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Abstract
We study the problem ofvocal effort mismatchin speaker ver-
ification. Changes in speaker’s vocal effort induce changes in
fundamental frequency (F0) and formant structure which intro-
duce unwanted intra-speaker variations to features. We com-
pare seven alternative spectrum estimators in the context of mel-
frequency cepstral coefficient (MFCC) extraction for speaker
verification. The compared variants include traditional FFT
spectrum and six parametric all-pole models. Experimental re-
sults on the NIST 2010 speaker recognition evaluation (SRE)
corpus utilizing both GMM-UBM and more recent GMM su-
pervector classifier indicate that spectrum estimation has a con-
siderable impact on speaker verification accuracy under mis-
matched vocal effort conditions. The highest recognition ac-
curacy was achieved using a particular variant of temporally
weighted all-pole model,stabilized weighted linear prediction
(SWLP).
Index Terms: speaker recognition, vocal effort mismatch,
spectrum estimation

1. Introduction
Speaker verificationis the task of determining whether a given
speech segment is spoken by a claimed speaker [1]. Generally,
mel-frequency cepstral coefficient(MFCC) features obtained
from discrete Fourier transform(DFT) magnitude spectrum are
used as features to create speaker models. Gaussian mixture
model (GMM) [2] and support vector machine (SVM) [3] are
two well-known techniques chosen often for this purpose.

Besides the two well-studied problems of channel effects
and additive noise, there are also inherentintra-speakervari-
ations that cause mismatches to acoustic features of the same
speaker. In this study, we focus on combatingvocal effort mis-
matchbetween training and test speech samples. In the pres-
ence of background noise, speakers tend to adjust their speech
production by increasing vocal effort, a phenomenon known as
theLombard effect[4]. For example, in a quiet library environ-
ment, speakers may lower their vocal effort to produce whis-
pered speech. High vocal effort causes considerable changes
both in time and frequency domain features [4]. In [5], it was
reported that fundamental frequency (F0) and the first formant
(F1) are highly correlated with increased vocal effort. In the
same study, it was shown that the second and the third for-
mant frequencies (F2 andF3) do not vary as much but their
amplitudes do increase considerably. Generally, high vocal ef-
fort causes increase inF0, while low vocal effort lowers it.
These acoustic changes in F0 and formant parameters reflect as
changes in the short-term spectrum, which is the starting point

for features used by speaker recognition systems. Thus, vo-
cal effort mismatch between training and test in speaker recog-
nition is expected to result in degraded recognition accuracy.
The effect of vocal effort to speaker verification performance
was analyzed in the NIST 2010 speaker recognition evaluation
(SRE) campaign [6]. Indeed, the general consensus reported by
many sites was that the recognition accuracy considerably de-
grades when speaker models are trained with normal vocal ef-
fort but tested with high vocal effort. In [7], it was found that the
features extracted from nasal syllables appeared robust to high
vocal effort in speaker recognition. In a recent study [8], the
effect of vocal effort (whisper, soft, loud, shouted and normal)
for speech recognition accuracy was studied. It was found that
speech recognition accuracy changes dramatically with changes
in speech mode.

Spectrum of high-pitched speech is characterized by a
sparse harmonic structure which makes the estimation of the
spectral envelope difficult from voices produced in high vo-
cal effort. Several spectrum envelope estimation techniques
have been proposed in the literature.Linear prediction(LP)
method is a well-known spectral envelope estimation technique
[9] which models the low-pitched voiced speech well. How-
ever, for medium and high-pitched voiced sounds, LP does not
provide a reliable estimate of the spectral envelope [10]. Minu-
mum variance distortionless response (MVDR) method [10],
also known asCaponor maximum likelihoodmethod, has been
proposed for speech of highF0. Regularized linear prediction
(RLP) [11, 12] has recently been proposed with the same ratio-
nale.

In this study, we compare different all-pole model based
spectrum estimation methods for robust MFCC feature extrac-
tion for speaker verification across varying vocal effort condi-
tions. The standard discrete Fourier transform (DFT) method
is compared with baseline LP and its recently proposed tem-
porally weighted extensions,weighted linear prediction(WLP)
[13] andstabilized WLP(SWLP) [14], the MVDR method [10]
and the RLP method [11]. The NIST 2010 SRE corpus with
GMM-UBM and GMM-supervector classifiers are used in the
experiments.

2. Spectrum Estimation

2.1. Methods

Given a Hamming windowed speech frames =
[s(0), s(1), . . . , s(N − 1)]T, the most basic form of
power spectrum computed by discrete Fourier transform (DFT)



is given by,
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wheref = {0, 1, . . . , N − 1} is the discrete frequency in-
dex. Another commonly used spectrum estimation method is
based onlinear prediction(LP) [9]. In LP analysis, it is as-
sumed that a speech samples(n) can be estimated from its pre-
viousp samples,̂s(n) = −∑p

k=1
aks(n − k). Here,s(n) is

the original speech sample,ŝ(n) is the predicted sample and
p is the predictor order (time span). Conventional autocorre-
lation method is generally used to estimate the predictor coef-
ficients, {αk}pk=1, by minimizing the energy of the residual,
e(n) = s(n) − ŝ(n) = s(n) +

∑p
k=1

aks(n − k). Optimum
coefficients are obtained from,

a
lp
opt = −R

−1
lp rlp, (2)

whereRlp is a Toeplitz autocorrelation matrix andrlp is an
autocorrelation vector. Given the predictor coefficients,ak, the
LP spectrum is obtained by,
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A variant of the standard LP,temporally weighted linear pre-
diction (WLP) [15, 13] obtains the optimum prediction co-
efficients by minimizing the weighted square of the residual,
E =

∑

n e2(n)Ψn =
∑

n(s(n) +
∑p

k=1
bks(n − k))2Ψn.

Here,Ψn is a time-domain weighing function. In this work,
we use the short-time energy (STE) as the weighting function,
Ψn =

∑M
i=1

x2(n− i), whereM is the length of the STE win-
dow. The optimum coefficients,bk, k = 1, . . . , p, are computed
as

b
wlp
opt = −R

−1
wlprwlp, (4)

whereRwlp =
∑

n s(n)s(n)TΨn, rwlp =
∑

n s(n)s(n)Ψn

ands(n) = [s(n − 1) s(n − 2) . . . s(n − p)]T. It can be
seen thatRwlp = RLP if and only if Ψn = 1 for all n.
Standard LP method guarantees that resulting all-pole filter is
stable (poles are inside the unit circle). However, such guar-
antee does not hold for WLP. Thus, stabilized WLP (SWLP)
was proposed in [14]. In SWLP, the weighted autocorrelation
matrix and the weighted autocorrelation vector are expressed
as Rswlp = YTY and rswlp = YTy0, respectively (the
original article [14] presents the problem in a slightly differ-
ent form). The columns of the matrixY = [y1 y2 . . . yp]
are calculated byyk+1 = Byk for 0 ≤ k ≤ p − 1, where
y0 = [

√
Ψ1x(1) . . .

√
ΨNx(N) 0 . . . 0]T andB is a matrix

where all the elements are zero outside the subdiagonal and the
elements of the subdiagonal, for1 ≤ i ≤ N + p− 1, are

Bi+1,i =

{

√

Ψi+1/Ψi, Ψi ≤ Ψi+1

1, Ψi > Ψi+1.
(5)

In regularized LP (RLP) [11, 12], a penalty measure is in-
troduced in the cost function and optimum predictor coef-
ficients are computed by minimizing the new cost function,
∑

n

(

s(n) +
∑p

k=1
cks(n− k)

)2
+ λφ(c), whereφ(c) is the

penalty measure which is a function of the predictor coefficients
c andλ is a regularization factor which controls the smoothness
of the spectrum. In [11], the penalty function was chosen as,

φ(c) = c
T
DFDc (6)
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Figure 1: FFT and LP spectra of the vowel/I/ from the same
female speaker in different vocal efforts.

whereD is a diagonal matrix in which each diagonal element
is the corresponding row or column number andF is a ma-
trix of windowed autocorrelation sequencef(m) = r(m)v(m)
with Toeplitz form, representing the coarse approximation of
the spectral envelope. Here,r(m) is the conventional autocor-
relation sequencer(m) =

∑

n s(n)s(n − m) andv(m) is a
window function (Boxcar window is used in this study similar
to [11]). Optimum prediction coefficients are then computed by,

c
rlp
opt = −(Rlp + λDFD)−1

rlp. (7)

In [16, 17] the present authors proposed using double autocor-
relation (DAC) sequence,f(k) =

∑

m r(m)r(m−k), to com-
pute matrixF under additive noise. Since noise and speech sig-
nals are uncorrelated, the DAC sequence helps to decompose
them in the autocorrelation domain [18]. Thus the proposed
method improved the recognition performance considerably.

The MVDR spectrum estimation method [10] models the
unvoiced or mixed speech spectra by using the LP coefficients.
An mth order MVDR spectrum is computed by,

SMVDR(f) =
1

|∑m
k=−m µ(k)e−j2πfk|2 , (8)

wherem is the MVDR filter order and the parametersµ(k) are
computed by a simple non-iterative method from the LP coeffi-
cients [10] as follows:

µ(k) =

{

∑m−k
i=0

(m+ 1− k − 2i)aiai+k, k = 0, 1, ...,m

µ(−k), k = −m, . . . , −1,

(9)
whereai is theith LP coefficient.

2.2. Effect of Vocal Effort on Speech Spectrum

It is known thatF0, shape of the glottal waveform, formant
locations and their bandwidths are all affected by changes in
vocal effort [5, 4]. To exemplify, Fig.1 shows the DFT and LP
spectra of the vowel/I/ in the utterance “I mean” spoken by
the same female speaker in the NIST 2010 SRE corpus. We
can see that the shape of the spectrum radically changes with
vocal effort. In particular, sparse harmonic peaks appear in the
spectrum produced using high vocal effort.

Table 1 shows the averageF0 and the first three formants
(F1-F3) and their bandwidths for 2 female speakers in the
NIST 2010 SRE corpus. The first speaker produces the utter-
ance “I mean” and the second speaker produces “yeah” in three
different vocal effort condition.F0, formants and their band-
widths were computed usingPraat software1. As seen, the av-
erage formant frequencies and bandwidths change with vocal
effort. In the case of high vocal effort,F0 is larger than normal

1http://www.praat.org/



Table 1: AverageF0 and first three formant frequencies with
their bandwidths (in Hz) for different vocal effort (NVE: normal
vocal effort, LVE: low vocal effort and HVE: high vocal effort).

Speaker 1 Speaker 2
NVE LVE HVE NVE LVE HVE

F0 206 204 241 150 134 159
F1 513 582 618 532 567 680
F2 1528 1688 1802 1628 1730 1680
F3 2509 2332 2419 2215 2314 2342
BW1 52 72 71 69 81 75
BW2 439 357 568 382 173 111
BW3 162 401 308 937 575 301
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Figure 2: LSD between original speech and pitch modified
speech (F0 decreased (left) and increased (right) by50 %).

effort for both speakers, as expected. From speaker recogni-
tion point of view, these acoustic differences cause intra-speaker
variation between training and test whenever there is vocal ef-
fort difference. Even though it is not the only acoustic parame-
ter that changes with vocal effort, F0 is one of the most promi-
nent ones. Before proceeding to the speaker recognition experi-
ments with large-scale NIST data, we first analyze spectral dis-
tortions implied by changes in F0 changes, under a controlled
set-up involving artificial software-based F0 shifting. To this
end, Fig. 2 reports average log-spectral distortion (LSD) be-
tween normal vocal effort speech and artificial pitch-modified
versions (50% increase and decrease) of the same utterance, as
a function of prediction order,p, for different all-pole models
described in the previous section.F0 modification was imple-
mented byPraat. The average LSD between two all-pole spec-
tra is defined as,

LSD =
1

T

T
∑

t=1

√

√

√

√

N−1
∑

f=0

[

10 log10 S
t
n(f)− 10 log10 Ŝ

t(f)
]2

,

(10)
whereSt

n(f) andŜt(f) are the power spectra of thetth frame
of the original speech signal and modified signal, respectively.
T is the total number of frames. The LSD of the WLP method is
a decreasing function ofp different from other methods. How-
ever, SWLP yields the smallest LSD value for high prediction
orders. In general, LSD values between normal and high pitch
speech samples are larger than the value between normal and
low pitch speech.

3. Experimental Setup
Experiments are carried out on the core task of NIST 2010 SRE
corpora, including three different vocal effort sub-conditions:

• Det 5: Conversational telephone speech withnormal
vocal effort (NVE) in both training and test, containing
708 target and 29655 impostor trials.

Table 2: EERs (%) for different spectrum estimators and sub-
conditions with the GMM-UBM system.

Equal Error Rate
Trials FFT LP WLP SWLP RLP RLP-DAC MVDR

D
et

5 Male 14.16 16.51 17.28 15.00 15.59 14.16 15.01
Female 17.46 17.75 19.15 15.90 17.74 16.33 18.58
All 15.86 17.23 18.36 15.35 16.80 15.25 16.66

D
et

6 Male 23.85 23.03 24.16 23.03 24.22 22.76 21.34
Female 32.78 27.06 27.58 23.49 25.55 26.64 24.04
All 27.70 25.48 26.03 23.26 24.93 24.65 22.53

D
et

8 Male 10.62 13.44 14.28 11.76 13.44 10.64 15.12
Female 12.58 15.08 13.96 13.40 14.88 12.89 16.23
All 11.74 14.53 13.75 13.08 14.15 12.53 16.10

Table 3: EERs (%) for different spectrum estimators and sub-
conditions with the GMM-supervector system.

Equal Error Rate
Trials FFT LP WLP SWLP RLP RLP-DAC MVDR

D
et

5 Male 6.23 5.94 6.13 5.42 6.55 8.34 6.78
Female 8.13 8.18 8.16 6.47 7.88 10.12 9.58
All 7.34 7.06 7.06 6.00 7.06 9.32 8.46

D
et

6 Male 7.86 8.96 8.42 8.42 8.78 11.98 9.57
Female 12.58 13.56 14.75 12.56 14.75 18.05 14.75
All 10.86 11.91 12.01 10.80 12.33 15.85 12.74

D
et

8 Male 3.61 4.22 5.04 2.76 3.62 6.72 4.20
Female 6.70 7.62 6.47 4.74 6.70 8.37 7.26
All 5.03 6.28 5.70 4.02 5.85 8.05 5.86

• Det 6: Conversational telephone speech withnormal
vocal effort condition in training andhigh vocal effort
(HVE) telephone speech in test, containing 361 target
and 28311 impostor trials.

• Det 8: Normal vocal effort telephone speech in train-
ing andlow vocal effort (LVE) telephone speech in test,
containing 289 target and 28306 impostor trials.

Two different classifiers are chosen for the experiments. First,
we have used simple GMM-UBM system with 128 Gaus-
sian components. GMM-UBM was used because it enables
optimizing the control parameters of each spectrum estima-
tion method using the classifier’s fast scoring capability with-
out the need for other hyperparameters except the univer-
sal background model (UBM). Gender-dependent UBMs are
trained using SRE04, SRE05, SRE06 and Switchboard cor-
puses. Second, we used GMM-supervector classifier [3] with
nuisance attribute projection (NAP) channel compensation [19].
In GMM-supervector classifier, gender-dependent UBMs with
512 Gaussians are trained using SRE05, SRE06 and Switch-
board databases. Negative examples (background speakers) to
train speaker-dependent SVM are selected from SRE03 and
SRE04 corpora (395 and 577 speech files for male and female
genders, respectively). NAP matrices are trained using 2020
male and 2017 female utterances from the NIST SRE06 corpus.
Relevance factor ofr = 8 is used for adapting the mean vectors.

MFCC features are extracted from 30 ms Hamming win-
dowed frames with 15 ms overlap. To compute the magnitude
spectrum of windowed frames, different spectrum estimation
methods are considered. Besides standard FFT and LP meth-
ods, WLP, SWLP, RLP, RLP-DAC and the MVDR methods are
used to compute the spectrum. 18 MFCCs are extracted by mul-
tiplying the spectrum with a bank of 27 triangular mel-scale fil-
ters. ∆ and∆2 features are then appended to RASTA filtered
[20] MFCCs. Finally, cepstral mean and variance normalization
(CMVN) and energy-based voice activity detection (VAD) [21]
are applied to the features.

We have used equal error rate (EER) as the performance
criterion. EER is the threshold value at which false alarm rate
(Pfa) and miss detection rate (Pmiss) are equal. Besides from
EER values, detection error trade-off (DET) curves of selected
methods are also shown.
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Figure 3: DET curves for Det 5 (NVE-NVE), Det 6 (NVE-HVE) and Det 8 (NVE-LVE) sub-conditions using selected spectrum
estimation methods using GMM-supervector classifier.

4. Speaker Verification Results
The spectrum estimators are first compared using the baseline
GMM-UBM recognizer. Prediction order is set top = 20
for the all-pole methods. STE windowing withM = 20 was
used in WLP [15] and SWLP [14]. Regularization parame-
tersλ = 10−4 andλ = 10−9 are used in standard RLP [11]
and RLP-DAC [16, 17] spectrum estimators. Table 2 summa-
rizes the recognition accuracies of the GMM-UBM classifier
for male, female and all trials separately. The minimum EER
of each row are highlighted. From these preliminary results we
find that:

• Female speakers systematically produce higher EERs in-
dependent of the vocal effort condition.

• In Det 5 condition, FFT and RLP-DAC methods yield
the smallest EER for male trials.

• For female trials in Det 5, SWLP gives the highest accu-
racy (15.9 % EER) which corresponds to approximately
9 % relative improvement in EER over FFT (17.46 %
EER).

• In Det 6 condition, SWLP shows considerable improve-
ment over FFT for female trials in terms of EER (EER
reduced from32.78 % to 23.49 %, a relative improve-
ment of28 %). MVDR yields slightly higher EER than
SWLP for female speakers. However, it produces the
smallest EERs for male trials.

• The performance on the Det 8 condition always gives
smaller EER values than Det 5 and Det 6 conditions.
Similar observations have been made in [6, 7].

Next we compare the effect of spectrum estimation with the
GMM-supervector classifier. The results of GMM-supervector
are given in Table 3. Differently from the GMM-UBM re-
sults (Table 2), SWLP yields the highest recognition accuracy in
comparison to the other methods, irrespective of the vocal effort
condition (for Det 6, male speakers with FFT is slightly better).
A potential explanation is that SWLP, being a stabilized tempo-
rally weighted all-pole model, is capable of computing smooth
spectral envelopes in which modelling of formants is less bi-
ased by sparse harmonics of high vocal effort speech. In con-
trast to the GMM-UBM results, the performance improvement
obtained with SWLP is larger when low vocal effort is used in
test (Det 8). Interestingly, RLP-DAC method gives the highest
EER values with GMM-supervector. DET curves for FFT, LP
and SWLP methods for Det 5, Det 6 and Det 8 sub-conditions
are given in Figure 3. It can be seen that, the performance dif-
ference between SWLP and standard methods are larger at low
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Figure 4:Target (black solid line) and impostor score (dashed
red line) distributions for SWLP method on male trials.

miss rates for Det 5 and Det 8 conditions. However, in Det 6
condition, FFT is better at low miss rates but SWLP at low false
alarm rates. The most interesting observation from the experi-
ments is that, Det 8 sub-condition (normal vocal effort training
and low vocal effort test) yields the smallest EER than Det 5
and Det 6 conditions independent of the spectrum estimation
method used for both the GMM-UBM and GMM-supervector
recognizers.

Figure 4 shows the recognition score distributions for dif-
ferent vocal effort conditions (Det 5, Det 6 and Det 8) for male
speakers using SWLP method. In case of high vocal effort (Det
6), the overlap of the target scores within the impostor score
distribution is larger than the case of low or normal vocal effort.
This is expected because from the results Det 6 sub-condition
gives the highest recognition accuracy.

5. Conclusions
We compared different spectrum estimators for MFCC feature
extraction in the context of vocal effort mismatch in speaker
recognition. From the experimental results conducted on NIST
2010 SRE corpus with GMM-UBM and GMM-supervector
classifiers, we found that change in vocal effort affects the
recognition performance. With normal vocal effort in training
and high vocal effort test (Det 6 sub-condition), the recognition
accuracy degraded dramatically. Interestingly, the best recogni-
tion accuracy was achieved when low vocal effort was used in
test. In general, spectrum estimation has a considerable impact
on the speaker recognition performance with different vocal ef-
fort conditions. The SWLP method showed the best recognition
accuracy in comparison to the remaining six methods indepen-
dent of the vocal effort condition.
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