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Abstract. Clustering data in Euclidean space has a long tradition and
there has been considerable attention on analyzing several different cost
functions. Unfortunately these result rarely generalize to clustering of
categorical attribute data. Instead, a simple heuristic k-modes is the most
commonly used method despite its modest performance. In this study,
we model clusters by their empirical distributions and use expected en-
tropy as the objective function. A novel clustering algorithm is designed
based on local search for this objective function and compared against
six existing algorithms on well known data sets. The proposed method
provides better clustering quality than the other iterative methods at
the cost of higher time complexity.

1 Introduction

The goal of clustering [1] is to reveal hidden structures in a given data set by
grouping similar data objects together while keeping dissimilar data objects in
separated groups. Let X denote the set of data objects to be clustered. The
classical clustering problem setting considers data objects in a D-dimensional
vector space, X ⊂ R

D. The most commonly used objective function for such
data is mean squared error (MSE). A generic solution is the well-known k-means
method [2], which consists of two steps that are iterated until convergence. In
assignment step (or E-step), all vectors are assigned to new clusters and re-

estimation step (or M-step), model parameters are updated based on the new
assigments.

Different from vector space data, data in educational sciences, sociology, mar-
ket studies, biology and bioinformatics often involves categorical attributes, also
known as nominal data. For instance, a data object could be a single question-
naire form that consists of multiple-choice questions. Possible outcomes of the
answers can be encoded as integers. In this way, each questionnaire would be
represented as an element of ND, where D is the number of questions. Unfortu-
nately, since, the categories do not have any natural ordering, applying clustering
methods developed for metric space data cannot be applied as such.

Hamming distance is a distance function designed for categorical data. It
counts the number of attributes where two vectors disagree, i.e., having different
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attribute values. Cost functions and algorithms based on Hamming distance
include k-medoids [3] and k-modes [4], both being extensions of the classical
k-means [2]. In k-medoids, cluster representative (discrete median) is a vector
in the cluster that minimizes the sum of distances from all other vectors to
the cluster representative. In k-modes, the representative is the mode of the
cluster, calculated independently for every attribute. Mode is the most frequently
occurring value, in one attribute, over all the vectors in the cluster.

Using minimum Hamming distance as the assignment rule, one is also faced
with the so-called zero probability condition [5]. It is one of the the assumptions
behind the convergence proof of the classical k-means algorithm, stating that
that the probability of assigning a vector to more than one cluster must be zero.
With real valued data this condition holds. However, in tne case of categorical
attribute clustering based on Hamming distance this condition is clearly not met.
In the extreme case, when two D-dimensional vectors are maximally different,
their Hamming distance is D. Consequently, the Hamming distance can take up
only D unique values and it is likely that a vector is equally close to more than
one cluster. Moreover, in the k-modes method, the cluster representative (mode)
is not unique either. Tie-breaking needs to be employed in both the E- and the
M-steps.

Tie-breaking problem in the cluster assignment (E-step) phase can be solved
by testing each vector one by one whether its move to a new cluster will improve
the objective function value. If such a cluster is found, the cluster parameters are
immediately updated. Convergence of the algorithm can then be detected when
there is no movement of vectors. One way to tackle the tie-breaking problem in
the M-step is to represent the cluster by its probability mass function (pmf), that
is, the relative frequencies of each category value in the cluster. For example,
choices for educational background could have values P (elementary school) =
0.2, P (high school) = 0.7 and P (vocational school) = 0.1. In a sense, k-modes
can be considered as a quantized version of the pmf-based cost functions. In this
example, “high school” would be the cluster representative.

A number of different objective functions have been proposed, based on the
the idea of modeling each cluster by its pmf: k-histograms [6, 7], k-distributions [8],
minimum description length (MDL) [9], mutual information [10] and expected

entropy [11–14]. Expected entropy is the average entropy of the entire cluster-
ing. If the pmf of the cluster is sharply peaked, its entropy is small. Therefore
minimizing the expected entropy leads to compact clusters.

Despite the availability of multiple pmf-based methods, it is unclear which
objective function and method would be best suited for a given application. In
this work, we compare six well known categorical clustering methods in diverse
categorical data sets using expected entropy as a clustering quality measure.
Data sets vary from small sets of only 47 data points to large data set of more
than 47k entries. In addition, we propose a new local search algorithm that
directly optimizes the expected entropy.
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2 Modeling Cluster by its Distribution

In hard clustering, the goal is to divide a data set X, of size N , into disjoint clus-
ters V = {V1, V2, . . . , VM}, where Vi ⊂ X,∪M

i=1Vi = X, and Vi∩Vj = ∅ ∀ i 6= j.
In categorical clustering, data set consists of vectors x = (x1, x2, . . . , xD),

where each xd takes values from a discrete set (categories). The number of cate-
gories in dimension d is denoted by Cd. We assume, without a loss of generality
that xd ∈ {1, . . . , C}, where C = maxd=1...D Cd.

Entropy [15] is a measure of “surprise” in the data. High entropy signifies flat
distribution whereas low entropy signifies peaked distribution. Formally, entropy
for discrete distribution is defined as:

H(X) , −
∑

x∈X

p(x) log p(x), (1)

where p(x) = p(x1, . . . , xD). Here, p(x) denotes estimated probability of the
joint event (x1, . . . , xD). In the rest of the discussion, by entropy we will mean
estimated entropy, also known as empirical entropy.

Our goal is to minimize the so-called expected entropy) [12]:

H(V) ,
M∑

m=1

|Vm|

N
H(Vm), (2)

where |Vm| is the cardinality of Vm and H(Vm) is the entropy of the cluster Vm.
Note that by setting M = 1, we obtain H(V) = H(X), and by setting M = N ,
we obtain H(V) = 0, where each vector is in its own cluster. All other values are
between these two extremes.

3 Algorithms

We evaluate two different types of clustering approaches, iterative and agglom-

erative. In iterative algorithms, clustering cost is improved in each iteration by
repartitioning the datasets. The selected algorithms are summarized in Table 1.
In agglomerative algorithms, instead, clusters are merged one by one until a
desired number of clusters is reached. Two agglomerative methdos are consid-
ered: ACE [14], which optimizes the expected entropy (2), and ROCK [16] which
optimizes its own cost function.

3.1 Prototype based algorithms

Prototype-based iterative methods [3, 4] select one vector from each cluster as
a representative, analogous to centroid vector in conventional k-means. The k-
modes and k-medoid methods use minimum Hamming distance to assign vectors
to clusters. In the classical k-means, squared Euclidean distance was used. In the
M-step, the goal is to find such a prototype per cluster that minimizes Hamming
distance from each vector in the cluster to the prototype vector. In k-medoid,
one vector from the cluster is selected as the prototype and in k-modes, most
frequently observed category per dimension is selected.
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Table 1. Summary of k-means type methods experimented in this study, classified
according to cluster representative type and distance measure.

Method Representative Measure

k-distributions [8] Distribution Product of m-estimates
k-histograms [6, 7] Distribution non-matching frequencies
k-modes [4] Mode Hamming distance
k-medoids [3] Medoid Hamming distance
k-entropies [this paper] Distribution Entropy change

3.2 k-distributions

In k-distributions [8], there are no cluster prototypes but the histograms are
used to represent clusters. In the E-step, a vector is assigned to the cluster that
maximizes the likelihood p(x|Vm). The likelihood can be factorized into each di-
mension separately assuming that dimensions are independent. Some categories
may have zero count, the histogram is therefore processed by Laplacian smooth-

ing [17].
The expected entropy is not directly optimized by k-distributions. No proof

of convergence exists, but experimentally we have noticed that the method seems
to converge, albeit slowly. In the following, we attempt to give an explanation of
the slow convergence. It would benefit if the similarity measure between a vector
and cluster remains relatively stable when only small changes are made in the
cluster partitioning. Unfortunately, this is not the case with k-distributions. Let
us consider a case where we map a vector to a cluster, where one dimension has
a non-matching category (no vector in the cluster has that category). When a
new vector having this non-matching category is added to the cluster, comparing
likelihood before and after addition we notice a large difference. For example,
the likelihood from a vector after addition of the cluster with 15 vectors and
3 categories is 3.5 times more than before the addition. Thus, vectors end up
changing clusters very often, leading to a slow convergence.

3.3 k-representatives and k-histograms

K-representatives [7] first assigns randomly all vectors to clusters and computes
normalized histograms as representatives of each cluster. Frequencies are nor-
malized so that they sum up to one. The distance measure from vector to cluster
is Hamming distance weighted by the frequency. The method assigns new vec-
tors to clusters based on the distance measure and recomputes the histograms.
Process continues until no re-assignments of vectors are detected.

Unfortunately, contrary to the claim in [7], we found out that algorithm does
not always converge1, We, therefore, do not consider k-representatives method
further. In iterative clustering with immediate update, vector is moved from one

1 Proof by explicit construction of a 5-dimensional data set that k-representatives does
not converge: http://cs.uef.fi/sipu/krepresentatives.pdf.
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cluster to another if the move decreases the cost function. We considere here k-
histograms [6] cost, which is the sum of k-representatives distance measures. It is
a non-negative cost function, thus, the algorithm converges in a finite number of
steps. The k-histograms method uses the immediate update strategy, otherwise
it is the same as k-representatives.

3.4 Agglomerative methods

A robust clustering algorithm for categorical attributes (ROCK) [16] defines a cost
function based on the idea of neighbours and links. Neighbourhood of each vector
is decided based on thresholded distance between vectors. We use Hamming
distance. A link between two vectors is made if they share at least one neighbour.
The goal of ROCK is to maximize pairwise links between vectors within the
clusters, and minimize links between clusters. In each iteration, ROCK merges
two the clusters that maximizes this criterion.

In Agglomerative Categorical clustering with Entropy criterion ACE method
[14], expected entropy is optimized. In each iteration, ACE merges two clusters,
Vi and Vj , so that the incremental entropy is minimized:

Im(Vi, Vj) = H(Vi ∪ Vj)−H(Vi)−H(Vj). (3)

3.5 The proposed method

We propose to optimize the expected entropy directly. We start by randomly
assigning each vector to a cluster. The method then iterates over all vectors and
tests whether moving it to a new cluster improves the expected entropy. The as-
signment that maximally improves is selected. The algorithm converges when no
vector changes its cluster assignment. It is easy to see that this strategy converges
as each iteration is forced to either improve on the previous solution, or keep the
existing one and stop. The proposed method is summarized in Algorithm 1.

Algorithm 1 The proposed method (k-entropies)

Randomly assign all vectors to M clusters.
Model clusters as their probability mass function (pmf).
repeat

for x ∈ X do

Vi ← Assign x according to minimum cost (2).
Estimate prototype of the cluster Vi as the pmf of the cluster.

end for

until No change in vector assignments.
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3.6 Summary

All the algorithms, mentioned above are summarized in Table 2. The time and
space complexities for ACE and ROCK are referenced from the respective pub-
lications, and the others have been derived by ourselves. The quadratic space
and time complexity of both ACE and ROCK makes them rather impractical for
large data sets. Here, I denotes the number iterations, Cavg the average number
of categories, TL the cost of computing logarithm, Rmax the maximum number
of neighbours, and Ravg the average number of neighbours.

Table 2. Summary of clustering algorithms.

Algorithm Type Time complexity Space complexity

ACE [14] Agglomerative O(N2 logN +N2DCavg) O(N2)
ROCK [16] Agglomerative O(N2 logN +N2) O(min{N2, NRmaxRavg})

k-medoids [3] k-means O(INMD) O(N)
k-modes [4] k-means O(INMD) O(N)

k-distributions [8] k-means O(INMDTL) O(N)
k-histograms [6] Immediate update O(INMD) O(N)
k-entropies Immediate update O(INMDCavgTL) O(N)

4 Experiments

Experimental comparison were performed using six different categorical data
sets (Mushroom, Votes, Soybean, CENSUS, SPECT hearth and Plants) obtained
from UCI Machine Learning archive [18]. Data sets are summarized in Table 3.

Only two methods optimize directly the expected entropy: ACE and k-
entropies (proposed method). We are interested to find out how the other meth-
ods perform in terms of expected entropy as a clustering objective function,
where low entropy is desired. For iterative schemes, the number of iterations
I depends on initialization, data set and cost function, it can have importance
on how fast the algorithm is in practice. Number of iterations I measures the
empirical convergence speed of the algorithm.

Mushroom data set includes 8124 observations from 23 different mushroom
species. it has 21 attributes, and 119 categories. Dimensions with large number
of missing values were discarded in our tasks. Dimensions of the vectors encode
forms and colours of the mushrooms. Congressional votes data set includes
votes from the US Congress of 1984. Each vector gives the votes of one of the
435 member of the US congress. In total, proposals were collected with possible
outcome of {yes, no, other}, where other means that politicians opinion on the
said proposal is not known. Total number of categories is 46. Soybean data set
contains observations from different soybeans. It contains 47 vectors, 35 dimen-
sions and 72 categories. CENSUS data set is selected to evaluate scalability of
the compared methods. Data set size is 2,458,285, has 68 dimensions and 396
categories. This data set contains both nominal and ordinal data types. In our
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experiments, special processing for ordinal data is not used. SPECT hearth is
data on cardiac single proton emission computed tomography (SPECT) images.
Each SPECT image was summarized to 22 binary pattern features. Data set con-
tains 267 patients, and 44 categories. Plants data set is transaction data about
different growth locations, containing 34781 vectors (plants), 70 dimensions and
140 categories.

Table 3. Data set summary

Data set Vectors D Categories Entropy

Mushroom 8124 21 119 21.44
Votes 435 16 46 13.98
Soybean 47 35 72 18.80
CENSUS 2458285 68 396 55.17
SPECT hearth 267 22 44 13.68
Plants 34781 70 140 25.35
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Fig. 1. Expected entropy as a function of model size. In order from top left to bottom
right: mushroom, plants, soybean and spect data sets.
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4.1 Quality of clustering

Fig. 1 shows the expected entropy as a function of model size. First glance vali-
dates our intuition: methods that are based on optimizing distribution perform
similarly. In general, the order of performance is: ACE first, then k-entropies
and after that k-histograms. K-distributions gives different results for SPECT
data set, when comparing to other sets.

The prototype based methods, k-medoids and k-modes optimize sum of Ham-
ming distances and perform similarly, as expected. They cluster to the mushroom
and plants data sets differenty than the pmf-based methods. ROCK also seems
to follow its own trend. If no links exist between two clusters, then there is no
way to merge them. This behaviour is visible in mushroom and SPECT data
sets, in smaller model sizes ROCK is not able to obtain any results. Plants is
transaction data, where most attributes have zero values, resulting all zero vector
as a prototype with k-modes and k-medoids.

4.2 Summary of experiments

Summary of average expected entropies and processing times with standard
deviations is shown in Table 4 and 5, when repeating all experiments 10 times.
Entry with n/a means that algorithm was not able to produce a result for that
configuration, either due to non-convergence or running out of memory. Model
sizes were selected for each data set separately, either by looking at the expected
entropy as function of model size plot, or by information from the data set
descriptions. For the plants data set we selected 1024, because for smaller model
sizes k-modes and k-medoids completely fail.

We notice that for Soybean and Mushroom data sets ACE is the best as it
directly optimizes the expected entropy. However, for the votes and SPECT data
sets the proposed method provides better clustering, than ACE. The usability
of ACE and ROCK are limited to their space complexity: those methods are not
able to cluster largest sets at all. The proposed method is the best in terms of
quality for the SPECT, plants and CENSUS data sets.

K-representatives results were also obtained for illustrative purposes for the
datasets it converged on. It is slower than k-histograms, which can be attributed
to the non-convergence behaviour of the algorithm. In terms of expected entropy,
k-representatives iteration strategy did not provide any visible advantage over
the immediate update of the k-histograms.

When comparing the proposed method and ACE in terms of processing time,
we see that the proposed method is a clear winner. However, other methods that
do not directly optimize expected entropy are clearly much faster.

5 Conclusions

We have compared existing pmf-based categorical clustering methods and found
them to be very similar in terms of expected entropy. We also found out that
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Table 4. Summary obtained average expected entropies and standard deviations.

Algorithm Soybean Mushroom Votes SPECT Plants CENSUS
M = 4 M = 16 M = 2 M = 8 M = 1024 M = 16

H(V) std H(V) std H(V) std H(V) std H(V) std H(V) std

ACE 7.83 0 7.01 n/a 9.79 0.16 8.43 0.07 n/a n/a n/a n/a
ROCK 9.20 0 n/a n/a 9.30 0 10.82 0 n/n n/a n/a n/a

k-medoids 10.94 1.57 13.46 0.71 10.00 0.95 10.06 0.44 7.64 0.33 32.61 0.87
k-modes 8.66 1.06 10.19 1.45 9.70 0.03 9.25 0.29 6.19 0.18 31.00 1.26

k-distributions 9.00 0.93 7.87 0.44 9.59 0.01 8.25 0.13 5.19 0.09 28.58 0.27
k-representatives 8.30 0.83 7.51 0.30 9.60 0.01 8.64 0.13 n/a n/a n/a n/a
k-histograms 8.04 0.53 7.31 0.18 9.60 0.01 8.64 0.15 3.67 0.02 29.17 0.48
k-entropies 8.15 0.56 7.31 0.18 9.58 0 8.06 0.07 3.33 0.05 28.51 0.50

Table 5. Summary obtained average processing times (in seconds) and standard de-
viations.

Algorithm Mushroom Plants CENSUS
Time std Time std Time std

ACE 2565.76 n/a n/a n/a n/a n/a
ROCK n/a n/a n/a n/a n/a n/a

k-medoids 0.06 0 30.89 8.12 184.95 18.63
k-modes 0.08 0.01 63.60 10.75 188.65 24.17

k-distributions 1.83 0.17 5043.80 1637.70 1748.34 530.97
k-representatives 0.30 0.07 n/a n/a n/a n/a
k-histograms 0.19 0.04 467.46 110.44 900.35 81.81
k-entropies 12.51 1.43 8669.55 1000.84 6068.72 1116.87

the prototype-based methods (k-medoids and k-modes), while being the fastest
methods, are not able to reach the lowest expected entropy obtained by the
pmf-based methods. Thus, those methods are not recommended for clustering
categorical data sets. On the other hand, ACE, while providing the best overall
results, is not well-suited for large data sets, because of its quadratic time and
space complexities. The proposed k-entropies method yielded the best results
for the larger datasets. As a future work, we plan to investagate ways to obtain
a k-means type clustering algorithm for the expected entropy cost.
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