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Abstract. In this paper, we study how well GPS data can be used for
biometric identification. Previous work has considered only the location
and the entire route trajectory pattern. These can reveal the user iden-
tity when he repeats his every day moving patterns but not when trav-
eling to new location where no route history is recorded for him. Instead
of the absolute location, we model location-independent micro move-
ments measured by speed and direction changes. The resulting short-
term trajectory dynamics are modelled by Gaussian mixture model -
universal background model (GMM-UBM) classifier from speed and di-
rection change features. The results show that we can indentify users
from OpenstreetMap data with an equal error rate (EER) of 19.6%. Al-
though this is too modest result for user authentication, it indicates that
GPS traces do contain identifying cues, which could potentially be used
in forensic applications.

1 Introduction

Thanks to smart devices combined with an increasing number of social media
applications, collecting and sharing of personal data has never been easier as it
is today. Besides photo and video uploads, smart-phones provide direct or pro-
cessed information of the user’s location or behavior via global positioning system

(GPS), accelerometer or other sensor data. As an example, a sportswoman might
upload her running route coordinates along with physical performance data.

GPS coordinate data contains a rich source of information about the user’s
whereabouts and behavior. This information can be used to provide useful ser-
vices such as recommending potential friends based on user’s trajectories [17].
On the other hand, it also raises a question of privacy [4].

Location-related or spatial cues include the most commonly used locations
(such as user’s home) or routes (such as daily route from home to work). Once
combined with temporal (time-stamp) information, one is able to, for example,
infer the future movements of a user [14] and the most likely times she will be
absent from her home [3]. Speed estimates can be used for inferring the most
likely means of transport (walking, bicycling, driving) [15] or whether the user
respects speed limits.
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Even if a GPS trajectory data would be anonymized by obscuring the obvious
identifying information, such as name and home address, the user might still
be re-identifiable by linking an anonymized GPS coordinate data with non-
anonymized data in the user’s public profile in a social media application. Such
information could be very sensitive; examples might be visit to an abortion clinic,
church or premises of a political party [10].

In this study we focus on user identification based on GPS trajectory data.
Differently from prior work that use user’s location history for identification
(where you were) [10, 13], we approach the problem as a biometric identification
task: to identify the user based on his or her physical or behavioral characteris-
tics, but independently of the location or absolute timing of the trajectory data.
We view the GPS trajectory coordinates of a person as an inaccurate measure-
ment of the physical behavior of the user related to his or her muscle activity,
such as gait or the way of steering a bicycle.

Our primary goal is to find out whether and how much of person-identifying
traits exists in GPS trajectory data. Unlike [10, 13] where the question was ap-
proached by the possibility to identify users by only identifying individual routes,
we approach it as a statistical pattern recognition problem. That is, we model
the distribution of short-term feature vectors derived from a set of GPS routes
that reflect user’s physical physical activity, rather than the locations visited.
This way we are able to obtain a more accurate picture of how well users could
be identified in situations where the training and test routes originate from dif-
ferent locations or dates. We utilize two public datasets to study the question
whether person identification is feasible from GPS trajectory data, and if so,
how much training and testing data is required.

2 Related work

2.1 Location privacy

The topic of location privacy has been a subject of many studies [6]. Of recent
work, route uniqueness has been studied in [10] where it was shown that even
low resolution mobile traces collected from mobile phone carriers are highly
unique. Selecting only three points of a trace was enough to uniquely identify
most traces. Similarly in [13] it was shown for GPS data that even when points
are sampled out of the routes, they can still be reliably linked with the original
routes.

2.2 Spatio-Temporal Similarity

Considerable amount of work has been devoted on recommendation based on
GPS trajectory. As an example, in [17], potential friends are recommended based
on user’s trajectories. So-called stay cells are created based on detected stops.
They are considered important since the user stayed there longer time. Similarity
of trajectories is then measured based on longest common subsequence (LCS)
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and giving more importance to longer patterns. In [8], revised version of LCS is
applied by partitioning the trajectories based on speed and detected turn points.
A similarity score is computed using both geographic and semantic similarity.

In [1], similarity of a person’s days is assessed based on the trajectory by
discovering their semantic meaning. The data is collected from tracking users’
cars and pre-processed by detecting stop points. Most common pairs of stops
are assumed to be user’s home and work locations. Dynamic time warping of
the raw trajectories using geographic distances of the points was reported to
work best. In [16], personalized search for similar trajectories is performed by
taking into account user preferences of which parts of the query trajectory is
more important.

Complete trajectories are not always available and the similarity must then
be measured based on sparse location data such as visits, favorite places or
check-ins. In [7], user data is hierarchically clustered into geographic regions. A
graph is constructed from the clustered locations so that a node is a region user
has visited, and an edge between two nodes represents the order of the visits to
these regions. This method still relies on the order of the locations visited.

Algorithm 1 Features for Segment

Input: Route segment S, Window width w

Output: Set of feature vectors F
procedure FeaturesForSegment(S,w)

F ← ∅
for all si ∈ S do

W ← (si, . . . , si+w)
speed← speed(W ,w)
turns← turns(W ,w)
Fspeed ← DftFeature(speed,w)
Fturns ← DftFeature(turns,w)
Fi ← (Fspeed, Fturns)

end for

end procedure

Algorithm 2 DFT Feature

Input: Local window W , Window width w

Output: Feature X

procedure DftFeature(W , w)
X ← (W −mean(W )) ◦HammingWindow(w)
X ← |fft(X)|
X ← dct(log10(X))
X ← X(1 : 24)

end procedure
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3 Statistical user characterization using short-term GPS

dynamics

We model GPS user behavior by first calculating discrete Fourier transform

(DFT) features from local speed and direction changes (Section 3.1). Then
Gaussian mixture model - universal background model (GMM-UBM) classifier
is trained on these features (Section 3.2).

3.1 Short-term GPS dynamics

DFT features are calculated from speed and turn angle data (see Algorithms 1
and 2). The route is processed using a sliding window of 100 seconds (100 or 50
points, depending on sample rate). Speed and turn angles are then calculated for
each point inside the window. Turn angles are further processed by integration
to produce a turn angle measure similar to what speed is to acceleration.
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Fig. 1: DFT feature processing [user1]
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Fig. 2: DFT feature processing [user2]

After that, DFT is calculated separately for speed and turn angle. For each
type of feature and each short-term segment, this yields complex-valued spec-
trum represented in polar form as X(ωk) = |X(ωk)|eiθ(ωk), where |X(ωk)| and
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θ(ωk) denote, respectively, the magnitude and phase of the kth frequency com-
ponent. Similar to short-term speech processing, we discard the phase part.
Logarithm of the retained part, magnitude, is then parameterized using dis-
crete cosine transform (DCT) for dimensionality reduction and decorrelation
purposes. We retain the first 24 DCT coefficients (including the DC coefficient)
and concatenate the speed and turn angle features to yield feature vectors of
dimensionality 24 · 2 = 48.

The DFT feature was designed to model how frequently and by how much
the speed and turn angles change in a route segment. Additionally, they also
reflect the speed of the user to some extent. The greater the speed, the more
frequently there are turns and deacceleration/acceleration. This is expected to
shift the part of the spectrum that correlates with road network to the right (to
higher frequencies).

Figs. 1 and 2 illustrate the features for two different users. In this exam-
ple, user2 has less low frequency variations in the speed of the segment and
this shows as a dip between frequencies 0.05 Hz and 0.1 Hz whereas user1 has a
spike in same frequency range. Additionally, ”dct+idct” represents a reconstruc-
tion of the original magnitude spectrum where inverse DCT is applied on the
zero-padded feature vector containing the lowest 24 coefficients. The prominent
characteristics of the magnitude spectrum are reasonably well preserved in the
24-dimensional features.

In addition to the DFT features, we also experimented with other types of
GPS features such as using simple speed, acceleration and turn angle features
for individual points. Also, short (2-20 point) windows of relative speed and turn
angle were considered. However, the DFT features provided the best performance
and is therefore the only one included in this study.

3.2 Gaussian mixture model classifier

We approach user classification of GPS trajectory data as a biometric authenti-
cation task following Bayes’ decision theory [2]. Given a route R represented by
a sequence of feature vectors, X = {x1, . . . ,xT }, and an identity claim of user
u ∈ {1, 2, . . . , U}, we evaluate log-likelihood ratio:

score(X , u) = log
p(X|user = u)

p(X|user 6= u)
. (1)

Here the numerator models the target user hypothesis while the denominator
models its complement. We assume independent observations {xt} and model
both the target and anti-hypotheses using Gaussian mixture models (GMMs),

p(X|λ) =
T∏

t=1

M∑

m=1

PmN (xt|µm
,Σm), (2)

where M is the number of Gaussians (model order) and λ = {Pm,µm,Σm :
m = 1, . . . ,M} denotes the model parameters: mixing weights (component pri-
ors) Pm, mean vectors µ

m
and covariance matrices Σm. In our implementation
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the covariance matrices are constrained to be diagonal ones1. The number of
Gaussians, M , is a control parameter to trade off between precise user modeling
and generalization power (this will be explored below).

Fig. 3: Modeling and classification system

To train the model, we follow a well-known two-step recipe based on adapted

Gaussian mixture models or GMM-UBM [12], based on maximum a posteri-

ori (MAP) adaptation principle [5] (see Fig. 3). First, a universal background

model (UBM), used for modeling the anti-hypothesis in (1), is trained by pool-
ing route feature vectors from a large number of off-line users. This is achieved
using expectation-maximization (EM) algorithm. The UBM is intended for rep-
resenting common information shared across all the users and is trained once
only, using users disjoint from the target users. The UBM is then used in (1)
across all the target users for score normalization. To enroll (register) a new
user, the UBM parameters are moved towards the enrollment data. We copy
the mixing weights and component variance vectors from the UBM and use the
adapted mean vectors to represent users. We point the interested reader to [12]
for further details.

4 Experimental setup

4.1 Data sets

We created four different evaluation protocols based on two publicly available
source GPS data sets: Geolife2 and Openstreetmap3. As the original datasets

1 This assumption, in general, is non-restrictive. As pointed in [11], since the individual
Gaussians act together to model the input feature density, full covariance matrices
are not needed even for features that are statistically dependent. For a given amount
of training data, one can fit either a GMM with full covariance matrices with less
Gaussians, or equivalently a larger GMM with diagonal covariances.

2 http://research.microsoft.com/en-us/downloads/

b16d359d-d164-469e-9fd4-daa38f2b2e13/
3 http://planet.openstreetmap.org/gps/gpx-planet-2013-04-09.tar.xz
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were originally not designed for biometric tasks, we designed specific evaluation
protocols similar to those used in speaker verification and other biometrics. The
details of the resulting datasets are presented in Table 1.

Table 1: Data sets.
OSM30m OSM60m Geolife30m Geolife60m

Target users 156 51 34 20
Users for UBM 1178 793 35 41

GPS sampling interval 1s 1s 2s 2s
Test segment size 30min 60min 30min 60min
Test data / user 2h 4h 2h 4h

Training data / user 2h 4h 2h 4h
Genuine trials 624 204 136 80
Impostor trials 96720 10200 4488 1520

The Geolife data set was collected by Microsoft Research Asia during a course
of three years (from 04/2007 to 08/2012). It contains data from 182 users (which
our filtering reduced to 34) logged in varying sample rates, covering a broad
range of outdoor activities including life routines, sports activities, shopping,
sightseeing, dining, hiking and bicycling.

Openstreetmap (OSM) data is a collection of public traces4. A 23 GB com-
pressed dump of these traces was published in 20135. It contains GPS traces up-
loaded to openstreetmap.org by 41413 different users logged in varying sample
rates. We select those routes which (1) privacy option was set to ”identifiable”6,
and (2) route sampling interval was 1 second. Due to computational limitations,
only a subset of these routes were processed.

To reduce the risk of having two almost identical routes (such as from work
to home), and thus detecting a route instead of user, each user’s routes were
filtered by removing any overlapping points (< 30 meters). To remove most car
routes, we applied a simple heuristic speed filtering by taking the top 4-quantile
speed of a segment and discarding the route if the speed exceeded 35 km/h. The
route data was then processed to contain only uniform interval (1s or 2s) routes.
For the 2s routes, it contains also one second routes with every second point
removed. Only the OSM data set contained enough data to create a 1s interval
data set.

From the filtered routes, we created a subset where each user has exactly the
same amount of training and test data, for example 4 hours of testing data split
into four 60 minute test items for OSM60m. If the desired amount of data (time)
was not reached, we excluded the user from the data set. The routes of users

4 https://www.openstreetmap.org/traces
5 http://planet.openstreetmap.org/gps/
6 http://wiki.openstreetmap.org/wiki/Visibility_of_GPS_traces
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which did not have sufficient training or testing data were retained for training
the universal background model.

4.2 Evaluation

Classifier scores were computed for all the possible (usermodel, route) pairs;
whenever the user identity of the test route matches the target (model) user,
this constitutes a same user (genuine) trial, otherwise a different user (impos-
tor) trial. We measure the performance using a standard performance measure
of biometric systems, equal error rate (EER), which is the misclassification rate
at the detection threshold where false acceptance and false rejection rates are
equal. In practice, we use an implementation in BOSARIS toolkit7 to compute
EERs. In addition to EER, we also report relative rank (RRANK) measure,
defined as the average rank of the correct user model score and normalized to
range from 0 (best) to 1 (worst) by dividing with the number of users.

7 https://sites.google.com/site/bosaristoolkit/
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Fig. 4: Results for OSM30m and OSM60m data sets. The amount of training
data is varied from 1 to 4 hours.
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Fig. 5: Results for Geolife30m and Geolife60m data sets. The amount of training
data is varied from 0.5 to 2 hours.

5 Results

The results are presented in Figs. 4 and 5. The amount of training data is
varied from 1 hour to 4 hours for OSM60m and Geolife60m data sets and from
30 minutes to 2 hours for OSM30m and Geolife30m data sets. The number of
Gaussians is varied from 2 to 4096. Best accuracy of 19.6% EER and 12.8%
RRANK was achieved in OSM60m data set with 256 Gaussian mixtures and 4
hours training data. For OSM30m data set best accuracy of 24.4% EER and
17.2% RRANK was achieved with 128 Gaussian mixtures and 2 hours training
data.

Comparing the two datasets, the recognition accuracy is lower for the Geolife
data. For Geolife60m, the best accuracy (28.0% EER and 21.8% RRANK) was
achieved with 128 Gaussians and 4 hours of enrollment data. For Geolife30m, the
best accuracy (40.5% EER and 37.2% RRANK) was achieved with 128 Gaussians
and 2 hours training data. Three possible reasons for the lower accuracy for
Geolife include (1) lower GPS sampling, leading to less discriminative spectral
features, and (2) much smaller number of users to train UBM.
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Concerning the amount of training data and the number of model parameters,
we observe three expected results. Firstly, larger amount of training data gen-
erally leads to higher accuracy. Secondly, the optimal number of Gaussians lies
in between the tested parameter range. This is expected from the bias-variance
trade-off in statistical modeling: too many Gaussians leads to overfitting while
too few do not discriminate the users well. Thirdly, for larger amounts of train-
ing data, the optimal model size is obtained with a larger number of Gaussian
components.

Compared with other user movement based biometrics, the GPS features
did not achieve as good recognition accuracy as accelerometer. For example, the
gait-based recognition in [9] reached 7% EER, compared to our 19.6% using
GPS signal. Although it is only indirect comparison, it is reasonable evidence
that even if GPS signal can be used to recognize user, accelerometer probably
provides more reliable source — if available. GPS technology is also likely to
develop further to make it more reliable. probably also more accurate in user
identification. One potential future idea would be to study the joint use of GPS
and accelerometer data.

6 Conclusion

Our experiments indicate that local variations in GPS data possess user specific
characteristic that can potentially be used to recognize a person and should
therefore be handled with similar care as any other private information such as
voice or fingerprints.

Our method achieved an accuracy of 19.6% EER and 12.8% RRANK in
the best case. While these error rates are clearly too high to be useful in user
authentication applications requiring high level of security and trustworthiness,
they do indicate that local GPS trajectory movements contain person-identifying
information. This information might be useful for applications such as recom-
mendation systems or to detect sudden changes in user’s behavior.

We assume that the accuracy is less than optimal partly due to inherent inac-
curacy of GPS data and low sampling frequency on available data sets. However,
future development in movement tracking technology is likely to increase accu-
racy of routes, and consequently improve recognition accuracy of our method.
Also, even larger amount and diversity of training and testing data would likely
improve the accuracy further.

Due to limitations of available data sets, we were unable to rule out the
impact of certain factors which may be user specific while not being characteristic
of users. These include properties of GPS tracker, and the area where user lives.
Therefore it is still an open question how much the recognition accuracy relates
to what user is and how much to user’s surroundings.
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