
Voice Activity Detection Using MFCC Features and Support Vector Machine 

Tomi Kinnunen1, Evgenia Chernenko2, Marko Tuononen2, Pasi Fränti2, Haizhou Li1 

1 Speech and Dialogue Processing Lab, Institute for Infocomm Research (I2R), Singapore 
2 Speech and Image Processing Unit, Department of Computer Science, University of Joensuu, Finland 

{echernen,mtuonon,franti}@cs.joensuu.fi {ktomi,hli}@i2r.a-star.edu.sg 
 

Abstract 
We define voice activity detection (VAD) as a binary 
classification problem and solve it using the support vector 
machine (SVM). Challenges in SVM-based approach include 
selection of representative training segments, selection of 
features, normalization of the features, and post-processing of 
the frame-level decisions. We propose to construct a SVM-
VAD using MFCC features because they capture the most 
relevant information of speech, and they are widely used in 
speech and speaker recognition making the proposed method 
easy to integrate with existing applications. Practical usability 
is our driving motivation: the proposed SVM-VAD should be 
easily adapted into new conditions. 
 
Index Terms: voice activity detection (VAD), machine 
learning, support vector machine (SVM) 

1. Introduction 
Voice activity detection (VAD) aims at classifying a given 
sound frame as a speech or non-speech. It is needed as a 
front-end component in voice-based applications such as 
speech recognition, speech enhancement, variable frame-rate 
speech coding, and speaker recognition. Furthermore, VAD is 
an important tool for a forensic analyst to locate the speech-
only parts from large audio collections which can consists of 
tens of hours of data [1]. 

A large number of methods have been proposed. Simple 
methods are based on comparing the frame energy, zero 
crossing rate, periodicity measure, or spectral entropy with a 
detection threshold to make the speech/non-speech decision. 
More advanced models include statistical hypothesis testing 
[2], long-term spectral divergence measure [3, 4], amplitude 
probability distribution [5], and low-variance spectrum 
estimation [6]. The common property in these methods is that 
they include estimation of the background noise levels and/or 
noise suppression as a part of the process. The methods 
usually have a large number of control parameters, which are 
more or less tuned to a specific application. As an example, in 
[1] it was reported that the accuracy of the long-term spectral 
divergence VAD [3] depends much on the selection of the 
seven control parameters of the method. 

In this paper, we propose to extract the standard mel-
frequency cepstral coefficients (MFCC) with delta and double 
coefficients and train a binary classifier using training files 
with speech/non-speech annotation. The VAD then labels 
each test utterance frame by using the trained classifier. We 
use the support vector machine (SVM) as the classifier since 
this has shown excellent performance in other classification 
tasks, e.g. speaker verification [7]. 

An advantage of this supervised learning is that it can be 
easily adapted to new operating conditions by providing 
representative training examples for the new condition. In this 
way, optimization of the parameters is absorbed to the 

training algorithm of the SVM whereas optimizing the 
parameters of conventional VADs, on the other hand, is more 
difficult. 

We compare the proposed method with existing ones 
based on energy levels, long-term spectral information, and 
Gaussian mixture modeling. We provide comparative results 
on three different datasets with a varying degree of difficulty 
and discuss our results. 

2. SVM-based VAD 
We are aware of two prior studies on using SVM for 

voice activity detection [4, 8]. In [8], the authors used four-
dimensional features from the G.729B VAD as input to the 
SVM. The method reached 4% absolute improvement in the 
error rate in comparison to the G.729B VAD. Since both 
method use the same set of features, the improvement was 
due to the SVM. In [4], the authors used contextual speech 
features from a long-term spectral envelope as the features. 
The SVM-based VAD was compared with nine alternative 
methods and it yielded the best performance when the two 
control parameters of the feature extraction were set properly. 

2.1. Basic SVM Structure 

SVM is a binary classifier, which models the decision 
boundary between the two classes as a separating hyperplane. 
The training set for an SVM consists of positive and negative 
training vectors. In our case, the positive vectors labeled as 
+1 correspond to speech feature vectors and the negative 
vectors labeled as -1 correspond to non-speech feature 
vectors. The SVM decision function is defined as follows: 
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where y is the unclassified tested vector, xi are the support 
vectors and αi their weights and b is a constant bias. K(x,y) is 
the kernel function which performs implicit mapping into a 
high-dimensional feature space. The support vectors are 
obtained from the training sample through an optimization 
process, and therefore they are a subset of the training 
sample. We use the publicly available SVMlight tool for 
optimizing the support vectors [9]1. As for the kernel 
function, we consider linear and radial basis function (RBF) 
kernels, which are defined respectively as follows [9]: 
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where <.> denotes the inner product, γ is a control parameter 
(kernel width) and ||.|| denotes the Euclidean norm. Potentially 
the RBF kernel gives better results compared with the linear 
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kernel [4]. On the other hand, it includes an additional control 
parameter γ and the running times of both training and testing 
are much longer. 

2.2. MFCC features 

We propose to use the MFCC features mostly because 
they are standard features used in speech processing and 
readily available in various software packages, which make 
the integration of the feature extraction and VAD easy. 
Typical MFCC vectors appended with delta and double-delta 
coefficients are 36-dimensional. In a feature space of this 
dimension, it is reasonable to assume sufficiently good 
separation between the speech and non-speech vectors.  

MFCCs are also relatively independent of the absolute 
signal level that would be beneficial in cases where the 
energy-based methods fail by classifying low-energy speech 
frames as non-speech or high-energy non-speech frames as 
speech. By including or excluding the first MFCC coefficient 
(i.e. the DC component of the short-term spectral envelope), 
the MFCC setup can be fine-tuned to be more or less sensitive 
to the absolute energy levels, respectively. A disadvantage of 
MFCCs would be that they are sensitive to channel mismatch 
between training and testing, and they are also speaker-
dependent. For the VAD application the channel and speaker 
factors should be normalized.  

It is reasonable to hypothesize that the accuracy of 
SVM-based VAD depends much on the selection of the 
training speech material and the features. Therefore, it is 
important that the training material is representative of the 
operating conditions and that the features can discriminate 
speech from non-speech.  

2.3. Training and classification using SVM 

In the training phase, we extract features from multiple 
training files with speech/non-speech annotation. The positive 
and negative vectors are combined in the respective pools and 
a single SVM is trained. 

In the operation phase, feature vectors are extracted from 
the unknown sample. SVM output score is computed for each 
vector using (1). Since the frame-level output score of the 
SVM is rather noisy, we apply median filtering to smooth the 
score. The median filtered score is compared with a detection 
threshold in order to get decisions. Fig.1 shows an example of 
the VAD steps. Median filtering gives, on average, a relative 
reduction of 30% in the error rates relative to the unfiltered 
scores. 

3. Materials and Methods 

3.1. Data sets and Features 

In our experiments, we use three datasets whose attributes are 
listed in Table 1. The first dataset is a subset of the 
NIST20052 speaker recognition evaluation corpus, consisting 
of conversational telephone-quality speech having a sampling 
rate of 8 kHz. We selected 15 files for our purposes, all from 
different speakers and having duration of 5 minutes per file. 
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Fig.1: Example of VAD in action. From top to bottom: waveform, 
raw SVM output score, median-filtered SVM output score, and 
decisions. Manually annotated ground truth is shown for reference. 

 
Table 1: Data sets used in the experiments and their partitioning into 
training and test sections. 

 NIST 2005  Bus stop Lab 
Recording 
equipment 

Telephone Telephone Labtec PC 
microphone 

Training 
section 

25 min 
(5 spk. x 5min) 

61 min 85 min 

Test  
section 

50 min 
(10 spk. x 5min) 

105 min 170 min 

Speech-to-
non-speech 
ratio 

 
53%:47% 

 
75%:25% 

 
12%:88% 

 
The second data set, referred to as "Bus stop" data, 

consists of timetable system dialogues recorded in 8 kHz 
sampling rate. The material consists of human speech 
commands that are mainly very short, and synthesized speech 
that provides rather long explanations about bus schedules. 
Finally, the "Lab" data set consists of a one long continuous 
recording from the lounge of our laboratory in 44.1 kHz. The 
goal of the material was to simulate wiretapping material 
collected by the detectives. For more details on the Bus stop 
and Lab data sets, refer to [1]. 

From the three datasets, the NIST data is used for 
studying the effect of feature extraction and SVM parameters. 
The other two data sets are used in validating the results and 
comparing the SVM results with three existing VAD 
methods. Each data set has been manually annotated using a 
resolution of 1 second as described in [1]. We divided each 
data set into non-overlapping training and test sections of 
30% and 70%, respectively. 

For the MFCC features, the frame length is 30 
milliseconds and frame shift 20 milliseconds. We use 27 
triangular filters and 12 cepstral coefficients, excluding the 1st 
coefficient. The MFCC vectors are appended with delta and 
double delta coefficients to yield 36-dimensional features. In 
preliminary experiments, we reduced the number of mel 
filters and cepstral coefficients so as to reduce speaker 
variability which indeed lead to some improvements. 
However, we purposely kept the spectral front-end similar to 
those used in the speech and speaker recognition front-ends 
so that VAD and feature extraction can be easily integrated. 

 

http://www.nist.gov/speech/tests/spk/


3.2. Comparative VAD Methods 

We include the following methods in our comparisons: 
• Short-term energy-based method [10] 
• Long-term spectral divergence method (LTSD) [3] 
• Gaussian mixture model (GMM) [11] 
The energy-based method first measures the energy of 

each frame in the file and then sets the speech detection 
threshold relative to the maximum energy level. This method 
includes two parameters and they were optimized on the 
NIST datasets during the preparations of the Institute for 
Infocomm Research to the NIST 2006 speaker recognition 
benchmarking [10]. 

The LTSD method uses long-term spectral divergence 
between speech and noise, and its parameters were set up as 
explained in [1]. The speech/non-speech decision rule is 
formulated by comparing the long-term spectral envelope to 
the average noise spectrum. The noise model is initialized 
using the beginning part of each file. 

The GMM-based VAD uses the concept of adapted 
GMMs [11]. First, we train a general universal background 
model (UBM) of 256 diagonal-covariance Gaussian 
components using all the training data of the given corpus. 
This is followed by maximum a posteriori adaptation of the 
mean vectors to give the adapted speech- and non-speech 
models. The log likelihood ratio computed using the fast N-
top scoring algorithm [11] is used as the VAD indicator. 

3.3. Evaluation methodology 

For VAD, we have two error types: miss and false alarm. 
Miss refers to miss of true speech segment when the VAD 
declares a frame as non-speech but it is speech. False alarm 
refers to the case when the VAD declares a frame as speech 
but it is non-speech. Depending on the application, either 
error type can be considered more harmful. The operating 
point can be selected by adjusting the decision threshold. By 
lowering the threshold, we can reduce the number of missed 
speech segments at the cost of increased number of false 
alarms. 

We use the detection error trade-off curve (DET) as the 
evaluation tool. The DET plot shows the probability of miss 
(Pmiss) as a function of the probability of false alarm (Pfa) on a 
normal deviate scale. For a detection error curve, we can also 
compute the equal error rate (EER) which corresponds to the 
threshold for which Pmiss=Pfa. 

In parameter optimizations, we used mostly the EER as 
the evaluation metric. To reflect the differences of the 
methods in realistic application scenario, the final 
comparisons include two extreme operating points to 
minimize the probability of either miss or false alarm, in 
addition to the EER point. We set the threshold to yield 
Pmiss=2% (or Pfa=2%) and measure the other error rate at this 
threshold. 

4. Parameter Optimization Results  
First, we compare the effect of the training material using 
SVM with the linear kernel. In particular, we are interested to 
see the effect of using multiple files (speakers) for training as 
opposed to using only a single speaker, as well as the effect of 
the training data length. Prior to pooling the feature vectors 
from different files for training, we normalize the features 
within each file to zero-mean and unit variance to reduce 
between-file variability due to speaker and channel 
differences. The results presented in Fig.2 shows that 

combining the training files improves accuracy as expected. 
For the rest of the experiments, we use the pooled training set. 
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Fig.2: comparing single-speaker and.multi-speaker training for the 
SVM on the NIST dataset. 

 
The results in the Table 2 indicate that SVM is rather 
independent of the training data length and even 10 seconds 
of training data is sufficient for this material. 
 
Table 2: effect of the training material length. 
Training 
length 

10 sec 30 sec 1min 3 min 5 min 10 min

EER (%) 9.3 8.8 9.1 9.3 9.4 9.4 
 

Next, we study the effect of the SVM kernel. The results are 
presented in Table 3. The RBF slightly outperforms the linear 
kernel which is consistent with the statement in [4]. However, 
the running times of both the training and testing for the RBF 
kernel are much higher compared with the linear kernel, 
which can be a limitation for practical applications. In the rest 
of the experiments, we therefore use the linear kernel unless 
otherwise mentioned. 

 
     Table 3: Comparison of SVM kernels. 

SVM kernel Accuracy  
(EER %) 

Training 
time (s) 

Test 
time(s) 

Linear  9.1 429 107 
RBF (γ=0.3) 8.1 1776 924 
RBF (γ=0.6) 8.0 2010 1062 

5. Comparative Evaluation of the Methods 
The comparison of the different VAD variants is shown in 
Table 4 and the corresponding DET plots for each dataset are 
shown in Fig.3. 
 
Table 4: Comparison of different VAD methods on the three datasets 
using three different operating points. 
 Adaptive Trained 
 Energy 

[10] 
LTSD 

[3] SVM GMM 
[11] 

EER 1.5 40.0 8.0 12.8 
Pmiss@Pfa= 2% 1.4 40.0 26.7 43.3 

NIST 
2005 

Pfa@Pmiss= 2% 1.2 62.5 21.5 32.6 
EER 14.6 19.2 13.1 34.0 
Pmiss@Pfa= 2% 62.3 100.0 40.9 99.1 

Bus 
stop 

Pfa@Pmiss= 2% 27.2 36.0 53.4 68.4 
EER 16.8 14.4 19.0 15.3 
Pmiss@Pfa= 2% 80.6 76.8 54.7 59.8 

Lab 

Pfa@Pmiss= 2% 65.3 19.3 89.1 67.8 
 



The energy-based VAD clearly outperforms SVM and LTSD 
on the NIST data set. This is not surprising since it was 
optimized for the NIST corpuses through extensive testing. 
The LTSD fails miserably on the NIST data set, and the SVM 
falls in between the energy and LTSD methods. Detailed 
investigation of the LTSD results revealed that the noise 
model initialization failed on some of the NIST files, causing 
the high error rates. The beginning of the problematic files 
were speech whereas the method assumes it to be nonspeech 
when initializing the noise model. 

In the case of Lab data set, none of the methods is 
superior to each other but the performance depends on the 
error (miss or false alarm) that we wish to minimize. If we 
wish to keep the speech miss rate low (forensics application 
and voice-dialogue system), LTSD and energy methods yield 
the lowest false alarm rates. On the other hand, if we wish to 
have a low false alarm rate (automatic speaker verification), 
the SVM yields the lowest speech miss rates from all the 
methods. The situation is quite similar for Bus stop data. 
SVM shows the lowest speech miss rates and in this case the 
lowest EER as well. 

The GMM performance varies a lot between the three 
data sets. The number of Gaussian components was optimized 
on the NIST data set, and this may not be the best choice for 
data sets which have a very different training set size and 
speech-to-nonspeech ratio on the training data, as is the case 
here. For SVM, over- or underfitting is less an issue because 
much less data is needed for training the hyperplane 
parameters than the density estimates in GMM, which are 
notorious for needing large training data per dimensionality 
ratio. Further optimizations of the GMM adaptation 
parameters and fusion of SVM and GMM classifiers are 
points for future research. 
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Fig.3: Comparison of different VADs on the three data sets. 

6. Conclusions 
Voice activity detection using MFCC features and support 
vector machine was proposed. The method works excellently 
when small false alarm rate is desired, which is the case in 
text-independent speaker verification, for example. Main 
advantage of the SVM-based VAD is that it works 
consistently in the same manner with different corpora: 

smooth DET curve without sudden peaks. The other methods 
were more prone to the change of data set and variations of 
their parameters. Our main conclusion is that, according to 
our experiments, SVM is easier to adapt to the new data sets 
than conventional methods as long as we have a short training 
audio sample from the recording environment. 
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