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ABSTRACT

Many authentication applications involving automatic speaker
verification (ASV) demand robust performance using short-duration,
fixed or prompted text utterances. Text constraints not only reduce
the phone-mismatch between enrolment and test utterances, which
generally leads to improved performance, but also provide an ancil-
lary level of security. This can take the form of explicit utterance
verification (UV). An integrated UV + ASV system should then ver-
ify access attempts which contain not just the expected speaker, but
also the expected text content. This paper presents such a system and
introduces new features which are used for both UV and ASV tasks.
Based upon multi-resolution, spectro-temporal analysis and when
fused with more traditional parameterisations, the new features not
only generally outperform Mel-frequency cepstral coefficients, but
also are shown to be complementary when fusing systems at score
level. Finally, the joint operation of UV and ASV greatly decreases
false acceptances for unmatched text trials.

Index Terms— speaker verification, utterance verification, text
dependent, constant Q transform

1. INTRODUCTION

Automatic speaker verification (ASV) [1] technology has matured
over recent years to become a low-cost and reliable approach to per-
son recognition. Example applications include smart-phone log-in,
telephone banking, logical and physical access control [2]. In these
and indeed in any other scenarios, both user convenience and relia-
bility are usually dependent on text constraints.

At one end of the spectrum of possible text constraints is text-
independent ASV. Here, both enrolment and testing are performed
with free-text utterances. In some sense, this approach is the most
convenient, but the use of free text usually requires long-duration
utterances in order to marginalise mis-matching text content and thus
to ensure reliable performance.

At the other end of the spectrum is text-dependent ASV. This
implies the use of the same fixed-text phrase for both enrolment and
test. The use of fixed-text phrases may be less convenient but usu-
ally provides for better ASV performance with short utterances on
account of matching text content.

Text-dependent ASV can be addressed with an elementary ASV
system, such as a Gaussian mixture model system with a univer-
sal background model (GMM-UBM) [3] or an i-vector system with
probabilistic linear discriminant analysis (PLDA) [4]. These systems
on their own capture only implicitly the time sequence information
of the text content. Other approaches, such as those based on hidden

Markov models [HMM] [5], can capture this content explicitly but,
being usually more complex, typically require more data to train.

With user convenience being often a priority, alternative ap-
proaches to verify the text content of short spoken utterances have
been investigated. This approach is referred to as utterance ver-
ification (UV). UV is the task of determining whether or not a
given utterance corresponds to a given text. The combination of
ASV and UV systems can then verify both the claimed speaker
identity and text content of a given utterance. Some works have
addressed the tasks of UV and ASV jointly by combining sepa-
rate systems [6, 7, 8]. In [9] a number of different UV and ASV
strategies and their combination are compared using the RedDots
database [10] and specially designed protocols.

Recently, features based on the constant Q transform (CQT) [11]
have been successfully applied to a number of speech-related appli-
cations, including ASV [12, 13]. In these features, CQT is used to
obtain variable-resolution spectra which provide a greater frequency
resolution at low frequencies and a greater time resolution at high
frequencies. However, the frequency scale of such spectra is geo-
metric. This poses difficulties when it is coupled with traditional
cepstral analysis, where some post-processing is usually required to
yield a linear frequency scale [12]. This multi-resolution analysis
together with further post-processing may impose a high computa-
tional load.

This work proposes to replace the CQT algorithm in [11] with
the infinite impulse response constant Q transform (IIR-CQT) pro-
posed in [14] as a more efficient alternative. It delivers multi-
resolution time-frequency analysis in a linear scale spectrum which
is ready to be coupled with traditional mel-cepstral analysis. The
resulting features of combining IIR-CQT and cepstral analysis are
called infinite impulse response - constant Q, Mel-frequency cepstral
coefficients (ICMC).

This paper reports the authors’ subsequent work on UV and text-
dependent ASV [9] with the new ICMC features to fully expose the
potential. Specifically, the contributions are as follows:

• new features for UV and ASV – the paper introduces ICMC
features which are used to improve the performance of both
ASV and UV systems;

• UV optimisation – the paper presents an assessment of UV
performance using an HMM-UBM system and the depen-
dence of performance on its configuration;

• ASV optimisation – the paper presents an assessment of
GMM-UBM, HMM-UBM and i-vector approaches for short
utterance, text-dependent ASV, and



• stand-alone and combined assessment – UV and ASV sys-
tems are assessed independently and when combined with a
decision-based fusion in order to determine an optimal oper-
ating point.

2. INFINITE IMPULSE RESPONSE - CONSTANT Q
MEL-FREQUENCY CEPSTRAL COEFFICIENTS

Recent research [12, 13] has shown that better performance for a
range of speaker modelling and classification tasks can be achieved
by replacing the traditional short-time Fourier transform (STFT)
with an alternative approach to time-frequency analysis known as
the constant Q transform (CQT) [11]. These findings provided the
stimulus behind its application to UV and ASV. Starting with a
treatment of the limitations of the STFT, we present the specific
approach as follows.

2.1. Short-time Fourier transform

The classical STFT spectrogram is a visual representation of the
spectro-temporal composition of a signal through regularly spaced
time intervals and frequency bands. Different signals, such as
speech, music or noise, give rise to different spectro-temporal struc-
ture.

As a result, spectro-temporal analysis requires a resolution
adapted to the signal in question. For example, a higher frequency
resolution may be prefered for the analysis of low-frequency content
of voiced speech signals where the harmonic density is typically
high. Conversely, a higher time resolution may be required to cap-
ture rapid modulation at high frequencies. As a consequence of
competing requirements, multi-resolution spectro-temporal repre-
sentations are appealing for the analysis of speech signals.

2.2. Constant Q transform

There are a number of alternatives to the constant resolution of the
STFT [15, 16, 17]. Rather than a constant resolution, some of these
alternatives offer instead a constant Q factor. The Q factor is a mea-
sure of the selectivity of each filter and is defined as the ratio between
the center frequency fk and the bandwidth δf :

Q =
fk
δf

(1)

The human perception system is known to approximate a con-
stant Q factor between 500Hz and 20kHz [18]. This is the main
motivation for the constant Q analysis of audio signals [19, 20, 21].

The constant Q transform (CQT) was introduced in 1978 by
Youngberg and Boll [17] and refined some years later in 1991 by
Brown [11]. The CQT employs geometrically distributed octaves
and center frequencies. As a result, the CQT provides for a higher
frequency resolution at low frequencies and, conversely, a higher
temporal resolution for high frequencies.

Multi-resolution processing, however, carries a penalty in com-
putation time. In addition, the use of a geometric frequency scale
can necessitate still more processing to linearise the scale for decor-
relation and modelling purposes [12, 13].

The infinite impulse response-CQT (IIR-CQT) algorithm pro-
posed in [14] provides a compromise between computational cost
and design flexibility. The authors of [14] propose a direct method
to approximate a time-varying IIR (TV IIR) filterbank to accom-
plish the constant Q behavior in which the pole varies with frequency
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Fig. 1. Spectrograms of the utterance ‘the rate also yielded
production equipment’ for an arbitrary speaker in the RedDots
database [10]. Spectrograms computed with the STFT (top) and with
the IIR-CQT (bottom).

(p = p[n])

Y (k) = X(k) +X(k + 1) + p(k)Y (k − 1) (2)

where X is the discrete Fourier Transform of the signal computed
after centering the signal at time 0. Finally, a forward-backward TV
IIR filtering is performed to obtain zero-phase distortion.

The location of the pole varies for each frequency band along the
real axis in order to obtain different time window widths (wider for
low frequencies and narrower for high frequencies). Further details
and the algorithm implementation can be found in [14].

Unlike the CQT algorithm described in [11], frequency scale of
spectrum derived by the IIR-CQT algorithm is linear. This allows
the direct coupling with traditional cepstral analysis without further
post-processing [12].

Figure 1 shows the difference between STFT (top) and IIR-CQT
(bottom) derived spectrograms for an arbitrary utterance from the
RedDots database [10]. As a result of multi-resolution analysis,
harmonics at lower frequencies are better defined in the IIR-CQT-
derived spectrogram than in the STFT-derived spectrogram. In addi-
tion, time resolution is improved at higher frequencies.

2.3. Mel-cepstral analysis

As is the case for traditional STFT derived spectro-temporal esti-
mates, cepstral processing can be applied to individual spectral mag-
nitude frame estimates derived with the IIR-CQT. The cepstrum of
a time sequence x(n) is obtained from the inverse transformation of
the logarithm of the spectrum.

The inverse transformation is normally implemented with the
discrete cosine transform (DCT). The cepstrum is then a (usually
truncated) orthogonal decomposition of the log spectrum. It maps
N Fourier coefficients onto q � N independent cepstrum coeffi-
cients which capture the most significant and relevant information
contained within the spectrum.

Based upon auditory critical bands [22], Mel-scaling is normally
applied prior to cepstral analysis. Mel-scaling is commonly em-
ployed in a range of speech processing taks and is typically extracted
according to:

MFCC(q) =
M∑

m=1

log [MF (m)] cos

[
q
(
m− 1

2

)
π

M

]
(3)



where the Mel-frequency spectrum is defined as

MF (m) =

K∑
k=1

|X(k)|2Hm (k) (4)

where k is the DFT index, Hm(k) is the triangular-shaped weight
function for them-th Mel-scaled bandpass filter. Normally, the num-
ber of coefficients q is less than the number of Mel-filters M . Typi-
cally, M = 25 and q varies between 13 and 20.

This paper investigates the combination of the IIR-CQT with
Mel-scaling and cepstral analysis. This is achieved by replacing
X(k) in Equation 4 with Y (k) from Equation 2. The resulting fea-
tures are referred to as Infinite impulse response Constant Q Mel-
frequency Cesptral coefficients (ICMC).

3. UV SYSTEM

A number of different approaches to UV were reported in [9], includ-
ing GMM-UBM, HMM-UBM, dynamic time warping and a forced
alignment system. The HMM-UBM system was found to outper-
form the alternatives and was thus adopted for all work repoted here.

The HMM-UBM system reported in [9] is a 2-layer model simi-
lar in nature to the so-called HiLam approach to text-dependent ASV
introduced in [5]. The model is a left-to-right, utterance-dependent
HMM with continuous observation densities modeled with GMMs
adapted from an utterance-independent UBM pre-trained with exter-
nal data.

Utterances are first split into N equal-sized segments, where N
is the number of HMM states. Each state is a GMM and is estimated
by adapting the UBM to the corresponding utterance segment using
maximum a posteriori (MAP) adaptation. A number of Viterbi re-
alignment and readaptation sequences are then applied to optmise
the model.

UV scores are the likelihood ratio given the data and either the
utterance-dependent HMM or the utterance-independent UBM. The
number of HMM states and the number of Gaussian mixtures per
state are empirically optimised and are the same for each utterance.

In UV experiments different numbers of GMM components of
8, 16, 32 and 64 were evaluated. In addition, different number of
HMM states of 14, 24 and 34 were assessed. The UBM was trained
on male speech from the TIMIT database.

Two different score normalisation approaches are also investi-
gated. MeanNorm subtracts from the utterance score the mean score
produced by all alternative utterance models. MaxNorm subtracts
from the utterance score the maximum score produced by all the al-
ternative utterance models. Note that these normalization techniques
can only be applied in a practical scenario if the universe of pass-
phrases is limited (10 in this case).

4. ASV SYSTEMS

This section describes the three ASV systems used for the experi-
mental work reported in this paper.

4.1. GMM-UBM

The GMM-UBM system is the de facto standard approach to ASV.
The UBM represents the speaker-independent acoustic space [3] and
is trained with an expectation maximisation algorithm on a large
quantity of external data. Speaker-specific models are then learned
from the UBM using MAP adaptation. Only the UBM means are

adapted. The UBM was trained using speech data from the TIMIT
corpus1 and all models have 512 components.

4.2. HMM-UBM

The HMM-UBM system is described in [23]. A universal, text
and speaker-independent HMM [24] is learned with the data
of 157 speakers from the RSR2015 database (approximately 30
phrases/speaker over 9 sessions) without any speech transcriptions
and with several iterations of the Baum Welch algorithm. Speech
transcriptions are not utilized for HMM training, thus model param-
eters reflect general temporal information only.

Speaker dependent models are derived from the HMM-UBM
using enrollment data with MAP adaptation [25]. Three MAP it-
erations are used with a relevance factor of 10 and only Gaussian
mean parameters are adapted. The number of HMM-UBM states
and Gaussian components per state are optimized to minimize the
equal error rate (EER) on the impostor-correct condition (see Sec-
tion 5.1) of the development set. Test utterance scores are obtained
from their forced alignment to the claimed target model and the uni-
versal HMM-UBM and then the corresponding log-likelihood ratio.

4.3. i-vector

The i-vector system is based on original work in [4].
i-vectors are extracted using a GMM-UBM of 512 components

with diagonal co-variance matrices which are learned using the same
data as that used to learn the universal HMM-UBM as described
above.

Each target is represented by an average i-vector computed over
the phrase-wise i-vectors of their enrollment data. Test utterance i-
vector are extracted in the same way and then compared to those of
the claimed target in the usual way. We consider an i-vector dimen-
sion of 400.

Before scoring, i-vectors are post-processed using the iterative
conditioning algorithm with spherical normalization (Sph) described
in [26] in order to compensate for session variability. The normalisa-
tion procedure is trained using the same data as that used for GMM-
UBM learning. Scores are then calculated using probabilistic linear
discriminant analysis (PLDA) in which Gaussian priors are assumed
for speaker and channel factors. Scores between the claimed target
(w1) and test (w2) i-vectors are then calculated according to:

score(w1, w2) = log
p(w1, w2|θtar)
p(w1, w2|θnon)

(5)

where θtar defines the hypothesis that i-vectors w1 and w2 are
from the same speaker, whereas θnon represents the alternative
hypothesis. For PLDA training, same-speaker utterances are con-
sidered to come from different speakers, thereby resulting in the
order of 4710 utterances for PLDA learning (157 speakers, 30 pass-
phrases/speaker over 9 sessions). For more details about the PLDA
and Sph algorithm are available in [27, 28, 29, 26].

5. EXPERIMENTAL SETUP

This section describes the experimental setup, including metrics,
databases, protocols and feature extraction.

1https://catalog.ldc.upenn.edu/LDC93S1



Table 1. Database description for UV experiments.
Development Evaluation

Test Utterances 1049 1536
Matched-Text trials 1049 1536

Unmatched-Text trial 9441 13824

5.1. Metrics and evaluation

UV and ASV performance are assessed in terms of the EER. In con-
trast, and in order to illustrate more clearly difference in performance
with and without UV, combined performance is expressed in terms
of false acceptance rate (FAR) and false rejection rate (FRR). As
illustrated in Table 2, in addition to the one target correct (TC) con-
dition in which both the utterance and speaker labels match, there are
three types of impostor trial where either the utterance or speaker do
not match. They are the target wrong (TW), impostor correct (IC)
and impostor wrong (IW) [10] conditions. Accordingly, FAR per-
formance is furthermore illustrated independently for each impostor
trial, namely FAR(TW), FAR(IC) and FAR(IW). The operation point
for ASV is when FRR and FAR(IC) are equal. We selected this oper-
ation point to tune the system to give balanced performance when the
text content matches. Then, FAR(TW) and FAR(IW) are expected to
be lowered by the joint operation of the UV module. Lastly, perfor-
mance is evaluated for UV and ASV systems in isolation and when
combined. Combination is achieved through score level fusion by
means of logistic regression and is performed with the BOSARIS
toolkit2.

5.2. Database and protocols

Experiments are conducted with speech data collected in connection
with the RedDots challenge3 [10]. Since the challenge relates exclu-
sively to ASV, new protocols are created to support UV and ASV
experiments. Due to the limited number of female subjects in the
RedDots corpus, only male speakers are included in the protocols.
They are formed from a subset of part 01 of the evaluation subset
which contains utterances of 10 common phrases.

Data from 9 different speakers are used for training utterance
models. This results in a total of 1485 utterances used for training
(roughly 148 files per phrase). The development set is formed with
data from 10 speakers whereas the evaluation set contains data from
a different set of 30 speakers. Table 1 gives details of the UV de-
velopment and evaluation protocols: number of utterances, number
of matched-text (target) trials, and number of unmatched-text (non-
target) trials. As regards ASV, each speaker-and-passphrase depen-
dent model is enrolled with 3 utterances. Table 2 shows details of
the ASV development and evaluation protocols: number of target
speakers-passphrase models, number of target trials (target-correct),
and number of nontarget trials (target-wrong, impostor-correct and
impostor wrong).

Note that, while part 04 of the evaluation, namely the text-
prompted condition, may at first seem better suited to the develop-
ment and assessment of UV systems, it relates to the verification of
speaker-sentence pairs. As such, it is not suited to both the indepen-
dent and combined assessment of UV and ASV, hence the approach
adopted here.

2https://sites.google.com/site/bosaristoolkit/
3https://sites.google.com/site/

thereddotsproject/home

Table 2. Database description for ASV experiments.
Development Evaluation

Number of Targets 96 152
Target Correct (TC) 1011 1108
Target Wrong (TW) 9099 9972

Impostor Correct (IC) 9059 22220
Impostor Wrong (IW) 81535 200172

5.3. Feature extraction

Both UV and ASV experiments are performed independently
and when combined using two feature extraction methods. Mel-
frequency cepstral coefficients (MFCC) serve as the baseline for
comparisons with performance when using the new ICMC fea-
tures. Except for differences in the underlying approach to spectro-
temporal analysis (STFT for MFCC versus IIR-CQT for ICMC), the
two configurations share an identical configuration.

The common processing is as follows. Pre-emphasised speech
signals are frame-blocked using a sliding window of 20 ms with a
10 ms shift. The power spectrum is obtained using either the STFT
or the IIR-CQT from Hamming windowed frames before 19th order
static coefficients (excluding the 0-th coefficient) are extracted using
the discrete cosine transform (DCT) of 20 log-power, Mel-scaled
filterbank outputs. For IIR-CQT, a Q factor of 96 was empirically
determined.

RASTA filtering is then applied before delta and delta-delta co-
efficients are computed from the static parameters thereby resulting
in feature vectors of dimension 57. Speech activity detection (SAD)
based on energy modelling is applied to discard low-energy con-
tent. Finally, cepstral mean and variance normalization are applied
to compensate for channel variation.

5.4. Integration of UV and ASV

In this scenario, we simultaneously verify the spoken content as well
as the speaker identity and accept the claim only if both are correct.
In this paper, the UV and ASV system are combined in two different
methods. In the first strategy, score level fusion is performed on the
scores obtained from two systems. The fusion is performed using
linear regression method using BOSARIS toolkit where the trials
from TC condition are used as target and the rests as non-target. In
the second integration method, decision level fusion is performed on
the binary decision (i.e., accept/reject) available from the UV and
ASV systems. For this, the decision thresholds are computed first
separately on two individual tasks to produce the binary decision
labels. Then the decision labels are combined by ’AND‘ operation.

6. EXPERIMENTAL RESULTS

Performance is first assessed for UV and ASV in independence and
then when combined.

6.1. Standalone UV

UV results for the development set are illustrated in Table 3 in terms
of EER for both MFCC and ICMC features. Results are shown for
different numbers of HMM states and GMM components. Different
rows show performance with and without normalisation and for two
fusion strategies.

For smaller GMMs (8 and 16 components), ICMC features out-
perform MFCC, while MFCC gives better performance for more



Table 3. Utterance verification performance using the standalone UV protocol, measured in EER (%) on the development set for different
number of HMM states (14, 24 and 34) and different number of GMM components (8, 16, 32 and 64).

14 HMM states 24 HMM states 34 HMM states
Norm. method Feature 8 16 32 64 8 16 32 64 8 16 32 64

None MFCC 5.09 4.20 3.19 3.25 4.01 3.36 2.63 2.70 3.47 2.92 2.11 2.26
ICMC 3.77 3.48 2.97 3.38 3.35 2.86 2.67 2.94 3.04 2.83 2.81 2.83

Mean MFCC 1.56 1.28 0.94 0.96 1.31 1.25 1.07 0.94 1.22 1.27 1.04 0.90
ICMC 1.48 1.48 1.51 1.39 1.32 1.25 1.22 1.17 1.30 1.27 1.27 1.28

Max MFCC 0.59 0.36 0.20 0.35 0.38 0.35 0.37 0.41 0.40 0.39 0.48 0.48
ICMC 0.66 0.63 0.63 0.58 0.58 0.54 0.45 0.48 0.48 0.56 0.51 0.46

Max Fused 0.34 0.33 0.19 0.25 0.28 0.24 0.27 0.31 0.26 0.35 0.28 0.32
Max Best MFCC and ICMC fused 0.19

Table 4. Utterance verification results using the standalone UV pro-
tocol, measured in EER (%), on evaluation set. Best classifier con-
figurations based on the results on development set are selected.

System noNorm meanNorm maxNorm

MFCC 4.38 2.43 0.71
ICMC 4.16 2.09 0.78

Fusion 3.42 1.87 0.51

complex models (32 and 64 components). Without normalisation,
ICMC features generally outperform MFCC, while MFCC features
mostly outperform ICMC features for MeanNorm and MaxNorm,
with the latter providing the best results. The best performance
achieved with MFCC features is 0.20% EER with 14 HMM states
and 32 Gaussian components per state. The best performance for
ICMC features is 0.45% EER with 24 HMM states and 32 Gaus-
sian components per state. In these optimum configurations, relative
improvements of 93% and 83% are achieved for MFCC and ICMC
features, with respect to un-normalized scores. The fusion of max-
normalised MFCC and ICMC scores delivers an EER of 0.19%. Fi-
nally, the fusion of the two best MFCC and ICMC max-normalised
scores obtains the same performance.

Results for the evaluation set using the two best configurations
for MFCC and ICMC features are reported in Table 4. Here the
trend is reversed, with ICMC feature producing slightly better per-
formance than MFCC. Once again, MeanNorm and MaxNorm are
effective. The best EER of 0.51% is achieved with the fusion of
max-normalised MFCC and ICMC scores. Taking results for the
evaluation set as a whole, MFCC and ICMC features are consistently
complementary.

6.2. Standalone ASV

Fig. 2 illustrates the performance of the GMM-UBM system against
relevance factor for the TW, IC and IW conditions of the develop-
ment set. For the IC condition, optimal performance is obtained with
relevance factors of 4 and 2 for MFCC and ICMC features respec-
tively, corresponding to EERs of 3.19% and 2.26%. Furthermore
ICMC features are shown to universally outperform MFCC features.

Results for the HMM-UBM system are illustrated in Figure 3
for the IC condition on the development set and for MFCC and
ICMC features, using different number of HMM states and GMM
components for a fixed relevance factor of 10. Performance varies in
the intervals 5.28 ± 3.18% (mean±variance of EER) and 4.51% ±
1.32% for MFCC and ICMC, respectively. Best performance is ob-
tained in the case of MFCC features with 4 states and 64 components
and with 14 states and 32 components in the case of ICMC features.
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Fig. 2. ASV performance of GMM-UBM system with MFCC and
ICMC features, in terms of EER (%), for TW, IC and IW conditions
on the development set for various values of the relevance factor.

Fig. 3. ASV performance of HMM-UBM system with MFCC and
ICMC features, in terms of EER (%), for IC condition, on the devel-
opment set for various number of states and Gaussian components
in HMM-UBM.

Table 5. ASV performance of i-vector system with MFCC and ICMC
features, in terms of EER (%), for IC condition, on the development
set for different speaker factors in PLDA (channel factor is kept full
rank i.e. equal to the dimension of i-vector).

Speaker factors
Feature 200 250 300 350 400
MFCC 5.60 5.30 4.99 5.07 4.98
ICMC 6.31 5.69 5.33 5.27 5.21



Table 7. Performance with joint-protocol on development and evaluation sets using different ASV systems.
Development Evaluation

FRR FAR (TW) FAR (IC) FAR (IW) FRR FAR (TW) FAR (IC) FAR (IW)

ASV GMM-UBM (MFCC) 3.26 6.73 3.25 0.09 2.08 8.41 2.57 0.03
ASV GMM-UBM (ICMC) 2.37 6.91 2.34 0.04 1.26 7.38 2.30 0.05
ASV HMM-UBM (MFCC) 4.06 5.87 4.05 0.07 1.26 11.78 4.92 0.13
ASV HMM-UBM (ICMC) 3.56 1.21 3.58 0.03 0.99 3.97 4.31 0.04

ASV i-vector (MFCC) 4.95 7.13 5.03 0.10 1.53 14.62 6.97 0.18
ASV i-vector (ICMC) 5.34 3.40 5.35 0.09 3.52 5.97 4.61 0.08

ASV Fusion 1.78 2.85 1.74 0.00 0.72 4.94 2.24 0.01

Score Fusion of UV (Fused) + ASV (Fused) 2.18 0.79 2.17 0.00 0.72 1.22 2.59 0.00
Decision Fusion of UV (Fused) + ASV (Fused) 2.28 0.00 1.73 0.00 1.35 0.03 2.22 0.00

Table 6. Text-dependent speaker recognition performance (in terms
of EER %) for different tasks on development and evaluation set us-
ing different ASV systems and fusion.

Development Evaluation

GMM-UBM (MFCC) 3.19 2.14
GMM-UBM (ICMC) 2.26 1.56
HMM-UBM (MFCC) 3.99 2.26
HMM-UBM (ICMC) 3.54 1.67

i-vector (MFCC) 4.98 2.78
i-vector (ICMC) 5.21 3.83

Fusion 1.68 1.03

In the i-vector system, channel factors are kept full rank (i.e.
equal to the dimension of i-vector) and the value of speaker factor
is varied to find the optimal speaker verification performance on the
development set (for IC condition in terms of lowest EER value)
as presented in Table 5. EER decreases with an increasing value
of speaker factor on both features. Best performance is achieved
when both number of channel and speaker factors are equal to the
full dimension of i-vector.

A comparative summary of ASV performance for each of the
three independent systems and for their score-level fusion is pre-
sented in Table 6 for the IC condition of both development and eval-
uation sets. Most likely due to the short-duration nature of the Red-
Dots database [10], the simplest GMM-UBM system is the best per-
forming. With the exception of the i-vector system, results for ICMC
features are better than those for MFCC features, for both develop-
ment and evaluation sets. The reason of the inverse performance
trend of MFCC and ICMC on i-vector has to be further investigated.

Results for fused ASV systems are illustrated in the last row
of Table 6. Fusion results stem from the combination of scores pro-
duced by each of the three systems and with each of the two different
features configurations (six systems) using logistic regressions. In
contrast to previous work in [9], fusion weights are optimised with
TC trial scores used as positives and IC trial scores used as nega-
tives. Fusion results in the lowest EERs for both development and
evaluation sets.

6.3. Effect of combined UV in text-dependent ASV performance

First, results for ASV in isolation, in terms of FAR and FAR for
the selected operation points (using IC trials as impostors), are illus-
trated in Table 7. Then, two different UV + ASV integration strate-
gies are illustrated in the final two rows. The penultimate row shows
results for score fusion, whereas the last row illustrates results for
decision fusion.

ASV system in fusion in isolation does not help in reducing the
FAR for the TW condition. This is not unexpected since, without
UV, ASV on its own offers little potential to reject incorrect pass-

phrases. However, when UV and ASV are combined, FAR(TW) is
greatly decreased for the two proposed combination schemes (from
2.85% to 0.79% and 0.00% in the development set for the two com-
binations, respectively). Nevertheless, this has the cost of increasing
FRR slightly. Decision fusion outperforms score level fusion, which
further degrades FRR and FAR(IC). This is expected since, in score
fusion, UV scores are raising the overall ASV score, and therefore
increasing FAR when text matches. Results nonetheless indicate that
both combined approaches lead to considerably lower FARs. In the
evaluation set, similar systems’ behavior is found. Compared to our
prior work in [9], errors related to matched text trials (TC and IC) are
significantly lower, while keeping unmatched text errors (FAR(TW)
and FAR(IW)) virtually to 0%.

7. CONCLUSIONS

This paper has presented a new feature for utterance verification
(UV) and automatic speaker verification (ASV). Referred to as
infinite impulse response - constant Q Mel-frequency cepstral
coefficients (ICMC), the new multi-resolution approach is bet-
ter adapted than the short-term Fourier transform (STFT) to the
spectro-temporal analysis and parameterisation of speech signals.
The use of ICMC features improves the performance of a UV sys-
tem based on spectro-temporal modelling and also the performance
of three different approaches to text-dependent ASV. The fusion of
UV with the three different ASV systems leads to the best overall
performance, decreasing false acceptances related to unmatched text
to 0% while just slightly increasing false rejections.

The work demonstrates the potential of UV to improve text-
dependent ASV performance. Even so, UV is still a research field in
its relative infancy. One can thus readily expect significant develop-
ments in the coming years.
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