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ABSTRACT

The problem of context recognition from mobile audio data iscon-
sidered. We consider ten different audio contexts (such ascar,
bus, office and outdoors) prevalent in daily life situations. We
choose mel-frequency cepstral coefficient (MFCC) parametrization
and present an extensive comparison of six different classifiers: k-
nearest neighbor (kNN), vector quantization (VQ), Gaussian mixture
model trained with both maximum likelihood (GMM-ML) and max-
imum mutual information (GMM-MMI) criteria, GMM supervector
support vector machine (GMM-SVM) and, finally, SVM with gener-
alized linear discriminant sequence (GLDS-SVM). After allparam-
eter optimizations, GMM-MMI and and VQ classifiers perform the
best with 52.01 %, and 50.34 % context identification rates, respec-
tively, using 3-second data records. Our analysis reveals further that
none of the six classifiers is superior to each other when class-, user-
or phone-specific accuracies are considered.

Index Terms— Audio context recognition, speaker and lan-
guage recognition, short duration, mobile environment

1. INTRODUCTION

There is no doubt that mobile phones have changed the world welive
in. Modern smartphones are no longer just telephones but entire mo-
bile computers with WiFi access and multiple sensors. Many of them
are equipped with a high-resolution digital camera, globalposition-
ing system (GPS), infrared and accelerometer sensors. The detailed
data streams provided by these specialized sensors can be used for
inferring the user’s current activity (bicycling, walking), physical lo-
cation (Länsikatu 15, Joensuu, Finland) or perhaps even the user’s
social situation (work meeting, attending a lecture, out in a pub with
friends). Being able to infer the user’s activity patterns or physical
location – commonly referred to ascontext– would be certainly use-
ful for improving the relevance or quality of services from the cus-
tomer’s viewpoint. In this study, we focus on the core technology
component, inference of the user’s context using pattern recognition
techniques.

While accelerometers, GPS and digital imaging have extensively
been used for inferences of user’s location and activity patterns, the
most commonly available sensor found inany mobile phone – the
microphone – has received less attention. There are, however, at
least two good reasons to study auditory cues. Firstly, unlike WiFi
or GPS signals, audio-based context recognition is not restricted to
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an existing network infrastructure (and its weaknesses, such as un-
available or unreliable GPS coordinates inside a building). Secondly,
audio stream can be captured from any direction or even from inside
a backpack or handbag without user interaction. There is also some
indication that audio-based cues might be more accurate in recog-
nizing both user’s action and the acoustic environment in compar-
ison with accelerometer sensors [1]. The focus of this studyis to
recognize the mobile user’saudio contextbased solely on auditory
cues.

The problem of audio context recognition has been studied e.g.
in [8, 9, 10, 11]. Similar to speech and speaker recognition,the meth-
ods rely on short-term feature extraction followed by pattern classi-
fication. Regarding the first component, feature extraction, different
parameterizations of the short-term spectrum, such as mel-spectrum,
mel-frequency cepstral coefficients (MFCCs) and linear prediction
(LP) coefficients have been popular. Even though a few studies
[8, 12] have also attempted to use alternative time- and frequency-
domain features, such as zero crossing rate, spectral flux orspectral
centroids, or even sparse time-frequency patterns [11], there is ex-
perimental evidence that such features can merely complement the
MFCCs or MFCC-like spectral shape descriptors; for detailed com-
parisons of features, see e.g. [8]. MFCC features are also used in the
ETSI standard front-end for distributed speech recognition (DSR)
and therefore, integrating context or environment detection for im-
proved ASR model adaptation would not increase overhead at front-
end. For these reasons, we utilize the standard MFCCs with their
first and second order time derivatives, the delta and doubledelta
coefficients, and focus on the pattern classification part.

The existing pattern modeling techniques for audio context
recognition can be roughly divided into three major types, (1) bag-
of-framesmodels, (2)temporalmodels and (3)event detectionbased
models. The bag-of-frame approaches, similar to text-independent
speaker recognition machinery, treat feature vectors as independent
observations. They characterize the environment- or context-specific
characteristics of audio excerpts using distribution models such as
Gaussian mixture models (GMMs) or discriminatively trained mod-
els such as support vector machines (SVMs) [12]. The second class
of methods, temporal models, rely on continuous [8] or discrete
[1] observation hidden Markov model (HMM) variants or otherse-
quence modeling techniques [1] to learn context-specific temporal
profiles of acoustic features. Finally, event detection based methods
[13, 14] use pre-trained event detectors (e.g.laughter, cheering) to
characterize typical events in an audio stream. Similar to high-level
feature modeling in speaker verification, the occurrences of events,
modeled using histograms or other discrete models, constitute the
context-specific back-end models.

In this study, we focus on the bag-of-frames paradigm for two



Table 1. Six methods are compared for audio context recognition. GMM: Gaussian mixture model, ML: maximum likelihood, MMI:
maximum mutual information, SVM: support vector machine, GLDS: generalized linear discriminant sequence.

Id Classifier Training Main control parameters Values considered

(1) k-nearest neighbor (kNN) [2]Generative Codebook size (M ) M ∈ {4, 8, 16, . . . , 8192}
No. of neigbors (k) k ∈ {1, 3, 5, 9}

(2) Vector quantization (VQ) [3]Generative Codebook size (M ) M ∈ {4, 8, 16, . . . , 8192}
(3) GMM with ML training [4] Generative No. of Gaussians (K) K ∈ {256, 512, 1024}
(4) GMM with MMI training [5] Discriminative No. of Gaussians (K) K ∈ {256, 512, 1024}
(5) GMM-SVM [6] Discriminative No. of Gaussians (K) K ∈ {8, 16, . . . , 256}

Relevance factor (r) r ∈ {1, 16}
(6) GLDS-SVM [7] Discriminative Max. monomial order (Q) Q ∈ {1, 2, 3}

reasons. The first is to keep the systems generally simple andcompu-
tationally efficient; no Viterbi decoding or additional event detector
training is required. The second reason – our primary motivation for
the present study – is that we would like to utilize as much as pos-
sible the existing infrastructure for two well-studied speech classifi-
cation problems, speaker and language recognition. To thisend, we
consider six classifiers shown in Table 1. The two classical distance-
based methods (kNN and VQ) have very low computational com-
plexity, whereas the four other classifiers are widely used in modern
speech classification tasks.

Our main contributions can be summarized as follows. Firstly,
we utilize a challenging mobile audio context database consisting
of 100k+ 3-second audio segments collected with different Nokia
phones in ten different audio context categories. Secondly, we pro-
vide detailed evaluation and analysis of context classification using
the six classifiers in Table 1. Finally, detailed break-downof the
recognition results is presented in terms of our ten audio contexts,
our six users (four males, two females), our four mobile devices and
even the two different cities (Tampere and Helsinki, Finland) the data
was collected in.

2. CLASSIFIERS

All the six classifiers considered in this study (Table 1) aretrained
using labeled training setT = {(xn, yn)|n = 1, 2, . . . , Ntrain},
whereNtrain indicates the number ofd-dimensional acoustic vec-
torsxn = (x1,n, x2,n, . . . , xd,n)

T ∈ Rd, andyn ∈ {1, 2, . . . , C}
denotes the label of one of ourC = 10 target contexts (see Table
2). Further, letXc , {xn|yn = c} denote the pool of training
vectors of class (context)c. We consider three generative and three
discriminative methods. Generative models for each class are trained
independently from each other, whereas discriminative training uti-
lizes training examplars from the competing classes. In thesystem
operation phase, each classifier attempts to predict the true class of
an unseen audio segment, now presented as a sequence of vectors
X = {x1, . . . ,xT }. In our case, we classify 3-second segments us-
ing standard MFCC +∆ + ∆2 front-end withd = 39 andT = 65.
More details of feature extraction will be provided in Subsection 3.1.

2.1. k-Nearest Neighbor (kNN) and Vector Quantization (VQ)

A few simple dissimilarity- or template-based context predictors can
be built up by computing pairwise distances between the testseg-
mentX and the training examplars of each class. Here we con-
sider the well-knownk-nearest neighbor (kNN) [2] and vector quan-
tization (VQ) [3] classifiers. They both require search of nearest
training set neighbors (in Euclidean metric sense) for eachtest vec-
tor which becomes impractical for sizeable training sets asare used

here. In [1] this computational problem was tackled by using1000
randomly chosen examplars to represent each class. In this study, we
attack the problem by usingcodebooksto represent the training sets.
That is, each training setXc is replaced by its quantized version
X̂c = {x̂(c)

1 , x̂
(c)
2 , . . . , x̂

(c)
M } consisting ofM representative cen-

troid vectors{x̂(c)
m }Mm=1. These centroid vectors are independently

optimized for each class using K-means [15] with deterministic split-
ting initialization and 20 K-means iterations.

The match score for an unseen audio excerpt is computed
using three alternative methods, kNN scoring, rank-based scor-
ing and MSE scoring. To define these precisely, letπ(x) =
{π(1), π(2), . . . , π(k)} index thek disjoint nearest neighbors of
the query vectorx across all the class-dependent codebooks so that
‖x−x̂π(1)‖2 ≤ ‖x−x̂π(2)‖2 ≤ · · · ≤ ‖x−x̂π(k)‖2 ≤ ‖x−x̂i‖2
for all x̂i ∈ X̂1 ∪ . . . ∪ X̂C . In kNN scoring, we assignx to
the class that collects the majority of class assignments inthe k-
neighborhood. To classify the entire sequenceX = {x1, . . . ,xT },
we simply count the majority of frame-level assignments. Inthe
rank-based method, instead of assigning a hard label to eachvec-
tor, the rank of each class is recorded so that the class correspond-
ing to x̂π(j) gets scorej; the full sequence is then assigned to
the class whose ranks summed up over the full sequence attains
minimum. Finally, the mean-square error (MSE) scoring or vec-
tor quantization (VQ) method assignsX to the class that minimizes
MSE(X , X̂c) =

1
T

∑T
t=1 minm ‖xt − x̂

(c)
m ‖2.

2.2. GMM Systems: GMM-ML and GMM-MMI

The GMM density function (1) consists of finite mixture distribution
of K multivariate Gaussians whose parameters are the prior proba-
bilitiesPk, mean vectorsµk and covariance matricesΣk,

p(x|λ) =
K
∑

k=1

PkN (x|µk,Σk), (1)

where the prior probabilities follow probabilistic constraintsPk ≥ 0
and

∑K
k=1 Pk = 1. Here, λ = {Pk,µk,Σk|k = 1, . . . , K}

is a shorthand for all the model parameters. In maximum like-
lihood (ML) training, we train class-dependent GMMs{λc|c =
1, 2, . . . , C} independently for allC = 10 pattern classes (con-
texts). This is carried out by maximizing the following objective
function,

FML =
C
∑

c=1

∑

x∈Xc

log p(x|λc), (2)

using the expectation-maximization (EM) [4, 16] algorithm. In the
classification phase, we find the most likely class (c∗) for a test se-



quenceX asc∗ = argmaxc

∑

xt∈X
log p(xt|λc). In our imple-

mentation, we use diagonal covariance matrices and 7 EM iterations.
The ML training of GMMs does not take misclassification ef-

fect in modeling phase into account as each class is trained by using
training examplars from that class only. To enhance classification
accuracy, GMM training can also be realized discriminatively. One
of the most successful approaches is to train GMMs withmaximum
mutual information(MMI) criterion [17]. The MMI objective func-
tion to be maximized is,

FMMI =
C
∑

c=1

∑

X∈Xc

log
p(X|λc)P (c)

∑Y
c′=1 p(X|λc′)P (c′)

. (3)

In practise this is maximized usingextended Baum-Welch(EBW)
algorithm [5]. To prevent MMI training from learning the class-
dependent prior, the statistics in the training phase are weighted in-
versely proportional to the number of training segments. Weused
the STK toolkit1 for constructing our MMI-based recognition sys-
tem. GMMs trained with ML criterion are used as initial models for
MMI training using 20 EBW refinement iterations. Context classifi-
cation is done according to,

c∗ = argmax
c

log

{

p(X|λc)
1/T

∑C
c′=1 p(X|λc′)1/T

}

, (4)

whereT is the number of feature vectors inX .

2.3. GMM Supervector SVM (GMM-SVM)

In the GMM supervector method [6], any speech utteranceX – in
our case, arbitrary audio excerpt – is represented as a supervector
formed by stacking all the Gaussian means of a GMM withK com-
ponents,m = (µT

1 ,µ
T
2 , . . . ,µ

T
K)T. The mean vectors are obtained

by maximuma posteriori (MAP) adaptation of a universal back-
ground model (UBM); the details can be found in [18] but for com-
pleteness, we briefly review the method here.

Assume that a UBM – a single GMM – has been trained us-
ing large quantities of off-line data using the EM algorithm. In
speaker verification, where massive off-line development corpuses
from NIST and LDC are available, the UBM is usually trained us-
ing disjoint data from the target class modeling data. Due tolack
of similar training set containing all the possible sounds of our au-
ditory world, we simply pool all the training set vectorsT for UBM
training.

Let us denote the mean vectors of the UBM asµUBM
k for k =

1, . . . , K. Given a training or test segmentX , its kth adapted mean
vectorµk is computed asµk = αkx̂k+(1−αk)µ

UBM
k , wherex̂ is

the mean of acoustic vectors assigned (softly) to thekth Gaussian of
the UBM andαk is adaptation factor given byαk = nk/(nk + r).
Here,nk is the soft count of vectors assigned to thekth Gaussian
andr is a fixedrelevance factor. Forr = 0, the prior model (UBM)
is effectively ignored while for larger, contribution from UBM is
larger.

Assuming thatµa
k andµb

k represent the adapted mean supervec-
tors of two audio excerpts, their similarity is measured by the GMM
supervector kernel [6] defined as,

K(λa, λb) =

K
∑

k=1

(√
PkΣ

− 1

2

k µ
a
k

)T(√
PkΣ

− 1

2

k µ
b
k

)

, (5)

1http://www.fit.vutbr.cz/research/groups/speech/
stk.html

wherePk and Σk are the prior probability and diagonal covari-
ance matrix of thekth Gaussian of the UBM, respectively. This
means that the GMM mean supervectors are pre-normalized using
√
PkΣ

− 1

2

k , wherePks andΣks are the priors and covariances taken
from the UBM. The normalized supervectors are then used in train-
ing and scoring linear-kernel SVMs for each of the pattern classes;
for this, we use theLibLinear package [19] with the default op-
tions and multiclass training.

2.4. SVM with GLDS Kernel (GLDS-SVM)

In the generalized linear discriminant sequence (GLDS) method [7],
any training or test segmentX = {x1, . . . ,xT } is mapped into a
high-dimensional average expanded vectorX 7→ 1

T

∑T
t=1 b(xt),

where the nonlinear mappingb(x) expands acoustic vectorx =
(x1, x2, . . . , xd)

T using all the monomialsxi1xi2 . . . xiQ , where
i1 ≤ i2 ≤ · · · ≤ iQ. The maximum degree of the monomials,Q, is
a user-supplied parameter; in practise it is usuallyQ = 2 or Q = 3
since the dimensionality of the expanded space,(d+Q)!/(d!×Q!),
becomes impractically high for typical cepstral feature extraction
schemes.

In the GLDS kernel implementation (for details, refer to [7]),
the polynomially expanded supervectors are further normalized with
an inverse of estimated correlation matrixR of the expanded super-
vectors. Including this to the inner-product form of the generalized
linear kernel implies that all the polynomially expanded supervectors
are normalized using matrixRsqr , R−

1

2 . In [7], R is estimated
using the nontarget speaker data (background data). In our imple-
mentation,R is chosen to be diagonal as in [7]. We estimate it using
all the polynomial supervectors of the training set, independent of
the class. We also experimented with class-dependent normaliza-
tion (e.g. usingnon-officedata to create normalization matrix for
all theofficesupervectors). This yielded slightly, but systematically,
lower recognition accuracy and with generally somewhat cumber-
some implementation. The polynomially expanded and normalized
supervectors are used for with default multi-class linear-kernel SVM
training and scoring settings withLibLinear [19].

3. EVALUATION DATA AND SETUP

3.1. Data Collection and Feature Extraction

The data set used for the experiments presented in this paperwas col-
lected using mobile phones. Specialized software that allowed for as
unobtrusive as possible recording of everyday environmental sounds
was installed on the phones of six users. The software would prompt
the users at regular intervals to annotate their current environment.
The annotation consisted of selecting the user’s environment (“of-
fice”, “shop”, etc.), activity (“walking”, “bicycling”, etc.) and phone
location (“pocket”, “hand”, etc.) from drop-down lists. Users could
also add their own environments, activitites and phone locations if
they were missing from the lists. After the annotation, the software
would record a one-minute clip of 16-bit audio at 16 kHz. The users
were instructed to continue whatever they were doing beforebeing
prompted for the duration of the recording so that the annotation
would match the recording. A five second pause was held beforethe
start of the recording to allow for the user to place the phonewhere it
was before being prompted for the annotation. The default recording
interval was set to 20 minutes, but this could be altered by the users.

The number of users participating in the data collection wassix.
The data was recorded on several different Symbian S60 phones. A
subset of the collected data, as shown in Table 2, was selected for



Table 2. Composition of the context classification data.
Number of collected samples per user and class.

User Gender Age grp City Phone models Car Home Lect. Office Outd. Restaur. Mall Street Train OtherTotal

1 Male 30–40 Tampere, FIN 5800, 6210 Nav., N95, N851151 3358 888 2615 811 694 456 720 551 124212486
2 Male 30–40 Tampere, FIN 6210 Navig., N95 2605 8312 3327 9483 3532 1942 1099 2684 1873 479039647
3 Female 20–30 Tampere, FIN 6210 Navig. 1106 17708 800 22917 949 3313 1581 5769 695 314757985
4 Female 30–40 Tampere, FIN 6210 Navig. 38 1045 95 1063 95 114 0 0 0 2282678
5 Male 40–50 Helsinki, FIN 6210 Navig. 283 38 190 38 169 114 0 247 112 2851476
6 Male <20 Tampere, FIN 6210 Navig. 0 310 19 37 0 0 0 0 0 19 385

Total 5183 30771 5319 36153 5556 6177 3136 9420 3231 9711114657

the experiments in this paper. Namely, we chose data whose an-
notation matched with the following nine classes: car/bus,home,
meeting/lecture, office, outdoors, restaurant/pub/café, shop/mall,
street/road and train/metro/tram. In addition to the above, some data
not matching to the above classes was selected to from an ’unknown’
class; i.e. a class that represents all data that is not defined by the nine
“known” classes.

The audio features were created using a mel-frequency cepstral
coefficient (MFCC) front-end that outputs 13 cepstral coefficients
and their 1st and 2nd order derivatives. The MFCCs are calculated
from 16 kHz audio data using a window of 30 ms and a frame shift
of 40 ms. The choice of the somewhat longer than usual frame shift
is partly due to computational power restrictions on mobilephones
– a longer frame shift means less feature vectors. For every second
of audio, the front-end produces 25 feature vectors with a total of 39
components. For our 3-sec test segments, we get a total of 65 feature
vectors. 10 feature vectors are lost from the beginning due to delta
and double delta initializations.

Since the focus of this study is on comparing classifiers, rather
than implementing a context recognition prototype runningin an ac-
tual mobile device [20], all the classification experimentsare carried
out using Matlab and other tools running on desktop PCs.

3.2. Evaluation Setup and Performance Measure

Evaluation is carried out usingleave-one-user-outcross-validation.
That is, each of the six users in Table 2 is considered as a held-out
test user at a time and the classifiers are trained using data from all
the five other users. Total accuracy can then be assessed by accumu-
lating the errors from all held-out test sets. To define this precisely,
let yn(u), ŷn(u) ∈ {1, 2, . . . , 10} denote, respectively, the ground
truth and the predicted class labels (given by a classifier) of thenth

test sample for useru ∈ {1, 2, . . . , 6}. Further, letN(u) denote the
total number of test samples of useru.

A natural measure of performance is the correct context identi-
cation rate or weighted accuracy (WA),

WA =
1

N

U
∑

u=1

N(u)
∑

n=1

I{yn(u) ≡ ŷn(u)}, (6)

whereU = 6 andN =
∑U

u=1 N(u) = 114657 is the total number
of test samples andI{·} is the 0/1 indicator function. Here,weighted
stresses that (6) is dominated by classes with high number oftest
samples. Using this measure alone for optimizing classifierparame-
ters may favor developing good detectors for the majority classes. To
account for the class imbalance problem, we also report the average
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Fig. 1. Effect of neighborhood size (k) to kNN accuracy.

of the per-class identification rates, orunweightedaccuracy (UWA):

UWA =
1

C

C
∑

c=1

1

N(c)

U
∑

u=1

I{ŷn(u) ≡ yn(u) ∧ yn(u) ≡ c}. (7)

HereC = 10 is the number of classes,c ∈ {1, 2, . . . , 10}, and
N(c) =

∑U
u=1 I{yn(u) ≡ c} is the total number of test samples

from classc. Similar unweighted and weighted accuracies have also
been used for evaluating emotion recognition accuracy for imbal-
anced class sizes in [21]. UWA is our primary metric for parameter
optimizations.

4. RESULTS FOR THE INDIVIDUAL CLASSIFIERS

4.1. Distance-Based Methods

The overall context identification accuracies for the simplest classi-
fier, k-NN, are shown in Fig. 1. As expected, using larger code-
book size (template) systematically improves accuracy. For code-
book sizes larger than 512, UWA decreases due to overfitting.Re-
garding the number of neighbors,k, simple accumulation of majority
votes over all the frames (k = 1) gives the highest accuracy. Fig. 2
furthermore contrasts this case against the two other scoring methods
considered, MSE- and rank-based scoring. The standard VQ scor-
ing (MSE) outperforms the voting type of k-NN and rank methods
as might be expected. Regarding UWA, best codebook sizes areon
the range128 ≤ M ≤ 2048; from these choices ofM , WA attains
maximum atM = 2048 and will be fixed for the rest of the paper.

4.2. GMM with ML and MMI training

The GMM-ML and GMM-MMI systems both require setting the
number of Gaussians, which is varied asK ∈ {256, 512, 1024}.
The number of MMI iterations is set to 20 as in [5]. The resultsfor
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Fig. 2. Overall performance of the distance-based classifiers.

Table 3. Accuracy of the GMM system with ML and MMI training.
K: number of Gaussians.

Weighted accuracy (WA %)Unw. accuracy (UWA %)
K ML train. MMI train. ML train. MMI train.

256 49.97 37.47 44.55 31.81
512 49.96 52.01 44.44 44.03

1024 50.05 51.24 43.88 42.92

ML and MMI trained GMMs are presented in Table 3. The fact that
the results are just slightly different for ML trained GMMs with dif-
ferent number of Gaussians might be an indication of limitedwithin-
class acoustic variability which is already captured using256 Gaus-
sians. The improvements in MMI training over ML training forthe
WA metric are expected because of the capability of discriminative
training to incorporate the class boundaries into the training process.
The choice of right model order is critical in building an accurate
boundary. Because of different amounts of training data formodel
training in the held-out training sets, it turns out that, onaverage,
MMI-training with 512 Gaussians yields the highest weighted accu-
racy whereas the ML-trained GMM with 256 Gaussians provide the
highest unweighted accuracy. MMI training attempts to maximize
the weighted, rather than unweighted, accuracy which can bea rea-
son why the ML-trained GMMs outperform MMI-trained GMMs in
terms of UWA. In the rest of the paper, we fixK = 512 for both
ML- and MMI-trained systems.

4.3. GMM-SVM

Results for the GMM-SVM classifier are shown in Table 4. Highest
recognition rate, in terms of WA, is obtained usingK = 128 Gaus-
sians with relevance factorr = 16. Regarding UWA, the maximum
is obtained usingK = 16 andr = 16. Regarding the choice of the
number of Gaussians or relevance factor, no obvious trends can be
seen. For the two highest model orders,K = 128 andK = 256,
using larger relevance factor helps as expected. For the rest of the
paper, we fixK = 128 and r = 16; this gives highest WA and
second highest UWA.

4.4. GLDS-SVM

Results for the GLDS-SVM method are shown in Table 5 for three
different maximum monomial orders (Q = 1, 2, 3). Note that the
caseQ = 1 merely corresponds to SVM trained using utterance-
averaged MFCC features studied for low-cost context recognition in
[12]. The supervector dimensionalities forQ = 2 andQ = 3, in
turn, are 820 and 11480, respectively.

Table 4. Accuracy of the GMM-SVM system.K: number of Gaus-
sians,r: relevance factor in MAP adaptation.

Weighted accuracy (WA %) Unw. accuracy (UWA %)
K r = 1 r = 16 r = 1 r = 16

8 13.57 9.54 10.69 10.57
16 27.20 28.19 12.25 18.76
32 17.68 11.43 16.13 7.96
64 28.89 20.46 15.19 13.27

128 9.36 34.37 10.80 17.08
256 16.32 28.60 10.26 16.76

Table 5. Results for the GLDS-SVM method with three maximum
monomial orders (Q).

Weighted acc. (WA %)Unw. acc. (UWA %)

Q = 1 34.18 24.40
Q = 2 49.57 35.72
Q = 3 46.87 32.89

As expected, the polynomial kernels containing second (Q = 2)
and third order (Q = 3) terms outperform simple utterance-level
MFCC averaging (Q = 1) because they capture higher-order statis-
tics of the MFCC features. Highest accuracies (both WA and UWA)
are obtained usingQ = 2 which seems to represent a compro-
mise for preserving context-related characteristics without overfit-
ting. Importantly, this is also computationally faster in comparison
toQ = 3.

5. ANALYSIS OF THE RESULTS

Up to this point, we have presented the results in terms of total ac-
curacy (either WA or UWA) for ease of interpretation. We now
analyze the achieved recognition rates in detail. Summing up the
above findings, we fix the classifier parameters as follows. For the
distance-based methods (kNN and VQ scoring) we useM = 2048
codevectors per class and for kNN, we further set the neighborhood
size ask = 1. For the GMM-ML and GMM-MMI systems we use
K = 512 Gaussians, and for the GMM-SVM system, we set it to
K = 128 with relevance factorr = 16. For the GLDS-SVM sys-
tem, we use polynomials up to second order (Q = 2).

5.1. Classifier- and Class-Dependent Accuracies

The results broken down by class, along with the two integrated WA
and UWA measures and number of test cases in each class, are given
in Table 6. It is obvious that our classifiers behave differently across
the classes. The results for kNN and VQ are very similar sincethey
both use the same codebooks and differ only in the scoring process.
Comparing the two GMM systems, none of the training principles
(ML vs MMI) is superior over each other; both win in half of the
cases.

Comparing the two SVM methods, GLDS-SVM generally out-
performs the GMM-SVM kernel. The behavior of the GMM-SVM
is relatively low; it classifiesall the test samples incorrectly in four
cases. An interesting observation, however, is that even though
GMM-SVM gives the lowest overall accuracy, it has the most ac-
curateofficedetector with 91.36 % accuracy. While this extreme be-
haviour calls for a detailed analysis, we hypothesize that our UBM
required for GMM supervector generation is likely to be biased to-



Table 6. Audio context recognition results (correct identification rates, %) broken down by class. The classifier with highest accuracy per
class is bolded.

Class kNN VQ GMM- GMM- GMM- GLDS-
Ntest ML MMI SVM SVM Average

Car/bus 5183 59.71 59.63 63.14 63.12 20.06 45.24 51.82
Home 30771 48.41 48.55 53.19 54.31 1.06 57.98 43.92
Meeting/lecture 5319 47.20 54.08 62.77 57.49 0.00 27.39 41.49
Office 36153 70.93 70.88 62.82 68.30 91.36 70.07 72.39
Outdoors 9711 14.11 15.40 16.41 13.91 12.90 10.49 13.84
Restaurant/pub/café 555647.64 50.10 62.50 65.76 0.00 43.33 44.89
Shop/mall 6177 45.82 44.92 48.53 39.79 0.00 21.74 33.47
Street/road 313640.41 41.68 36.79 39.49 39.34 41.88 39.93
Train/metro/tram 9420 36.83 36.08 29.12 24.79 0.00 28.07 25.81
Other 3231 5.80 7.51 9.30 13.33 6.14 10.98 8.85

Total (WA %) 114657 49.60 50.34 49.96 52.01 34.37 49.57
Total (UWA %) 114657 41.69 42.89 44.44 44.03 17.08 35.72

Table 7. Recognition rates (% correct) for the GMM-MMI classifier (K = 512) by user and class. The missing values (–) mean that there is
no test data for that class/user pair. The mean values indicated by * have been computed over the nonmissing values only. TMP = Tampere,
HEL = Helsinki.

User ID (gender, city)
1 (♂, TMP) 2 (♂, TMP) 3 (♀, TMP) 4 (♀, TMP) 5 (♂, HEL) 6 (♂, TMP)

Class Ntest 12486 39647 57985 2678 1476 385

Car/bus 5183 63.77 62.11 78.48 84.21 7.07 –
Home 30771 72.66 72.17 42.35 52.34 86.84 62.90
Meeting/lecture 5319 45.95 56.12 88.13 62.11 7.89 21.05
Office 36153 1.95 84.11 72.54 0.00 18.42 94.59
Outdoors 9711 17.14 9.77 27.71 27.37 0.00 –
Restaurant/pub/café 5556 68.88 64.93 67.61 72.81 0.00 –
Shop/mall 6177 40.79 49.04 33.08 – – –
Street/road 3136 53.75 61.55 29.14 – 0.00 –
Train/metro/tram 9420 30.49 28.78 13.53 – 0.00 –
Other 3231 15.14 11.92 16.27 6.14 3.51 0.00

Average 41.05 50.05 46.88 43.56* 13.74* 44.63*

wards the majority class (office). We did not attempt to do anydata
or Gaussian balancing in the UBM training process.

A possible explanation for the low performance of GMM-SVM
in comparison with GMM-ML and GMM-MMI is that the former
requires creating a GMM for the test utterance prior to SVM scoring
whereas the latter two just compute a likelihood score; the extremely
short data duration (3 seconds or 65 MFCC vectors) probably causes
unreliable estimation of the GMM parameters.

Comparing the classes themselves,office is clearly the easiest
to classify correctly, with 72.39 % average over our classifier pool.
There are two possible reasons for this. The first one is statistical:
the office environment has generally the largest amount of training
data available which the statistical models are able to takeadvantage
of. The second one could be due to homogeneity of the environment
itself – most of the office recordings were carried out on the same
floor of an office building with relatively homogenous soundscape.

The most difficult class, in turn, isotherwith only 8.85 % aver-
age recognition rate. This comes as no surprise since this represents
an out-of-set class. The individual recordings inside thisclass are
highly variable and our classifiers are unable to capture general be-
havior ofall the rest of our auditory worldwith such a small training
set. Clearly, more intelligent way of modeling the out-of-set class
would be needed.

5.2. Analysis by User and Class

Different users have generally different lifestyle, dailyroutines,
places of interest and behavioral patterns, which might be reflected
also in the types of audio contexts collected. For the analysis of
the user factor, we present the results for the GMM-MMI classifier
(K = 512 Gaussians) only. The results for each class and user are
given in Table 7. In the case of missing values, the mean values
are computed only over the non-missing values and should be inter-
preted with care. Perhaps the most interesting accuracy is that of the
user no. 5 whose data is partly collected in another city (Helsinki).
His average recognition accuracy (13.74 %) is clearly lowerthan
that of the other five users. This might be partially caused bythe
differences in the acoustic contexts across the two cities.None of
thestreet, train, restaurantor outdoorssamples of user no. 5 were
correctly recognized when trained using Tampere training data.

5.3. Effect of the Mobile Phone

Our last analysis for the VQ and GMM-MMI classifiers in Table 8
considers the possible channel effect arising from different collec-
tion devices. We have selected the two users (1 and 2) who havetest
clips from than just one mobile phone. Regarding WA for user 1,
the lowest accuracies for both VQ and GMM-MMI are obtained for



N85. This seems to suggest for a channel effect, sincethere is no
training data for this phone(see Table 2). Conversely, 6210 Navi-
gator yields the highest accuracy for the GMM-MMI system; this is
expected since it has the largest amount of training data. Regarding
WA for user 2, similar effect can be observed for the GMM-MMI
system; low accuracy on N95 which has training data only fromuser
1, and clearly higher accuracy for 6210 Navigator, the modelwith
most training data. For the VQ classifier, the result is however op-
posite. One limitation of the present analysis is that, in addition to
the device and user factors, other factors such as the class-dependent
amount of training data or selection of training excerpts may also af-
fect the results. Some careful data balancing or, ideally, parallel au-
dio recordings with multiple devices, would be needed for detailed
isolation of the “device-only” factor.

Table 8. Accuracy of the VQ (M = 2048) and MMI-GMM (G =
512) classifiers for different phones from users 1 and 2.

Weighted acc. (WA %)Unw. acc. (UWA %)
User Phone Ntest VQ GMM-MMI VQ GMM-MMI

1 6210 Nav. 607024.11 30.57 21.71 14.51
5800 486536.55 18.07 39.71 12.53
N95 1172 8.44 9.30 6.71 15.84
N85 380 3.15 5.00 12.07 25.00

2 6210 Nav. 3449718.09 49.89 8.43 32.90
N95 515032.69 8.15 38.61 7.38

6. DISCUSSION AND CONCLUSIONS

The problem of audio context recognition from short and highly vari-
ably mobile data records was considered. This problem setupis chal-
lenging without a doubt; in our comparison of six classifiers, even
after all parameter optimizations, the highest identification rates in
a 10-class identification task using 3-second segments was about 52
% correct rate (weighted accuracy) and average class-dependent ac-
curacy about 44 %.

In our comparisons, the distance-based (kNN, VQ) and proba-
bilistic classifiers (GMM-ML, GMM-MI) performed somewhat bet-
ter than the two SVM-based systems. Note that the first four classi-
fiers (kNN, VQ, GMM-ML, GMM-MI) do direct scoring of MFCC
vectors against the acoustic context models whereas linearsequence
kernel SVM scoring boils down to computing an inner product be-
tween two model supervectors corresponding to the trainingand the
test signals. Finding reliable model parameters for the test signal
is challenging due to the extremely short durations. In fact, such
degradation of sequence kernel SVMs over conventional GMM scor-
ing for short durations has also been reported in speaker verification
[22]. Detailed study on the effect of the test signal duration would
be a natural future goal to focus on.

In the overall comparisons, GMM with MMI training ranked the
highest while GMM supervector SVM ranked the lowest. However,
none of the classifiers can be said to be an universal winner for all
classes (contexts). This observation agrees well with an independent
comparison of four classifiers in [1]. It is also evident thatthe ac-
curacy varies greatly across different users and the city where the
data was collected in. Because of such diversity, classifierselection
and fusion methods would be also an interesting research direction
to study. There was also some indication of possible device depen-
dency (similar to channel or environmental variability in speech clas-
sification tasks). Thus, in addition to addressing the shortduration

problem, compensating for the biases due to different users, devices
and imbalanced training set sizes should be considered.
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[5] P. Matějka, L. Burget, P. Schwarz, and J.H.Černocký, “Brno
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