} on clean data. We fiB = 20 as
this gave the lowest EER on clean data. We also tried includ-
ing the filterbank and/or use log-compression on the histogr
counts, analogous to steps in the four other methods. These a
tempts lead to increased error rates. Taking simply the DICT o
the histogram counts, as suggested in [21], was chosen.

With all the parameters fixed on clean data as described
above, the complete results on all data are summarized in Ta-

bles 1 (no speech enhancement) and 2 (with speech enhance-

ment). For noisy data without speech enhancement, EERs in-
crease roughly 4- and 6-fold over clean conditions for HVAC
and crowd noises, respectively. HVAC appears more challeng
ing noise type. Speech enhancement improves accuracy con-
siderably, though the error rates under noise remain higie T
results on clean data also slightly improve, because thialini
tunings of spectral subtraction were done on clean data.-Com
paring DFT and W-DFT, the same ordering as in Fig. 2 holds

5Taken from Voicebox, http://ww. ee. i c. ac. uk/ hp/
staf f/ dmb/ voi cebox/ voi cebox. ht m

Table 1. Comparison of feature extractors without speeech en
hancement. HVAC: heating, ventilation and air-conditrani

EER (%) MinDCF
Clean HVAC Crowd Clean HVAC Crowd
DFT 579 329 21.1]025 098 0.82
W-DFT | 5.31 325 20.2|1 0.24 0.98 0.76
W-LP 513 30.7 18.1| 0.22 096 0.75
W-MVDR | 4.82 29.3 17.3| 0.22 0.95 0.70
W-HIST | 6.75 38.0 18.8| 0.33 0.99 0.77

Table 2: Same as Table 1 but with speech enhancement.

EER (%) MIinDCF
Clean HVAC Crowd Clean HVAC Crowd
DFT | 538 280 19.7 024 094 0.78
W-DFT | 5.03 26.1 18.4| 0.23 0.91 0.74
W-LP 490 25.3 17.2 | 0.22 0.88 0.69
W-MVDR | 4.94 24.3 15.3 | 0.22 0.88 0.64
W-HIST | 6.75 30.0 17.6| 0.32 0.97 0.74

for noisy data as well. Comparing W-DFT and W-LP, all-pole
modeling provides a systematic boost as one might hypahesi
from Fig. 1. Interestingly, further variance reductionrfréV-
LP to W-MVDR conversion improves recognition accuracy fur-
ther. As Fig. 1 suggests, W-MVDR spectra has reduced peaki-
ness over W-LP — a known property of MVDR processing.
Unlike in [21], the histogram method does not perform well
in our case; it outperforms conventional MFCCs only in EER
for crowd noise. While the reasons for the discrepancy shoul
be studied carefully, we note that [21] involved differeatpmus,
spoken language, channel conditions and a classifier withou
session compensation. It may also be that such featureslwoul
require different types of feature normalization or clfissi

5. Conclusions

We compared five alternative Mel-frequency warped feature
representations using a modern i-vector recognizer. MFCCs
computed through directly warped spectrum showed improve-
ment slightly over conventional MFCCs. The two parametric
warped all-pole models, on the other hand, outperformed con
ventional MFCCs. Especially the warped MVDR method ap-
pears promising for further studies. The sparse histogesan f
tures were not found robust and reasons for this should ke stu
ied. Overall, alternative warping variants show some psami
though with increased computation. Immediate future work,
therefore, should address speeding up the computations.

Our results were presented for female trials only. A recent
study [38] on SRE 2010 found that females may actually ben-
efit from linear-scale, rather than Mel-scale filterbank.isTh
suggest to address both male experiments and alternatives t
Mel-warping to find a possible joint effect of the gender amel t
choice of the warping function.
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