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Maximum a Posteriori Adaptation of the Centroid
Model for Speaker Verification

Ville Hautamäki, Tomi Kinnunen, Ismo Kärkkäinen, Juhani Saastamoinen, Marko Tuononen, and Pasi Fränti

Abstract—Maximum a posteriori adapted Gaussian mixture
model (GMM-MAP) is widely used in speaker verification. GMMs
have three sets of parameters to be adapted: means, covariances,
and weights. However, practice has shown that it is sufficient to
adapt the means only. Motivated by this, we formulate maximum
a posteriori vector quantization (VQ-MAP) procedure which
stores and adapts the mean vectors (centroids) only. Experiments
on the NIST 2001 and NIST 2006 corpora indicate that VQ-MAP
gives comparable accuracy with GMM-MAP with simpler imple-
mentation and faster adaptation.

Index Terms—Bayesian methods, centroid model, maximum a
posteriori (MAP) adaptation, speaker verification, vector quanti-
zation.

I. INTRODUCTION

I N speaker verification [1], the unknown speech utterance is
introduced to the system accompanied by a claim. The task is

to decide whether the claim was true or false, by matching the
unknown test utterance to a previously stored model. Speaker
recognition systems typically have used generative models such
as vector quantization (VQ) [1] (aka the centroid model) or
Gaussian mixture models (GMMs) [2].

The generative model is typically trained using the max-
imum likelihood (ML) principle. The ML approach usually
does not generalize well to unseen speech data with finite
amount of training material. Maximum a posteriori (MAP)
objective training attacks this problem of by using a so-called
universal background model (UBM) [2]. In the MAP approach,
prior knowledge of the distribution of the model parameters is
incorporated into the modeling process. Even if some areas of
the feature space are less represented in the training data, the
prior information about the parameters can help to overcome
the problem. However, incorporating the prior information is
not trivial because prior parameter distribution has its own
parameters, known as hyperparameters, which can be difficult
to estimate.

Maximum a posteriori training for Gaussian mixtures was
first formulated in [3], where Gauvain and Lee solved two key
issues in MAP estimation of Gaussian mixture parameters,
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namely, choice of the prior distribution family, and specification
of the parameters of the prior densities, which led to simple
expectation maximization (EM) re-estimation formulae. The
original motivation of the authors was to enhance the perfor-
mance of a HMM-based speech recognition system. The idea
was later successfully applied to speaker verification as well
[2]. To overcome the parametrization problem, Reynolds et al.
[2] proposed to use the universal background model as a set
of parameters of the prior distribution. Some constraints to the
parameters and a relevance factor were introduced to solve the
prior parametrization problem.

Gaussian mixtures have three sets of parameters to be
adapted: mean vectors (centroids), covariance matrices, and
weights. However, experiments have indicated that best results
are obtained by adapting the mean vectors only [2]. Motivated
by this, we formulate maximum a posteriori vector quantiza-
tion (VQ-MAP), which is a special case of the GMM-MAP
method [2]. The advantages of the proposed centroid-based
model are simpler implementation and much faster adapta-
tion. The speedup originates mostly from the replacement
of the Gaussian density computations with squared distance
computations, leaving out the exponentiation and additional
multiplications.

II. VQ-MAP

In vector quantization, the goal is to estimate parameter
vector modeling the speaker, denoted as .
Here are the centroids and is the model size, which is a
trade-off between the representation accuracy and the speaker
model size.

The maximum a posteriori modeling paradigm, irrespective
of the actual model in question, is formulated as a way to find
that maximizes the posterior probability density function (pdf).
Formally

(1)

where is the likelihood of the training set
given parameters , and is the prior pdf of

the parameters.
Three subproblems need to be solved so that a maximization

algorithm can be derived:
• likelihood function needs to be defined in terms of

vector quantization;
• appropriate prior distribution needs to be defined;
• prior distribution contains its own set of parameters, which

also needs to be estimated.
In the following, we address these points and derive the max-

imization algorithm.
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A. Modeling VQ as a Gaussian Mixture

For the VQ-MAP algorithm, we must formulate (1) in the
vector quantization framework. Since VQ is not a parametric
probabilistic model, we need to specify a likelihood pdf that cor-
responds to the mean squared error (MSE), which defines the
VQ model. We can model the likelihood as a Gaussian
mixture as in [4]. The density of the th component is defined
as

(2)

where , and is constant. It is shown in [4] that with
this model, the EM algorithm reduces to k-means algorithm and
that component prior weights do not play any role in the
algorithm. The weights just reflect the proportion of the data
vectors in a given cluster.

B. Defining the Prior Density

When selecting the appropriate prior density , a good
choice would be the conjugate prior of the as in [4].
Prior distribution is called a conjugate prior, if its algebraic form
is the same as the resulting posterior distribution. The conjugate
prior of a multivariate Gaussian with a known covariance matrix
is a multivariate Gaussian. We can therefore model the prior of
the component as

(3)

where is the covariance matrix of the prior distribution, and

(4)

Assuming independence between the parameters of the indi-
vidual mixture components, as was done in [3], we conclude
the definition of the prior model by noting that

(5)

C. MAP Estimates for Vector Quantization

In order to maximize the posterior pdf in (1), we need to
jointly determine the observation posteriors and the model pa-
rameters of each component. Unfortunately, the maximization
cannot be performed directly [3]. Instead, locally optimal so-
lution can be obtained by EM algorithm [4] for the Gaussian
mixture models and by k-means algorithm for the vector quan-
tization models. Both algorithms work essentially in a similar
manner:

1) find observation posteriors (E-step);
2) given the posteriors, re-estimate the parameters (M-step).
In k-means, the observation posteriors correspond to hard par-

titioning of the dataset. In the M-step, the parameters are max-
imized by calculating new centroid estimates. Now the corre-
sponding steps need to be defined in the new framework so that
MAP parameters can be optimized.

Interestingly, the term affects the maximization of the
posterior distribution only in the M-step [4]. Optimal with re-
spect to observation posteriors can then be calculated by maxi-
mizing the following auxiliary function [3]:

(6)

where are the parameters estimated in the previous iteration,
and are the parameters to be estimated. The function is
the expectation of the complete-data log likelihood and can be
expressed as [4]

(7)

where is the prior weight of the component , and is
the posterior probability of the observation for the component

. By letting in (2), the complete-data log likelihood
function becomes the MSE [4]

(8)

The values of form a binary matrix, where

if
otherwise.

(9)

In vector quantization literature, MSE describes the distortion
when observations are encoded as their nearest centroids .

By substituting (5) and (8) into (6), we arrive at a new auxil-
iary function form

(10)

We need to find such for each component that minimizes
the above equation. The and are our prior parameters
for the component , and they are selected from a previously
trained universal background model as in [2]. However, in the
VQ model, covariance matrices (variance parameters) are not
recorded as a part of the UBM. Therefore, we substitute
for all components. This is motivated by our model assumptions
in (2). Now, can be written as

(11)

Now, let us denote by the set of training
vectors that are mapped to . We denote by the terms of

that contain centroid

(12)
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where is the number of vectors mapped to centroid , and
is the average of all vectors in the same cluster. Taking the

gradient with respect to from (12), we obtain the centroid
re-estimation formula for the M-step as

(13)

III. SPEAKER VERIFICATION USING VQ-MAP

In speaker verification, the prior distribution of the speaker
model parameters is represented by a universal background
model, which is created by collecting a large number of repre-
sentative training utterances from a number of speakers. These
utterances are then converted into sequences of spectral feature
vectors and pooled into a single training set. The UBM can
be trained using any clustering algorithm such as k-means,
and it is presented by a set of centroid vectors denoted as

.

A. Enrollment Phase

A new speaker is enrolled by adapting the UBM with the
MAP procedure. Given the training data for a new speaker,

, the adaptation is performed using the fol-
lowing steps:

1) initialization: Set for ;
2) for , do

a) For each training vector , find the index of the
nearest neighbor in the adapted model

(14)

b) For the th cluster, define the set of vectors mapped
into that cluster as and
calculate the centroid vector

(15)

c) For the th cluster, update the adapted vector as

(16)

where

(17)

and is a fixed constant known as the relevance
factor.

The result is the adapted model . The
adaptation process is demonstrated in Fig. 1.

The relevance factor is a parameter that is used to control the
balance of how much the UBM vector and the speaker-specific
training data are weighted in adaptation. The “unit” of the pa-
rameter is vector count and can be given an interpretation as fol-
lows. By having in (17), we have . Thus, the
relevance parameter can be interpreted as the number of training
vectors that are needed in order the computed centroid to be
equally reliable to the corresponding UBM vector.

B. Verification Phase

Given a sequence of feature vectors, ,
and the claimed speaker model, , we com-
pute the log likelihood ratio and compare it against a verification

Fig. 1. Illustration of the VQ-MAP procedure with two-dimensional data. The
centroid vectors of the universal background model (�) define the prior distri-
bution of the model parameters. Given the training data (:), the adapted model
(+) is derived by making local changes to the prior model. Here, the relevance
factor is 10.

threshold to make the decision. In the VQ model, the log-like-
lihood is related to the negative square error given in (8). Thus,
the match score can be defined as

score

(18)

where

(19)

C. Relation to GMM-MAP

In principle, the resulting adaptation (14)–(17) are simply a
special case of the more general GMM-MAP equations [2]. By
assuming a diagonal covariance with all dimensions sharing the
same variance and by replacing the observation posteriors with
the binary 0/1 values (1 for the most probable cluster and 0
for all the others) and interpreting the proportion of data vec-
tors in each cluster as the mixture weight, GMM-MAP equals
VQ-MAP. In practice, the proposed model is much simpler to
implement and results in faster adaptation.

The VQ-MAP and GMM-MAP algorithms require
squared distance and Gaussian density computations, where is
the number of iterations. By counting the number of elementary
operations in the squared Euclidean distance and the diagonal
covariance Gaussian, the speedup ratio can be written as

speedup (20)

where , , and denote the costs of exponentia-
tion, multiplication, and addition, respectively, and denotes
the feature vector dimensionality. Exponentiation takes more
time than multiplication and addition, which yields a significant
speedup in practice, as will be demonstrated.

IV. EXPERIMENTS

We have used the NIST 2001 SRE corpus for optimizing the
control parameters and NIST 2006 SRE corpus for validating
the results.1 The results are presented on the one-speaker de-
tection set of each corpus. The NIST 2001 corpus contains 2
min of training material per each of the 174 target speakers and
2038 test segments. The NIST 2006 corpus contains 816 target
speakers trained using 5 min of data and 3735 test segments. We
have trained the UBMs using the development set of the NIST
2001 SRE corpus.

1http://nist.gov/speech/tests/spk/
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Fig. 2. Effect of control parameters of VQ-MAP on the equal error rates of the
NIST 2001 corpus using a model of size K = 64.

We use the first 12 mel-frequency cepstral coefficients
(MFCCs), their deltas, and double deltas as the features, im-
plying 36-dimensional feature space. A periodicity-based voice
activity detector was used [5], and the detected speech vectors
were normalized to have zero mean and unit variance. The
UBM for VQ was generated by a recursive split algorithm,
followed by fine-tuning with k-means. This model was used as
the initial guess for the GMM model with diagonal covariances
and fine-tuned by EM.

Experiment with different settings of the relevance parameter
( ) and the number of iterations ( ) indicates that, independent
on the number of iterations used, the relevance factor should be
set to 8 or higher as shown in Fig. 2. There is no significant dif-
ference between different iterations, which is similar behavior
that was observed also for the GMM-MAP method [2]. It can
also be seen in Fig. 1 that the adapted model does not change
much with further iterations. We fix the parameters as
and for further experiments.

For the GMM-MAP, we use the well-established values of
and [2]. In addition to the means-only adapted

GMM, we also present the results for GMM in which the vari-
ances are also adapted using the same relevance factor.

The detection error trade-off (DET) curves for the NIST 2001
and NIST 2006 corpuses are shown in Fig. 3. The running times
on the NIST 2001 corpus have been summarized in Table I.
Finally, Table II summarizes the speedup factors for different
model sizes relative to two VQ-MAP iterations. The running
times include only the work done in adapting the models; the
overhead due to feature extraction and file I/O has been ex-
cluded.

VQ-MAP and GMM-MAP provide accuracies close to each
other. The variance-adapted GMM gives slightly better result at
low false acceptance rates on the NIST 2001 corpus. However,
the difference vanishes on the NIST 2006 corpus which includes
more training data and more difficult channel conditions.

The VQ-based systems run much faster. In particular, the
adaptation step is significantly faster, even though VQ-MAP
performs two iterations. An advantage of the obtained speedup
would be on platforms with significantly limited CPU power
and fixed-point arithmetics, such as mobile phones [6].

Fig. 3. Results for the NIST 2001 corpus (left) and NIST 2006 corpus (right),
model size K = 64.

TABLE I
COMPARISON OF THE CPU TIME (IN SECONDS) ON THE NIST 2001

CORPUS (MODEL SIZE K = 64)

TABLE II
ADAPTATION SPEEDUP FACTORS ON THE NIST 2001 CORPUS

RELATIVE TO TWO VQ-MAP ITERATIONS

V. CONCLUSIONS

We have formulated the MAP algorithm originally developed
for GMM to work with the VQ-based model. Experimental re-
sults show that the proposed method provides similar recogni-
tion accuracy than the GMM-based algorithm but with simpler
and faster implementation.
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