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ABSTRACT

The problem of context recognition from mobile audio datads-
sidered. We consider ten different audio contexts (sucltaas
bus office and outdoord prevalent in daily life situations. We
choose mel-frequency cepstral coefficient (MFCC) paraastion
and present an extensive comparison of six different dlassi k-
nearest neighbor (KNN), vector quantization (VQ), Gausgiature
model trained with both maximum likelihood (GMM-ML) and max
imum mutual information (GMM-MMI) criteria, GMM superveat
support vector machine (GMM-SVM) and, finally, SVM with gene
alized linear discriminant sequence (GLDS-SVM). Aftergdram-
eter optimizations, GMM-MMI and and VQ classifiers perfore t
best with 52.01 %, and 50.34 % context identification ratespec-
tively, using 3-second data records. Our analysis revealsdr that
none of the six classifiers is superior to each other whes-¢laser-
or phone-specific accuracies are considered.

Index Terms— Audio context recognition, speaker and lan-
guage recognition, short duration, mobile environment

1. INTRODUCTION

There is no doubt that mobile phones have changed the worlideve
in. Modern smartphones are no longer just telephones biné eno-
bile computers with WiFi access and multiple sensors. Mdiyem
are equipped with a high-resolution digital camera, glguaition-
ing system (GPS), infrared and accelerometer sensors. athdatl
data streams provided by these specialized sensors carethdans
inferring the user’s current activitypicycling, walking, physical lo-
cation (ansikatu 15, Joensuu, Finlahdr perhaps even the user’s
social situation\ork meetingattending a lecturgout in a pub with
friendg. Being able to infer the user’s activity patterns or phgkic
location — commonly referred to asntext— would be certainly use-
ful for improving the relevance or quality of services frohetcus-
tomer’s viewpoint. In this study, we focus on the core tedbgy
component, inference of the user’s context using patterogmtion
techniques.

While accelerometers, GPS and digital imaging have extelysi
been used for inferences of user’s location and activitiepas, the
most commonly available sensor foundany mobile phone — the
microphone — has received less attention. There are, howave
least two good reasons to study auditory cues. FirstlykanlViFi
or GPS signals, audio-based context recognition is noticesd to
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ment no. 238803.

an existing network infrastructure (and its weaknesses a8 un-
available or unreliable GPS coordinates inside a buildiBgcondly,
audio stream can be captured from any direction or even fnsidé
a backpack or handbag without user interaction. There ssime
indication that audio-based cues might be more accurateciogr
nizing both user’s action and the acoustic environment impzar-
ison with accelerometer sensors [1]. The focus of this siadyp
recognize the mobile useraudio contexbased solely on auditory
cues.

The problem of audio context recognition has been studigd e.
in[8,9, 10, 11]. Similar to speech and speaker recognitteameth-
ods rely on short-term feature extraction followed by pattassi-
fication. Regarding the first component, feature extractiifferent
parameterizations of the short-term spectrum, such aspesitrum,
mel-frequency cepstral coefficients (MFCCs) and lineadiot®n
(LP) coefficients have been popular. Even though a few studie
[8, 12] have also attempted to use alternative time- anduéeqgy-
domain features, such as zero crossing rate, spectral flspewtral
centroids, or even sparse time-frequency patterns [1&tetls ex-
perimental evidence that such features can merely completne
MFCCs or MFCC-like spectral shape descriptors; for dedaiiem-
parisons of features, see e.g. [8]. MFCC features are aésbinghe
ETSI standard front-end for distributed speech recogmi{ibSR)
and therefore, integrating context or environment detectdr im-
proved ASR model adaptation would not increase overheadait f
end. For these reasons, we utilize the standard MFCCs wéih th
first and second order time derivatives, the delta and dotble
coefficients, and focus on the pattern classification part.

The existing pattern modeling techniques for audio context
recognition can be roughly divided into three major typd3 bag-
of-frameamodels, (2femporalmodels and (3gvent detectiobased
models. The bag-of-frame approaches, similar to textpeddent
speaker recognition machinery, treat feature vectorsadepiendent
observations. They characterize the environment- or gbsfgecific
characteristics of audio excerpts using distribution ndech as
Gaussian mixture models (GMMs) or discriminatively traimaod-
els such as support vector machines (SVMs) [12]. The sedaisd ¢
of methods, temporal models, rely on continuous [8] or @iter
[1] observation hidden Markov model (HMM) variants or otlser
guence modeling techniques [1] to learn context-specifitpteral
profiles of acoustic features. Finally, event detectioredasethods
[13, 14] use pre-trained event detectors (dagighter, cheering to
characterize typical events in an audio stream. Similaigh-tevel
feature modeling in speaker verification, the occurrendéevents,
modeled using histograms or other discrete models, catestihe
context-specific back-end models.

In this study, we focus on the bag-of-frames paradigm for two



Table 1. Six methods are compared for audio context recognition. M5IGaussian mixture model, ML: maximum likelihood, MMI:
maximum mutual information, SVM: support vector machinéD%: generalized linear discriminant sequence.

Id Classifier Training |Main control parameters| Values considered

(1) k-nearest neighbor (kNN) [2Generative | Codebook sizeX/) M € {4,8,16,...,8192}
No. of neigbors k) ke {1,3,5,9}

(2) Vector quantization (VQ) [3]Generative |Codebook sizeX/) M € {4,8,16,...,8192}

(3) GMM with ML training [4] |Generative |No. of GaussiansK) K € {256,512,1024}
(4) GMM with MM training [5] | Discriminativg No. of GaussiansK) K € {256,512,1024}

(5) GMM-SVM [6] Discriminativeg No. of GaussiansK) K € {8,16,...,256}
Relevance factorr{ r € {1,16}
(6) GLDS-SVM [7] Discriminative Max. monomial order®@)|Q@ € {1, 2, 3}

reasons. The firstis to keep the systems generally simpleangdu-  here. In [1] this computational problem was tackled by usifgo
tationally efficient; no Viterbi decoding or additional exeletector randomly chosen examplars to represent each class. Irtublig sve
training is required. The second reason — our primary mibineor attack the problem by usingbdebookso represent the training sets.
the present study — is that we would like to utilize as muchass p That is, each training se¥. is replaced by its quantized version
sible the existing infrastructure for two well-studied spk classifi- ¥, = {&{” & .. .,@5&)} consisting of M representative cen-
cation problems, speaker and language recognition. T@tiuswe iy vectors{z (Y }_,. These centroid vectors are independently
consider six classifiers shown in Table 1. The two classiisthdce- optimized for each 7&;55 using K-means [15] with deterrtimaplit-
based methods (kNN and VQ) have very low computational COM4ing initialization and 20 K-means iterations.

plexity, whereas the four other classifiers are widely useda@dern
speech classification tasks.

Our main contributions can be summarized as follows. Firstl
we utilize a challenging mobile audio context database isting
of 100k+ 3-second audio segments collected with differeokial
phones in ten different audio context categories. Secomgypro-
vide detailed evaluation and analysis of context classifinausing

The match score for an unseen audio excerpt is computed
using three alternative methods, kNN scoring, rank-based-s
ing and MSE scoring. To define these precisely, #étr) =
{m(1),7(2),...,m(k)} index thek disjoint nearest neighbors of
the query vector: across all the class-dependent codebooks so that
& —=2x)l* < [le—&n(e)l” < <[l =@r(y|* < [l -]

the six classifiers in Table 1. Finally, detailed break-dosfrthe Iﬁr alll Li teh ‘fl U” e tFJ Xe. '“.t"'\“f\‘ slcorlng, we assgn?ﬂtco
recognition results is presented in terms of our ten audidests, € class that collects the majority of class assignmentaerk-
neighborhood. To classify the entire sequeAte= {x1,...,x7},

our six users (four males, two females), our four mobile ceeviand
even the two different cities (Tampere and Helsinki, Fidlethe data
was collected in.

we simply count the majority of frame-level assignments. tHa

rank-based method, instead of assigning a hard label to eszh

tor, the rank of each class is recorded so that the classspamé-

ing to &,;) gets scorej; the full sequence is then assigned to

2. CLASSIFIERS the class whose ranks summed up over the full sequence sattain

) -~ ) o ) minimum. Finally, the mean-square error (MSE) scoring at-ve

All thel SlI)X r'gStS”!e_fS coglder?{c(i in thls; |study1(T2abIe 13\?‘“7‘?‘1 tor quantization (VQ) method assigasto the class that minimizes

using labeled training séf = {(zn,yn)|n = 1,2,..., Nirain}, Py = LS5 T i _ 22

where Ni,.in indicates the number af-dimensional acoustic vec- MSE(X, Xe) = 7 204y miti e — &7l

torsz, = (21,0, T2,n, -+, Ta,n)" € R andy, € {1,2,...,C}

denotes the label of one of oGf = 10 target contexts (see Table 2-2. GMM Systems: GMM-ML and GMM-MMI

N o -
2). Further, let. = {@,|y, = c} denote the pool of training the GMM density function (1) consists of finite mixture dilstrtion

vectors of class (context) We consider three generative and three ot - itivariate Gaussians whose parameters are the prioaprob
discriminative methods. Generative models for each clessained  ijities Py, mean vectorg, and covariance matricés;,

independently from each other, whereas discriminativiaitrg uti-

lizes training examplars from the competing classes. Irsjflstem K

operation phase, each classifier attempts to predict teectass of p(z|\) = Z PN (z|py,, i), Q)
an unseen audio segment, now presented as a sequence of vecto 1

X ={z1,...,27}. Inour case, we classify 3-second segments us-

ing standard MFCC A + A? front-end withd = 39 andT = 65. where the prior probabilities follow probabilistic coratits P, > 0

More details of feature extraction will be provided in Suttian 3.1 and >3, P = 1. Here, A\ = {Pe,p, Silk = 1,..., K}
is a shorthand for all the model parameters. In maximum like-

lihood (ML) training, we train class-dependent GMM3a.|c =
1,2,...,C} independently for allC = 10 pattern classes (con-
A few simple dissimilarity- or template-based context ficeats can ~ texts). This is carried out by maximizing the following objiee
be built up by computing pairwise distances between thesegt  function,

2.1. k-Nearest Neighbor (kNN) and Vector Quantization (VQ)

ment X’ and the training examplars of each class. Here we con- N
sider the well-knowrk-nearest neighbor (kNN) [2] and vector quan- FH=3">" logp(z|\o), @
tization (VQ) [3] classifiers. They both require search ofmest e=lzEX,

training set neighbors (in Euclidean metric sense) for @éastivec-  using the expectation-maximization (EM) [4, 16] algorithin the
tor which becomes impractical for sizeable training setarasused classification phase, we find the most likely clas9 for a test se-



guenceX’ asc” = argmaxc ), - logp(z¢|Ac). In our imple-
mentation, we use diagonal covariance matrices and 7 EMfiibers.

where P, and X, are the prior probability and diagonal covari-
ance matrix of thek®" Gaussian of the UBM, respectively. This

The ML training of GMMs does not take misclassification ef- means that the GMM mean supervectors are pre-normalized usi

fect in modeling phase into account as each class is trayedihg
training examplars from that class only. To enhance classifin
accuracy, GMM training can also be realized discrimindyiv®ne
of the most successful approaches is to train GMMs witiximum
mutual information(MMI) criterion [17]. The MMI objective func-
tion to be maximized is,

c
FMMI Z Z log

c=1XeX.

P(XA)P(e)
Sy p(X|A)P(c)

In practise this is maximized usingktended Baum-WeldfEBW)
algorithm [5]. To prevent MMI training from learning the sk
dependent prior, the statistics in the training phase aighted in-
versely proportional to the number of training segments. ua&d
the STK toolkit for constructing our MMI-based recognition sys-
tem. GMMs trained with ML criterion are used as initial maziédr
MMI training using 20 EBW refinement iterations. Contextssi-
cation is done according to,

(©)

p(X|A)Y T
SO P(X AT

whereT is the number of feature vectors .

¢ = arg max log { (4)

2.3. GMM Supervector SVM (GMM-SVM)

In the GMM supervector method [6], any speech utterakice in
our case, arbitrary audio excerpt — is represented as avagber
formed by stacking all the Gaussian means of a GMM wiitltom-
ponentsm = (uT, 3, ..., puk)T. The mean vectors are obtained
by maximuma posteriori (MAP) adaptation of a universal back-
ground model (UBM); the details can be found in [18] but fonmco
pleteness, we briefly review the method here.

Assume that a UBM — a single GMM — has been trained Usyrajining and scoring settings wittibLinear

ing large quantities of off-line data using the EM algorithnin
speaker verification, where massive off-line developmemnpuses
from NIST and LDC are available, the UBM is usually trained us
ing disjoint data from the target class modeling data. Dukatk
of similar training set containing all the possible sounfiswr au-
ditory world, we simply pool all the training set vectdfsfor UBM
training.

Let us denote the mean vectors of the UBMg&™™ for k =

1,..., K. Given a training or test segmedt, its k** adapted mean
vectory,, is computed ag, = andr + (1 — o)y BN, whered: is

the mean of acoustic vectors assigned (softly) tdidfieGaussian of
the UBM anda, is adaptation factor given by, = ni/(ng + 7).
Here, ns, is the soft count of vectors assigned to #f& Gaussian
andr is a fixedrelevance factarForr = 0, the prior model (UBM)
is effectively ignored while for large, contribution from UBM is
larger.

1
VP, ?, whereP;s andX,s are the priors and covariances taken
from the UBM. The normalized supervectors are then usedin-tr
ing and scoring linear-kernel SVMs for each of the patteasses;
for this, we use thé&ibLinear  package [19] with the default op-
tions and multiclass training.

2.4. SVM with GLDS Kernel (GLDS-SVM)

In the generalized linear discriminant sequence (GLDShowf7],
any training or test segment = {x1,...,zr} is mapped into a
high-dimensional average expanded vector— + S F L b(x),
where the nonlinear mapping(x) expands acoustic vectar =
(z1,®2,...,24)" using all the monomials:;, z, ... z:,, Where
11 <2 < -+ <ig. The maximum degree of the monomialg, is
a user-supplied parameter; in practise it is usu@ly= 2 orQ = 3
since the dimensionality of the expanded spéde; Q)!/(d! x Q!),
becomes impractically high for typical cepstral featuréraotion
schemes.

In the GLDS kernel implementation (for details, refer to)[7]
the polynomially expanded supervectors are further nazaawith
an inverse of estimated correlation matfxof the expanded super-
vectors. Including this to the inner-product form of the gelized
linear kernel implies that all the polynomially expandegesvectors
are normalized using matriR.,, = R %.In [7], R is estimated
using the nontarget speaker data (background data). Imulei
mentation,R is chosen to be diagonal as in [7]. We estimate it using
all the polynomial supervectors of the training set, indefeat of
the class. We also experimented with class-dependent timama
tion (e.g. usingnon-officedata to create normalization matrix for
all theofficesupervectors). This yielded slightly, but systematigally
lower recognition accuracy and with generally somewhat wem
some implementation. The polynomially expanded and nozedl
supervectors are used for with default multi-class lineanel SVM
[19].

3. EVALUATION DATA AND SETUP

3.1. Data Collection and Feature Extraction

The data set used for the experiments presented in this pagerol-
lected using mobile phones. Specialized software thatvatidor as
unobtrusive as possible recording of everyday environedeatunds
was installed on the phones of six users. The software waolthpt
the users at regular intervals to annotate their currerit@mwent.
The annotation consisted of selecting the user’s environrffef-

fice”, “shop”, etc.), activity (“walking”, “bicycling”, et.) and phone
location (“pocket”, “hand”, etc.) from drop-down lists. &s could
also add their own environments, activitites and phonetioes if

they were missing from the lists. After the annotation, tbfveare

would record a one-minute clip of 16-bit audio at 16 kHz. Tkens

Assuming thaju andu;, represent the adapted mean supervecere instructed to continue whatever they were doing befieieg

tors of two audio excerpts, their similarity is measuredty GMM
supervector kernel [6] defined as,

K

KXo, M) =

k=1

1 T 1
(vsitus) (vEscie). ©

Ihttp://www.fit.vutbr.cz/research/groups/speech/
stk.html

prompted for the duration of the recording so that the ariimsta
would match the recording. A five second pause was held bdfere
start of the recording to allow for the user to place the phehere it
was before being prompted for the annotation. The defactircing
interval was set to 20 minutes, but this could be altered byuders.
The number of users participating in the data collection sims
The data was recorded on several different Symbian S60 phdne
subset of the collected data, as shown in Table 2, was selémte



Table 2. Composition of the context classification data.

Number of collected samples per user and class.

User Gender Age grp City Phone models Car Home Lect. Office Outd. Restaur. Mall Street Train O|th'énta|
1 Male 30-40 Tampere, FIN 5800, 6210 Nav., N95, NB%1 3358 888 2615 811 694 456 720 551 1p42486
2 Male 30-40 Tampere, FIN 6210 Navig., N95 |2605 8312 3327 9483 3532 1942 1099 2684 1873 478H47
3 Female 20-30 Tampere, FIN 6210 Navig. 1106 17708 800 22917 949 3313 1581 5769 695 31BWA85
4 Female 30-40 Tampere, FIN 6210 Navig. 38 1045 95 1063 95 114 0 0 0 2282678
5 Male 40-50 Helsinki, FIN 6210 Navig. 283 38 190 38 169 114 0 247 112 2851476
6 Male <20 Tampere, FIN 6210 Navig. 0 310 19 37 0 0 0 0 0 19 385

Total{5183 30771 5319 36153 5556 6177 3136 9420 3231 9¥14657

the experiments in this paper. Namely, we chose data whose a

notation matched with the following nine classes: car/thane,
meeting/lecture, office, outdoors, restaurant/pubjcaf@op/mall,
street/road and train/metro/tram. In addition to the abewene data
not matching to the above classes was selected to from anowik
class; i.e. aclass that represents all data that is not ddfinghe nine
“known” classes.
The audio features were created using a mel-frequencyreépst

coefficient (MFCC) front-end that outputs 13 cepstral coffits
and their 1st and 2nd order derivatives. The MFCCs are kel

from 16 kHz audio data using a window of 30 ms and a frame shif

of 40 ms. The choice of the somewhat longer than usual fraiifte sh
is partly due to computational power restrictions on mophenes

— a longer frame shift means less feature vectors. For eesgnsl

of audio, the front-end produces 25 feature vectors withal tf 39
components. For our 3-sec test segments, we get a total eb®&é
vectors. 10 feature vectors are lost from the beginning dudelta
and double delta initializations.

Since the focus of this study is on comparing classifierfierat
than implementing a context recognition prototype runnimgn ac-
tual mobile device [20], all the classification experimegnts carried
out using Matlab and other tools running on desktop PCs.

3.2. Evaluation Setup and Performance Measure

Evaluation is carried out usirigave-one-user-outross-validation.
That is, each of the six users in Table 2 is considered as adutld
test user at a time and the classifiers are trained using aatadil
the five other users. Total accuracy can then be assessedum@c
lating the errors from all held-out test sets. To define théecizely,
let yn (u), gn(u) € {1,2,...,10} denote, respectively, the ground
truth and the predicted class labels (given by a classiffeeon'"
test sample for user € {1,2,...,6}. Further, letV(u) denote the
total number of test samples of user

A natural measure of performance is the correct contextiiden
cation rate or weighted accuracy (WA),

1 U N(u)
WA = N Z Z T{yn(u) = ?jn(u)}v (6)

whereU = 6 andN = fo:l N (u) = 114657 is the total number
of test samples arifl{ - } is the 0/1 indicator function. Herejeighted
stresses that (6) is dominated by classes with high numbe¥sof
samples. Using this measure alone for optimizing clasgfieame-
ters may favor developing good detectors for the majoragsbs. To
account for the class imbalance problem, we also reportbrage
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Fig. 1. Effect of neighborhood sizé] to KNN accuracy.

of the per-class identification rates,mweightedaccuracy (UWA):

C U
1 1 . _ —
UWA = ol 65:1 N ugzlf{yn(u) = yn(u) Ayn(u) = c}. (7)
HereC' = 10 is the number of classes, € {1,2,...,10}, and

N(c) = S5V T{yn(u) = c} is the total number of test samples
from classc. Similar unweighted and weighted accuracies have also
been used for evaluating emotion recognition accuracy rfdyai-
anced class sizes in [21]. UWA is our primary metric for pagéen
optimizations.

4. RESULTS FOR THE INDIVIDUAL CLASSIFIERS

4.1. Distance-Based Methods

The overall context identification accuracies for the sispklassi-
fier, k-NN, are shown in Fig. 1. As expected, using larger eode
book size (template) systematically improves accuracy. dede-
book sizes larger than 512, UWA decreases due to overfitiRey.
garding the number of neighbors,simple accumulation of majority
votes over all the frames (= 1) gives the highest accuracy. Fig. 2
furthermore contrasts this case against the two othenmggorethods
considered, MSE- and rank-based scoring. The standard ¥R sc
ing (MSE) outperforms the voting type of k-NN and rank method
as might be expected. Regarding UWA, best codebook sizemnare
the rangel28 < M < 2048; from these choices af/, WA attains
maximum ath/ = 2048 and will be fixed for the rest of the paper.

4.2. GMM with ML and MMI training

The GMM-ML and GMM-MMI systems both require setting the
number of Gaussians, which is varied Bs € {256,512, 1024}.
The number of MMI iterations is set to 20 as in [5]. The restdrs



g0 — i 50 Table 4. Accuracy of the GMM-SVM systemi: number of Gaus-
g T S sians,r: relevance factor in MAP adaptation.
45 fr-- s Weighted accuracy (WA %) Unw. accuracy (UWA %)
g g K|r=1 r=16 r=1 r=16
g Kol g 8 13.57 9.54 10.69 10.57
540!/ s seoring g 40 16 | 27.20 28.19 12.25 18.76
"S) l' --'kNN scoring (k=1) _EJ 32| 17.68 11.43 16.13 7.96
§ i - - ~Rank scoring g 64 | 28.89 20.46 15.19 13.27
> 8 32 128 512 2048 8192 5% 8 32 128 512 2048 819 128) 9.36 34.37 10.80 17.08
Codebook size (M) Codebook size (M) 1256 16.32 28.60 10.26 16.76

Fig. 2. Overall performance of the distance-based classifiers.

Table 3. Accuracy of the GMM system with ML and MMI training.
K: number of Gaussians.

Weighted accuracy (WA %Ynw. accuracy (UWA %
K|MLtrain. MMl train. [MLtrain. MMI train.
256| 49.97 37.47 44.55 31.81
512| 49.96 52.01 44.44 44.03
1024 50.05 51.24 43.88 42.92

Table 5. Results for the GLDS-SVM method with three maximum
monomial orders@®).
| [Weighted acc. (WA %)Unw. acc. (UWA %)

0=1 34.18 24.40
Q=2 49.57 35.72
Q=3 46.87 32.89

As expected, the polynomial kernels containing secapée(2)
and third order @ = 3) terms outperform simple utterance-level
MFCC averaging@ = 1) because they capture higher-order statis-

ML and MMI trained GMMs are presented in Table 3. The fact thattics of the MFCC features. Highest accuracies (both WA andAyW

the results are just slightly different for ML trained GMMstlvdif-
ferent number of Gaussians might be an indication of limitétin-
class acoustic variability which is already captured ugs§ Gaus-
sians. The improvements in MMI training over ML training fiie
WA metric are expected because of the capability of discrative
training to incorporate the class boundaries into the itngiprocess.
The choice of right model order is critical in building an acate
boundary. Because of different amounts of training datarfodel
training in the held-out training sets, it turns out that, arerage,
MMI-training with 512 Gaussians yields the highest weighéecu-
racy whereas the ML-trained GMM with 256 Gaussians provide
highest unweighted accuracy. MMI training attempts to nmaze
the weighted, rather than unweighted, accuracy which canree-
son why the ML-trained GMMs outperform MMI-trained GMMs in
terms of UWA. In the rest of the paper, we fix = 512 for both
ML- and MMI-trained systems.

4.3. GMM-SVM

Results for the GMM-SVM classifier are shown in Table 4. Higthe
recognition rate, in terms of WA, is obtained usiAg= 128 Gaus-
sians with relevance facter= 16. Regarding UWA, the maximum
is obtained usindg< = 16 andr = 16. Regarding the choice of the
number of Gaussians or relevance factor, no obvious tremd$e
seen. For the two highest model ordeks,= 128 and K = 256,
using larger relevance factor helps as expected. For thefdse
paper, we fixK = 128 andr = 16; this gives highest WA and
second highest UWA.

4.4. GLDS-SVM

are obtained using@) = 2 which seems to represent a compro-
mise for preserving context-related characteristics outhoverfit-
ting. Importantly, this is also computationally faster iongparison
to@ = 3.

5. ANALYSIS OF THE RESULTS

Up to this point, we have presented the results in terms af &at-
curacy (either WA or UWA) for ease of interpretation. \We now
analyze the achieved recognition rates in detail. Summpmghe
above findings, we fix the classifier parameters as follows. tf®
distance-based methods (kNN and VQ scoring) welse= 2048
codevectors per class and for kNN, we further set the neigjiaoal
size ask = 1. For the GMM-ML and GMM-MMI systems we use
K = 512 Gaussians, and for the GMM-SVM system, we set it to
K = 128 with relevance factor = 16. For the GLDS-SVM sys-
tem, we use polynomials up to second order=£ 2).

5.1. Classifier- and Class-Dependent Accuracies

The results broken down by class, along with the two integravA
and UWA measures and number of test cases in each classyeme gi
in Table 6. It is obvious that our classifiers behave diffdyeacross
the classes. The results for kNN and VQ are very similar siheg
both use the same codebooks and differ only in the scorincegs
Comparing the two GMM systems, none of the training prirespl
(ML vs MMI) is superior over each other; both win in half of the
cases.

Comparing the two SVM methods, GLDS-SVM generally out-
performs the GMM-SVM kernel. The behavior of the GMM-SVM

Results for the GLDS-SVM method are shown in Table 5 for threes relatively low; it classifiesll the test samples incorrectly in four

different maximum monomial orderg)( = 1,2, 3). Note that the

cases. An interesting observation, however, is that evengtn

case@) = 1 merely corresponds to SVM trained using utterance-GMM-SVM gives the lowest overall accuracy, it has the most ac

averaged MFCC features studied for low-cost context reitiogrin
[12]. The supervector dimensionalities f@r = 2 and@ = 3, in
turn, are 820 and 11480, respectively.

curateofficedetector with 91.36 % accuracy. While this extreme be-
haviour calls for a detailed analysis, we hypothesize that4BM
required for GMM supervector generation is likely to be bihso-



Table 6. Audio context recognition results (correct identificati@tes, %) broken down by class. The classifier with highestiracy per

class is bolded.

Class kNN VQ | GMM- GMM- | GMM- GLDS-

Niest ML MMI SVM SVM || Average
Car/bus 5183 59.71 59.63 63.14 63.12| 20.06 45.24| 51.82
Home 30771 48.41 48.55 53.19 54.31| 1.06 57.98 || 43.92
Meeting/lecture 531947.20 54.04 62.77 57.49| 0.00 27.39 | 41.49
Office 36153| 70.93 70.88 62.82 68.30| 91.36 70.07 72.39
Outdoors 9711 14.11 15.40 16.41 13.91| 1290 10.49| 13.84
Restaurant/pub/café 555%@17.64 50.10 62.50 65.76 | 0.00 43.33| 44.89
Shop/mall 6177 45.82 44,92 4853 39.79| 0.00 21.74 || 33.47
Street/road 313640.41 41.68 36.79 39.49| 39.34 41.88 | 39.93
Train/metro/tram 9420 36.83 36.08| 29.12 24.79| 0.00 28.07 || 25.81
Other 3231 5.80 7.51| 9.30 13.33| 6.14 10.98 8.85
Total (WA %) 114657/ 49.60 50.34 49.96 52.01| 34.37 49.57
Total (UWA %) 114657 41.69 42.89 44.44 44.03| 17.08 35.72

Table 7. Recognition rates (% correct) for the GMM-MMI classifiéf (= 512) by user and class. The missing values (-) mean that there is
no test data for that class/user pair. The mean values tedid®y * have been computed over the nonmissing values ofiMy? ¥ Tampere,

HEL = Helsinki.
User ID (gender, city)
1(g, TMP) 2 (5", TMP) 3 (¢, TMP) 4 (9, TMP) 5 (&', HEL) 6 (5", TMP)

Class Niest 12486 39647 57985 2678 1476 385
Car/bus 5188 63.77 62.11 78.48 84.21 7.07 -
Home 30771 72.66 72.17 42.35 52.34 86.84 62.90
Meeting/lecture 5319 45.95 56.12 88.13 62.11 7.89 21.05
Office 36153 1.95 84.11 72.54 0.00 18.42 94.59
Outdoors 9711 17.14 9.77 27.71 27.37 0.00 -
Restaurant/pub/café  55p6 68.88 64.93 67.61 72.81 0.00 -
Shop/mall 6177 40.79 49.04 33.08 - - -
Street/road 3136 53.75 61.55 29.14 - 0.00 -
Train/metro/tram 9420 30.49 28.78 13.53 - 0.00 -
Other 3231 15.14 11.92 16.27 6.14 3.51 0.00
| Averagd  41.05 50.05 46.88 43.56*  13.74* 4463

wards the majority class (office). We did not attempt to do data
or Gaussian balancing in the UBM training process.

A possible explanation for the low performance of GMM-SVM
in comparison with GMM-ML and GMM-MMI is that the former
requires creating a GMM for the test utterance prior to SVbrsg
whereas the latter two just compute a likelihood score; xitremely
short data duration (3 seconds or 65 MFCC vectors) probahlges
unreliable estimation of the GMM parameters.

Comparing the classes themselvefficeis clearly the easiest
to classify correctly, with 72.39 % average over our classifiool.
There are two possible reasons for this. The first one isstitzi:
the office environment has generally the largest amountadifitrg
data available which the statistical models are able todakentage
of. The second one could be due to homogeneity of the envieahm
itself — most of the office recordings were carried out on thae
floor of an office building with relatively homogenous soucejse.

The most difficult class, in turn, istherwith only 8.85 % aver-
age recognition rate. This comes as no surprise since f{rissents
an out-of-set class. The individual recordings inside ttéss are
highly variable and our classifiers are unable to capturegere-
havior ofall the rest of our auditory worlavith such a small training
set. Clearly, more intelligent way of modeling the out-ef-slass
would be needed.

5.2. Analysis by User and Class

Different users have generally different lifestyle, daiigutines,
places of interest and behavioral patterns, which mighefleated
also in the types of audio contexts collected. For the ammlys
the user factor, we present the results for the GMM-MMI dfaess

(K = 512 Gaussians) only. The results for each class and user are
given in Table 7. In the case of missing values, the mean salue
are computed only over the non-missing values and shouldtee i
preted with care. Perhaps the most interesting accurabpi®f the
user no. 5 whose data is partly collected in another city gifki).

His average recognition accuracy (13.74 %) is clearly lotian
that of the other five users. This might be partially causedhey
differences in the acoustic contexts across the two citidsne of
the street train, restaurantor outdoorssamples of user no. 5 were
correctly recognized when trained using Tampere trainatg.d

5.3. Effect of the Mobile Phone

Our last analysis for the VQ and GMM-MMI classifiers in Table 8
considers the possible channel effect arising from diffemmllec-
tion devices. We have selected the two users (1 and 2) whotbestve
clips from than just one mobile phone. Regarding WA for user 1
the lowest accuracies for both VQ and GMM-MMI are obtained fo



N85. This seems to suggest for a channel effect, siheee is no

problem, compensating for the biases due to different udexsces

training data for this phondsee Table 2). Conversely, 6210 Navi- and imbalanced training set sizes should be considered.

gator yields the highest accuracy for the GMM-MMI systenis ik
expected since it has the largest amount of training datgaf@eng
WA for user 2, similar effect can be observed for the GMM-MMI
system; low accuracy on N95 which has training data only fuser
1, and clearly higher accuracy for 6210 Navigator, the medti
most training data. For the VQ classifier, the result is havep-
posite. One limitation of the present analysis is that, iditah to
the device and user factors, other factors such as the dtgmsdent
amount of training data or selection of training excerpty rdao af-
fect the results. Some careful data balancing or, ideadisalfel au-
dio recordings with multiple devices, would be needed fdaitied
isolation of the “device-only” factor.

Table 8 Accuracy of the VQ I/ = 2048) and MMI-GMM (G =
512) classifiers for different phones from users 1 and 2.

Weighted acc. (WA %)Unw. acc. (UWA %
User Phone Niest| VQ  GMM-MMI VQ GMM-MMI
1 6210 Nav. 607(r4.11 30.57 21.71 14.51
5800 4865%36.55 18.07 39.71 12.53
N95 1172 8.44 9.30 6.71 15.84
N85 380 3.15 5.00 12.07 25.00
2 6210 Nav. 3449[18.09 49.89 8.43 32.90
N95 515032.69 8.15 38.61 7.38

6. DISCUSSION AND CONCLUSIONS

The problem of audio context recognition from short and lyighri-

ably mobile data records was considered. This problem setiyal-
lenging without a doubt; in our comparison of six classifiengen
after all parameter optimizations, the highest identiftzatates in
a 10-class identification task using 3-second segments beasg &2
% correct rate (weighted accuracy) and average class-depeac-
curacy about 44 %.

In our comparisons, the distance-based (kNN, VQ) and proba-

bilistic classifiers (GMM-ML, GMM-MI) performed somewhaeb
ter than the two SVM-based systems. Note that the first fagsel
fiers (kNN, VQ, GMM-ML, GMM-MI) do direct scoring of MFCC
vectors against the acoustic context models whereas lsegmience
kernel SVM scoring boils down to computing an inner produet b
tween two model supervectors corresponding to the traiaimgthe
test signals. Finding reliable model parameters for the digmal
is challenging due to the extremely short durations. In,faath
degradation of sequence kernel SVMs over conventional Gigtits
ing for short durations has also been reported in speak#icegion
[22]. Detailed study on the effect of the test sighal duratimuld
be a natural future goal to focus on.

In the overall comparisons, GMM with MMI training ranked the
highest while GMM supervector SVM ranked the lowest. Howeve
none of the classifiers can be said to be an universal winmealifo
classes (contexts). This observation agrees well with depiendent
comparison of four classifiers in [1]. It is also evident ttze ac-
curacy varies greatly across different users and the citgravithe
data was collected in. Because of such diversity, classiéiction
and fusion methods would be also an interesting researebtitin
to study. There was also some indication of possible dewepei-
dency (similar to channel or environmental variability peech clas-
sification tasks). Thus, in addition to addressing the stioration

(10]

(11]

(12]

(13]
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