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Abstract

We study the problem ofocal effort mismatcin speaker ver-
ification. Changes in speaker’s vocal effort induce changes in
fundamental frequency (F0) and formant structure which intro-
duce unwanted intra-speaker variations to features. We com-
pare seven alternative spectrum estimators in the context of mel-
frequency cepstral coefficient (MFCC) extraction for speaker
verification. The compared variants include traditional FFT
spectrum and six parametric all-pole models. Experimental re-
sults on the NIST 2010 speaker recognition evaluation (SRE)
corpus utilizing both GMM-UBM and more recent GMM su-
pervector classifier indicate that spectrum estimation has a con-
siderable impact on speaker verification accuracy under mis-
matched vocal effort conditions. The highest recognition ac-
curacy was achieved using a particular variant of temporally
weighted all-pole modektabilized weighted linear prediction
(SWLP).

Index Terms: speaker recognition, vocal effort mismatch,
spectrum estimation

1. Introduction

Speaker verificatiors the task of determining whether a given
speech segment is spoken by a claimed speaker [1]. Generally,
mel-frequency cepstral coefficie(MFCC) features obtained
from discrete Fourier transforniDFT) magnitude spectrum are
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for features used by speaker recognition systems. Thus, vo-
cal effort mismatch between training and test in speaker recog-
nition is expected to result in degraded recognition accuracy.
The effect of vocal effort to speaker verification performance
was analyzed in the NIST 2010 speaker recognition evaluation
(SRE) campaign [6]. Indeed, the general consensus reported by
many sites was that the recognition accuracy considerably de-
grades when speaker models are trained with normal vocal ef-
fort but tested with high vocal effort. In [7], it was found that the
features extracted from nasal syllables appeared robust to high
vocal effort in speaker recognition. In a recent study [8], the
effect of vocal effort (whisper, soft, loud, shouted and normal)
for speech recognition accuracy was studied. It was found that
speech recognition accuracy changes dramatically with changes
in speech mode.

Spectrum of high-pitched speech is characterized by a
sparse harmonic structure which makes the estimation of the
spectral envelope difficult from voices produced in high vo-
cal effort. Several spectrum envelope estimation techniques
have been proposed in the literaturkinear prediction(LP)
method is a well-known spectral envelope estimation technique
[9] which models the low-pitched voiced speech well. How-
ever, for medium and high-pitched voiced sounds, LP does not
provide a reliable estimate of the spectral envelope [10]. Minu-
mum variance distortionless response (MVDR) method [10],
also known agaponor maximum likelihoodnethod, has been

used as features to create speaker models. Gaussian mixture yroposed for speech of higho. Regularized linear prediction

model (GMM) [2] and support vector machine (SVM) [3] are

two well-known techniques chosen often for this purpose.
Besides the two well-studied problems of channel effects

and additive noise, there are also inherienta-speakervari-

(RLP) [11, 12] has recently been proposed with the same ratio-
nale.

In this study, we compare different all-pole model based

ations that cause mismatches to acoustic features of the same SPectrum estimation methods for robust MFCC feature extrac-

speaker. In this study, we focus on combatuogal effort mis-
matchbetween training and test speech samples. In the pres-

tion for speaker verification across varying vocal effort condi-
tions. The standard discrete Fourier transform (DFT) method

ence of background noise, speakers tend to adjust their speech IS compared with baseline LP and its recently proposed tem-

production by increasing vocal effort, a phenomenon known as
theLombard effecf4]. For example, in a quiet library environ-
ment, speakers may lower their vocal effort to produce whis-

porally weighted extensionsjeighted linear predictiofWLP)
[13] andstabilized WLRSWLP) [14], the MVDR method [10]
and the RLP method [11]. The NIST 2010 SRE corpus with

pered speech. High vocal effort causes considerable changes GMM-UBM and GMM-supervector classifiers are used in the

both in time and frequency domain features [4]. In [5], it was
reported that fundamental frequendy() and the first formant
(F'1) are highly correlated with increased vocal effort. In the
same study, it was shown that the second and the third for-
mant frequenciesH2 and F'3) do not vary as much but their
amplitudes do increase considerably. Generally, high vocal ef-
fort causes increase IR0, while low vocal effort lowers it.

These acoustic changes in FO and formant parameters reflect as [s(0), s(1),...

changes in the short-term spectrum, which is the starting point

experiments.

2. Spectrum Estimation

2.1. Methods

Given a Hamming windowed speech frame
, s(N — 1)]T, the most basic form of
power spectrum computed by discrete Fourier transform (DFT)



is given by,
N-1 _ 2
Seer(f) = | D s(n)e™ N (1)
n=0
wheref = {0, 1,..., N — 1} is the discrete frequency in-

dex. Another commonly used spectrum estimation method
based orlinear prediction(LP) [9]. In LP analysis, it is as-
sumed that a speech samp(e) can be estimated from its pre-
viousp sampless(n) = — > 7_, ars(n — k). Here,s(n) is

the original speech samplé(n) is the predicted sample and

p is the predictor order (time span). Conventional autocorre-
lation method is generally used to estimate the predictor coef-
ficients, {aw }}_,, by minimizing the energy of the residual,
e(n) = s(n) — 8(n) = s(n) + >_7_, ars(n — k). Optimum
coefficients are obtained from,

Ip

aopt

)

where Ry, is a Toeplitz autocorrelation matrix ang, is an
autocorrelation vector. Given the predictor coefficients,the
LP spectrum is obtained by,

_ —1
= _Rlp Tlp,

1
= ’1 i Zzzl ake,jgwfk ’2 .

A variant of the standard LRemporally weighted linear pre-
diction (WLP) [15, 13] obtains the optimum prediction co-
efficients by minimizing the weighted square of the residual,
E=3, eEn)¥, = > (s(n) + 3% brs(n — k)20,,.
Here, ¥, is a time-domain weighing function. In this work,
we use the short-time energy (STE) as the weighting function,
¥, = 3, 2*(n —1), whereM is the length of the STE win-
dow. The optimum coefficients;, k = 1, ..., p, are computed
bVl —

as
opt T (4)

whereRyip, = 3 s(n)s(n) Wy, rvp = >, s(n)s(n) ¥,
ands(n) = [s(n — 1) s(n — 2) ... s(n — p)]*. It can be
seen thatR.;, = Rrcp if and only if ¥, = 1 for all n.
Standard LP method guarantees that resulting all-pole filter is
stable (poles are inside the unit circle). However, such guar-
antee does not hold for WLP. Thus, stabilized WLP (SWLP)
was proposed in [14]. In SWLP, the weighted autocorrelation
matrix and the weighted autocorrelation vector are expressed
aSRewip = YTY andrswp, = Y7yo, respectively (the
original article [14] presents the problem in a slightly differ-
ent form). The columns of the matriX = [y1 y2 ... yp]

are calculated by,+1 = By, for0 < k < p — 1, where

yo = [WVUiz(1) ... vVUnz(N)O0 ... 0]F andB is a matrix

Sue(f) ®3)
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Figure 1: FFT and LP spectra of the vowdl from the same

female speaker in different vocal efforts.

whereD is a diagonal matrix in which each diagonal element
is the corresponding row or column number d@fds a ma-
trix of windowed autocorrelation sequentéen) = r(m)uv(m)
with Toeplitz form, representing the coarse approximation of
the spectral envelope. Herg;m) is the conventional autocor-
relation sequence(m) = > s(n)s(n —m) andv(m) is a
window function (Boxcar window is used in this study similar
to[11]). Optimum prediction coefficients are then computed by,

(@)

In [16, 17] the present authors proposed using double autocor-
relation (DAC) sequencg,(k) = >~ r(m)r(m— k), to com-
pute matrixF under additive noise. Since noise and speech sig-
nals are uncorrelated, the DAC sequence helps to decompose
them in the autocorrelation domain [18]. Thus the proposed
method improved the recognition performance considerably.
The MVDR spectrum estimation method [10] models the
unvoiced or mixed speech spectra by using the LP coefficients.
An m'" order MVDR spectrum is computed by,

rlp
opt T

c —(Ryp + ADFD) 1y,

1
I p(R)em AN

wherem is the MVDR filter order and the parameter&k) are
computed by a simple non-iterative method from the LP coeffi-
cients [10] as follows:

S Em 1~ k — 20)aiaits,
/’L(ik)v

Smvpr(f) 8)

k=0,1,..
k=-m, ..., —1,

9)

,m

p(k)

wherea; is theit® LP coefficient.

2.2. Effect of Vocal Effort on Speech Spectrum

It is known thatF'0, shape of the glottal waveform, formant
locations and their bandwidths are all affected by changes in
vocal effort [5, 4]. To exemplify, Fig.1 shows the DFT and LP

where all the elements are zero outside the subdiagonal and the spectra of the vowell/ in the utterance I*meart spoken by

elements of the subdiagonal, for< i < N +p — 1, are

Bioii = {V Pl st

1, \1/7, > ‘I/i+1.

In regularized LP (RLP) [11, 12], a penalty measure is in-
troduced in the cost function and optimum predictor coef-
ficients are computed by minimizing the new cost function,
S (s(n) + 38, ers(n — k) + Ag(c), whereg(c) is the
penalty measure which is a function of the predictor coefficients
c and) is a regularization factor which controls the smoothness
of the spectrum. In [11], the penalty function was chosen as,

#(c) = c"DFDc (6)

the same female speaker in the NIST 2010 SRE corpus. We
can see that the shape of the spectrum radically changes with
vocal effort. In particular, sparse harmonic peaks appear in the
spectrum produced using high vocal effort.

Table 1 shows the averadéd and the first three formants
(F'1-F3) and their bandwidths for 2 female speakers in the
NIST 2010 SRE corpus. The first speaker produces the utter-
ance ‘| meari and the second speaker producgedH in three
different vocal effort condition.F'0, formants and their band-
widths were computed usirfgraat softwaré. As seen, the av-
erage formant frequencies and bandwidths change with vocal
effort. In the case of high vocal effork0 is larger than normal
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Table 1. AverageF'0 and first three formant frequencies with
their bandwidths (in Hz) for different vocal effort (NVE: normal
vocal effort, LVE: low vocal effort and HVE: high vocal effort).

10 20 30 40 10 20 30 40
Prediction order (p) Prediction order (p)

Figure 2: LSD between original speech and pitch modified
speech ['0 decreased (left) and increased (right) $§ %).

effort for both speakers, as expected. From speaker recogni-
tion point of view, these acoustic differences cause intra-speaker

variation between training and test whenever there is vocal ef-
fort difference. Even though it is not the only acoustic parame-
ter that changes with vocal effort, FO is one of the most promi-

Table 2: EERs (%) for different spectrum estimators and sub-
conditions with the GMM-UBM system.

Equal Error Rate

’ ‘ Trials ‘ FFT Lp MVDR‘

WLP  SWLP _ RLP _ RLP-DAC
Speaker 1 Speaker 2 o | Male 1416 1651 1728 1500 1559 416 15.01]
NVE LVE HVE | NVE LVE HVE 3 | Female | 1746 1775 1915 1590  17.74 16.33 18.58
All 1586  17.23 1836 1535 1680  15.25 16.66
FO 206 204 241 | 150 134 159 o [ Male 2385 2303 2416 2303 2422 2276 2134
S | Female | 3278  27.06 2758 2349 2555 26.64 24.04
Fl 513 582 618 | 532 567 680 S | Al | 0 2sas  ge0s  zass  saes 2465 2253
F2 1528 1688 1802| 1628 1730 1680 © | Male 1062 1344 1428 1..76 1344 10.64 15,17
% | Female | 1258 1508 1396 1340  14.88 12.89 1623
F3 2509 2332 2419 2215 2314 2342 S | a | 174 1453 1378 1308 1415 12.53 16.10)
BW1 52 72 71 69 81 75
BW?2 439 357 568 | 382 173 111
BW3 | 162 401 308 | 937 575 301 Table 3: EERs (%) for different spectrum estimators and sub-
conditions with the GMM-supervector system.
6 Equal Error Rate
’ ‘ Trials ‘ FFT___LP_ WLP__ SWLP _ RLP _ RLP-DAC MVDR‘
5 o | Male 523 504 613 542 655 834 6.78
y % | Female | 813 818 816 647  7.88 10.12 9.58
41, S| Al 734 706 706 600  7.06 9.32 8.46
ol i M. © [ Wale 786 896 842 8.42 578 1198 957
23 Sl % | Female | 1258 1356 1475 1256 1475 18.05 14.75
e Pt S 1086 1191 1201 1080  12.33 15.85 12.74
5 © [ Male 361 422 504 276 362 .72 720
% | Female | 670 762 647 474 670 8.37 7.26
i S| Al 503 628 570 402 585 8.05 5.86

e Det 6: Conversational telephone speech withrmal
vocal effort condition in training andhigh vocal effort
(HVE) telephone speech in test, containing 361 target
and 28311 impostor trials.

e Det 8: Normal vocal effort telephone speech in train-
ing andlow vocal effort (LVE) telephone speech in test,
containing 289 target and 28306 impostor trials.

Two different classifiers are chosen for the experiments. First,
we have used simple GMM-UBM system with 128 Gaus-

nent ones. Before proceeding to the speaker recognition experi- sian components. GMM-UBM was used because it enables
ments with large-scale NIST data, we first analyze spectral dis- optimizing the control parameters of each spectrum estima-
tortions implied by changes in FO changes, under a controlled tion method using the classifier’s fast scoring capability with-

set-up involving artificial software-based FO shifting. To this
end, Fig. 2 reports average log-spectral distortion (LSD) be-
tween normal vocal effort speech and artificial pitch-modified

out the need for other hyperparameters except the univer-
sal background model (UBM). Gender-dependent UBMs are
trained using SRE04, SREO5, SREO6 and Switchboard cor-

versions 0% increase and decrease) of the same utterance, as puses. Second, we used GMM-supervector classifier [3] with

a function of prediction orde, for different all-pole models
described in the previous sectiof'0 modification was imple-
mented byPraat. The average LSD between two all-pole spec-
tra is defined as,

—1

[1010510 S4(f) — 10logy, S’t(f)] 27
f=0

LSD =

el

Ly
t=1
) (10)
whereS% (f) andS*(f) are the power spectra of tiith frame
of the original speech signal and modified signal, respectively.
T is the total number of frames. The LSD of the WLP method is
a decreasing function gf different from other methods. How-
ever, SWLP yields the smallest LSD value for high prediction
orders. In general, LSD values between normal and high pitch

nuisance attribute projection (NAP) channel compensation [19].
In GMM-supervector classifier, gender-dependent UBMs with
512 Gaussians are trained using SRE05, SRE06 and Switch-
board databases. Negative examples (background speakers) to
train speaker-dependent SVM are selected from SREO3 and
SREO04 corpora (395 and 577 speech files for male and female
genders, respectively). NAP matrices are trained using 2020
male and 2017 female utterances from the NIST SRE06 corpus.
Relevance factor of = 8 is used for adapting the mean vectors.

MFCC features are extracted from 30 ms Hamming win-
dowed frames with 15 ms overlap. To compute the magnitude
spectrum of windowed frames, different spectrum estimation
methods are considered. Besides standard FFT and LP meth-
ods, WLP, SWLP, RLP, RLP-DAC and the MVDR methods are
used to compute the spectrum. 18 MFCCs are extracted by mul-

speech samples are larger than the value between normal and tip|ying the spectrum with a bank of 27 triangular mel-scale fil-

low pitch speech.

3. Experimental Setup

Experiments are carried out on the core task of NIST 2010 SRE
corpora, including three different vocal effort sub-conditions:

e Det 5: Conversational telephone speech withrmal
vocal effort (NVE) in both training and test, containing
708 target and 29655 impostor trials.

ters. A and A? features are then appended to RASTA filtered
[20] MFCCs. Finally, cepstral mean and variance normalization
(CMVN) and energy-based voice activity detection (VAD) [21]
are applied to the features.

We have used equal error rate (EER) as the performance
criterion. EER is the threshold value at which false alarm rate
(Pr) and miss detection ratéf,;ss) are equal. Besides from
EER values, detection error trade-off (DET) curves of selected
methods are also shown.
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Figure 3: DET curves for Det 5 (NVE-NVE), Det 6 (NVE-HVE) and D& (NVE-LVE) sub-conditions using selected spectrum

estimation methods using GMM-supervector classifier.

4. Speaker Verification Results

The spectrum estimators are first compared using the be
GMM-UBM recognizer. Prediction order is set o = 20

for the all-pole methods. STE windowing withi = 20 was
used in WLP [15] and SWLP [14]. Regularization para
tersA = 10~* and\ = 10~° are used in standard RLP [} _
and RLP-DAC [16, 17] spectrum estimators. Table 2 summa-
rizes the recognition accuracies of the GMM-UBM classifier
for male, female and all trials separately. The minimum EER
of each row are highlighted. From these preliminary results we
find that:

e Female speakers systematically produce higher EERs in-
dependent of the vocal effort condition.

e In Det 5 condition, FFT and RLP-DAC methods yield
the smallest EER for male trials.

e For female trials in Det 5, SWLP gives the highest accu-
racy (15.9 % EER) which corresponds to approximately
9 % relative improvement in EER over FFT'(.46 %
EER).

e In Det 6 condition, SWLP shows considerable improve-
ment over FFT for female trials in terms of EER (EER
reduced from32.78 % to 23.49 %, a relative improve-
ment of28 %). MVDR yields slightly higher EER than
SWLP for female speakers. However, it produces the
smallest EERs for male trials.

e The performance on the Det 8 condition always gives
smaller EER values than Det 5 and Det 6 conditions.
Similar observations have been made in [6, 7].

Next we compare the effect of spectrum estimation with the
GMM-supervector classifier. The results of GMM-supervector
are given in Table 3. Differently from the GMM-UBM re-
sults (Table 2), SWLP yields the highest recognition accuracy in
comparison to the other methods, irrespective of the vocal effort
condition (for Det 6, male speakers with FFT is slightly better).
A potential explanation is that SWLP, being a stabilized tempo-
rally weighted all-pole model, is capable of computing smooth
spectral envelopes in which modelling of formants is less bi-
ased by sparse harmonics of high vocal effort speech. In con-
trast to the GMM-UBM results, the performance improvement
obtained with SWLP is larger when low vocal effort is used in
test (Det 8). Interestingly, RLP-DAC method gives the highest
EER values with GMM-supervector. DET curves for FFT, LP
and SWLP methods for Det 5, Det 6 and Det 8 sub-conditions
are given in Figure 3. It can be seen that, the performance dif-

ference between SWLP and standard methods are larger at low

'" Nogmal Vocal Effort ."‘ Low Vocal Effort " High Vocal Effort
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Figure 4: Target (black solid line) and impostor score (dashed
red line) distributions for SWLP method on male trials.

miss rates for Det 5 and Det 8 conditions. However, in Det 6
condition, FFT is better at low miss rates but SWLP at low false
alarm rates. The most interesting observation from the experi-
ments is that, Det 8 sub-condition (normal vocal effort training
and low vocal effort test) yields the smallest EER than Det 5
and Det 6 conditions independent of the spectrum estimation
method used for both the GMM-UBM and GMM-supervector
recognizers.

Figure 4 shows the recognition score distributions for dif-
ferent vocal effort conditions (Det 5, Det 6 and Det 8) for male
speakers using SWLP method. In case of high vocal effort (Det
6), the overlap of the target scores within the impostor score
distribution is larger than the case of low or normal vocal effort.
This is expected because from the results Det 6 sub-condition
gives the highest recognition accuracy.

5. Conclusions

We compared different spectrum estimators for MFCC feature
extraction in the context of vocal effort mismatch in speaker
recognition. From the experimental results conducted on NIST
2010 SRE corpus with GMM-UBM and GMM-supervector
classifiers, we found that change in vocal effort affects the
recognition performance. With normal vocal effort in training
and high vocal effort test (Det 6 sub-condition), the recognition
accuracy degraded dramatically. Interestingly, the best recogni-
tion accuracy was achieved when low vocal effort was used in
test. In general, spectrum estimation has a considerable impact
on the speaker recognition performance with different vocal ef-
fort conditions. The SWLP method showed the best recognition
accuracy in comparison to the remaining six methods indepen-
dent of the vocal effort condition.
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