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ABSTRACT 

 
Gaussian selection is a technique applied in the GMM-UBM 
framework to accelerate score calculation. We have recently 
introduced a novel Gaussian selection method known as sorted 
GMM (SGMM). SGMM uses scalar-indexing of the universal 
background model mean vectors to achieve fast search of the top-
scoring Gaussians. In the present work we extend this method by 
using 2-dimensional indexing, which leads to simultaneous frame 
and Gaussian selection. Our results on the NIST 2002 speaker 
recognition evaluation corpus indicate that both the 1- and 2-
dimensional SGMMs outperform frame decimation and temporal 
tracking of top-scoring Gaussians by a wide margin (in terms of 
Gaussian computations relative to GMM-UBM as baseline). 

Index Terms— speaker verification, Gaussian selection, 
particle swarm optimization 

 
1. INTRODUCTION 

 
Gaussian mixture model (GMM) is a commonly used statistical 
speaker modeling technique in text-independent speaker 
recognition [1]. Usually speaker-dependent GMMs are derived 
from a speaker-independent universal background model (UBM) 
by adapting its Gaussian components with maximum a posteriori 
(MAP) adaptation using speaker’s personal training data [2]. This 
method constructs a natural association between the UBM and the 
speaker models: for each UBM Gaussian component there is a 
corresponding adapted component in the adapted speaker model. 
In the verification phase, each test vector is scored against all the 
Gaussian components of the UBM, and a small number of the top-
scoring components in the corresponding adapted GMM are 
chosen. The match score is then computed as the log likelihood 
ratio (LLR) of the speaker GMM and the UBM scores.  

Notwithstanding this fast scoring technique, full search of the 
top-scoring Gaussians from the UBM is still required for each 
frame. With the typical frame rates - 50 to 100 frames per second 
- it becomes easily a bottleneck for computations. Reducing the 
number of UBM mixture evaluations is important on mobile 
platforms, in the speaker identification task, and when using score 
normalization techniques including a large number of speaker 
models to be evaluated, such as Tnorm [3]. 

Chan et al. have categorized the existing methods for fast 
GMM computations in four layers: frame-layer, GMM-layer, 
Gaussian-layer, and component-layer [4]. Various techniques for 
reducing the number of GMM computations have been proposed 
in the literature. Frame decimation [5] reduces the number of 
frames, whereas hash-modeling [6] and temporal tracking of the 
top-scoring Gaussians [7] reduce the number of Gaussian density 
evaluations. Speaker pruning [8], speaker clustering [9] and 
parametric modeling of the test utterance [10] can also be useful 

in speaker identification. In this paper our focus, however, will be 
on the standard likelihood-based matching framework for speaker 
verification.  

The so-called sorted Gaussian mixture model (SGMM) 
algorithm was recently proposed in [11]. SGMM is a novel 
Gaussian selection method that finds the dominant mixtures from 
the UBM without extensive search over all Gaussians. This is 
achieved by using scalar indexing of the UBM mean vectors; in 
the test phase, each feature vector is projected on the scalar space 
and the UBM index is used for searching the most-likely top-
scoring Gaussians. In [11] the projection plane was optimized by 
using an evolutionary algorithm [12]. In this paper, we refer this 
method to as 1-dimensional sorted Gaussian mixture model 
(SGMM-1) since it maps high dimensional feature space to scalar 
values and determines Gaussians to be evaluated using scalar 
search.  

In [11], a speed-up ratio of 15:1 relative to standard GMM-
UBM top-scoring [1] was achieved without loss in recognition 
accuracy. For higher speed-up ratios, say 40:1 to 60:1, the 
accuracy degrades fast. The reason for this is that projection of 
high-dimensional vectors onto 1-dimensional space is lossy. In 
this paper, therefore, we propose an enhanced variant of the 
SGMM method which addresses this problem. The enhanced 
variant that we name as the 2-dimensional sorted Gaussian 
mixture model (SGMM-2) has two improvements compared to the 
original formulation [12]. Firstly, it uses a two-dimensional search 
grid to locate the top-scoring components of the UBM, which 
leads to more accurate indexing. Secondly, the method 
simultaneously decides whether a given frame should be passed to 
Gaussian computations (reduction of frames), meanwhile 
speeding up the search of the top-scoring components for those 
frames that passed the frame level test (reduction of Gaussian 
computations). We demonstrate that the proposed method 
outperforms frame decimation [5] and temporal tracking [7]. 
 

2. SORTED GAUSSIAN MIXTURE MODEL 
 
The sorted Gaussian mixture model is a recently developed 
method for the fast scoring GMM [11, 12]. To describe SGMM-1 
(Fig. 1), assume first that we are given a D -dimensional feature 
vector 1 2[ , , ..., ]Tt t t Dtx x x=x  related to the speech frame at time 
t , and a GMM of M Gaussian components. We then define a 
sorting key 1 2( , , ..., )t t t Dts f x x x= , which is a scalar. The sorting 
function ( )f ⋅  is chosen in such a way that neighboring feature 
vectors provide almost neighboring values of ts ; this allows 
“ordering” of the D-dimensional feature vectors using the 1-
dimensional sorting values and enables efficient indexing 
technique.  The components of the GMM are sorted in ascending 
order of the associated sorting key according to the vector 

1 2[ , , ..., ]
T

UBM Ms s s=S , where 1 2 ... Ms s s≤ ≤ ≤ .  



To compute the likelihood of an unknown input feature 
vector, we first scalar quantize ts  by UBMS giving is , where 
1 i M≤ ≤ .  We call this index as the central index. Next, we 
evaluate the input feature vector’s likelihood using the ordinary 
method by an extensive local search in the neighborhood of the 
central index i  which includes sM  mixtures where sM M< .  
Only the mixture components with indices in the 
range 1i k i k − + +  are searched. 

Here k  is an offset value ( / )2sk M= and sM  is the search 
width. In Fig. 1 we summarized the structure of a SGMM-1 
system, but exclude the UBM optimization compared to previous 
work [12] for simplicity. In [12] we used a linearly weighted 
sorting function defined as follows: 

1

( ) ,
D

t t t i it

i

s f a x
=

= = = ∑x a x                           (1) 

Here itx  stands for ith MFCC in the tth feature vector and 
the weight vector a  is optimized using a so-called particle swarm 
optimization (PSO) algorithm [13]. Considering only UBM and 
one GMM memory storage requirement, the memory storage 
required for the SGMM-1 is (2 2) / (2 1)D D+ +  times that 
needed for the GMM-UBM assuming diagonal covariance 
matrices. The negligible extra storage is required to store the 
sorting key quantization table. On the other hand, the number of 
Gaussian computations, a measure of speed-up, is reduced to 

sM C+  over M C+ in the baseline GMM-UBM system. Here 
C  is the number of top-scoring mixtures whose corresponding 
mixtures are evaluated in the speaker GMM. Thus, the speed-up 
factor of the SGMM-1 algorithm is approximately 
( ) / ( )sM C M C+ + . We have ignored the computations 
required for finding the sM  Gaussians since it is negligible 
compared to Gaussian component evaluations. To incorporate 
Tnorm [3] in the score calculation, N additional Tnorm impostor 
speakers need to be considered, leading to speed-up factor of 
SGMM-1 as ( ) / ( )sM NC M NC+ + . Like any Gaussian 
selection algorithm operating in Gaussian layer, if large cohort 
sets used for Tnorm score normalization, the speed-up factor tends 
to unity. 

 
2.1. Optimization of the Sorting Function 
 
Assume a sequence of feature vectors denoted as 

1[ ,..., ]T=X x x .We can write this sequence as 
1 /3 1 /3 1 /3,..., , ,..., , ,..., ][ T T T T T T T

D D D= ∆ ∆ ∆∆ ∆∆X c c c c c c where the 
superscript T stands for matrix transpose and the vectors are 

composed of MFCCs and their delta and double delta parameters, 
each subset with D/3 dimensions. We rewrite the feature vectors 
as ( )1 ,...,T T

D′ ′=X x x where the i′x s represents the MFCCs 
for1 / 3i D≤ ≤ , ∆MFCCs for / 3 2 / 3D i D< ≤ and 
∆∆MFCCs for 2 / 3D i D< ≤  over all feature vectors.  

 The introduction of a sorting function as the sum of feature 
vector elements in [5] was based on correlations between sorting 
function values 1[ ,..., ]Ts s=s and i′x s where they are highly 
correlated for low index values such as 1′x , 2′x  and 3′x  with 
correlations decreasing to D′x . In general, a sorting function which 
generates sorting values highly correlated with i′x s provides 
better results in the Gaussian selection stage. In the linearly 
weighted form of the sorting function as in the SGMM-1 after 
having UBM trained, the adjustable weights a  can be learned in 
a data-dependent manner from UBM training material. The 
fitness function is function of the weights a  and in [12] we 
defined it as follows: 

2 2
1

{( ( ))( ( ))}
( )

{( ( )) } {( ( )) }

D
i i

i i i

E E E
Fitness

E E E E=

′ ′ ′ ′− −
=

′ ′ ′ ′− −
∑ x x s s

a
x x s s

                 (2) 

Here {.}E  stands for mathematical expectation. The weights 
a  should be chosen in such a way that the fitness function (2) is 
maximized. The optimization problem defined so far has the goal 
of discovering the optimal weights for the sorting function, a  so 
as to attain the maximum correlations. 

We expect that, by maximizing the fitness function (2) yields 
weights of the sorting function (1) so that neighboring feature 
vectors would result in almost-neighboring sorting values. These 
would consequently correspond to the most valuable mixtures for 
this purpose since they provide a level of discrimination 
comparable to top-C selection in conventional GMM-UBM 
systems. Because the search space is unknown, an optimization 
algorithm is needed that is capable of searching a wide area while 
avoiding local maximums. For this purpose we have selected the 
PSO algorithm [12]. 

 
3. ENHANCED SORTED GAUSSIAN MIXTURE MODEL 

 
In the current work we extend the concept from 1-dimension 

to 2-dimensions by utilizing two sorting functions as: 

1 1

2 2

( ) ,

( ) ,

t
t t

t
t t

s f

s f

= =

= =

x a x

x b x
              (3) 
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Figure1: Simplified block diagram of Sorted GMM (a) training phase (b) test phase 



Here a and b are designed to be close to orthogonal and 
optimized using the PSO algorithm [13]. We alter the way that the 
mixtures are considered for evaluation by focusing on those 
mixtures whose sorting values are in the set of specified adjacent 
values taken over the central mixture sorting values. Thus we may 
find the mixtures to be evaluated by considering those mixtures 
whose corresponding sorting values in two dimensions exist in the 
rectangular neighborhood specified by 1 1 1

UBM is Rα− <S  
and 2 2 2

UBM is Rα− <S , where α  is a control parameter to specify 
the neighborhood. 1

UBMS  and 2
UBMS are the sorting values of UBM 

means according to 1 (.)f  and 2 (.)f , respectively 1R and 2R are the 
range of 1

UBMS  and 2
UBMS  accordingly, while 1

is and 2
is are scalar-

quantized values of the unknown input feature vector sorting 
values, 1

ts  and 2
ts , by 1

UBMS  and 2
UBMS , respectively. In other 

words, mixture components located in the intersecting area of the 
search areas specified by 1 (.)f  and 2 (.)f  go through the Gaussian 
evaluation process, and if there is no mixture in this area (this 
situation happens usually for low values ofα ), that feature vector 
is dropped from Gaussian evaluation. Finding the intersection 
area is shown in Fig. 2 for a simple 16 mixture case where their 
sorting keys are plotted as (×) in projection plane. 

The memory storage required for the SGMM-2 is 
(2 3) / (2 1)D D+ +  times that needed for the GMM-UBM. 
Based on the fact that some of the frames may be dropped from 
the Gaussian evaluation process, speed-up rate differs from one 
test segment to another and therefore the average value over all 
test segments must be considered for comparison with SGMM-1. 
In addition, in SGMM-2 the number of Gaussians to be evaluated 
for each frame, t

sM , may be less than the C mixtures to be 
evaluated in UBM and GMM, hence we define a more efficient 
parameter tC  to be the lesser number of the top-scoring mixtures 
as: 

t
st

t t
s s

C M C
C

M M C

≥
=

<





          (4) 

Thus, the speed-up factor (without considering the minor 
overheads due to SGMM) of the SGMM algorithm for testN test 
segments, each of them with nT  frames, can be computed as: 

1 1

1 1

with Tnorm

1 ( ( )) / ( )

1 ( ( )) / ( )

test n

test n

N T
t t

n s
test n t

N T
t t

n s
test n t

T M C M CN

T M NC M NCN

= =

= =

+ +

+ +

∑ ∑

∑ ∑
  

Considering the fact that SGMM-2 algorithm works also in 
frame level speed-up, when using large cohort sets for Tnorm, 
speed-up factor will not fall down dramatically compared to 
SGMM-1. 

 
3.1 Optimizing weights in two dimensional case 
 
For the new 2-dimensional sorted GMM concept, PSO must 
optimize two weigh vectors denoted as a and b . Considering the 
definition of 2-dimensional sorted GMM in (2) we propose a new 
fitness function as, 

( , ) ( ) ( ) ( . / )Fitness Fitness Fitness abs= + −a b a b a b a b               (5) 
where Fitness(.) is defined as in  (2). The last term is the absolute 
value of the cosine of the angle between the two vectors. The 
absolute value accounts for vectors that are directionally opposed 
(at an angle between π/2 and 3π/2). The term is subtracted 
because the function is maximized when the vectors are 
orthogonal, i.e. the cosine is zero. By allowing PSO to find these 
two weighting vectors we will be able to come up with a two-
dimensional search in sorted GMM space. 
 

4. PERFORMANCE EVALUATION 
 
4.1 Experimental Setup 
 
The speaker recognition experiments were conducted on the NIST 
2002 speaker recognition corpus [14], which consist of cellular 
telephone conversational speech and excerpts from the 
Switchboard corpus. Making use of MFCCs we followed the same 
configuration as described in [12] to utilize NIST 2002 and 2001 
SRE data for constructing UBM and speaker models. The UBM 
model order is set to 1024 throughout the experiments. The 
evaluation of the speaker verification system is based on detection 
error trade-off (DET) curves, which show the tradeoffs between 
false alarm (FA) and false rejection (FR) errors. We also used the 
minimum detection cost function (MinDCF) and equal error rate 
(EER) [9] to measure accuracy. EER is defined as the point where 
FA and FR errors are equal, and MinDCF is a weighted sum of 
FA and FR where false acceptance are punished more. Fixed rate 
decimation [5] and top-C scoring mixture tracking technique [7] 
are included in the comparisons as well.  
 
4.2 Experiments and Results 
 
We compare the performance of 2-dimensional PSO-optimized 
SGMM while considering the standard GMM-UBM system as the 
baseline [2].  The detection error trade-off (DET) plots for the 
proposed method are summarized in Fig. 3. In SGMM-2 the 
control parameter,α  was chosen as 2 %, 3 %, 5 %, 10 %, 15 % 
and 20 % which gives average speed-up ratios of 157:1, 85:1, 
37:1, 11:1, 5:1 and 3:1, respectively. Frame decimation algorithm 
[5] simply chooses one over every N (decimation factor) frames. 
Mixture tracking [7] algorithm first builds a look-up table for each 
mixture where most probable mixtures to be selected after this 
mixture are listed. In utterance scoring after first frame whole 
search in UBM, top scoring mixture selected and a subset size of 
mixtures in its list selected for next frame evaluation. Every 100 
frames, a full search is performed to avoid “dead-end transitions”. 
The effect of Tnorm score normalization [3] can also be seen in 
Fig 3. Figure 4 presents EER versus speed-up factor (relative to 
standard top-scoring in a GMM-UBM system) for SGMM-1, 
SGMM-2, decimation and mixture tracking algorithms. It can be 
seen that SGMM-2 outperforms SGMM-1, decimation and 
mixture tracking, the two latter ones by a wide margin. 
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Figure 2: Illustration of SGMM-2 algorithm 



 
5. CONCLUSIONS 

 
We have introduced a 2-dimensional sorted GMM for 
computationally efficient speaker recognition. Our experiments 
indicate the effectiveness of the proposed method over the 1-
dimensional version. The SGMM algorithm also performs much 
better than two well-known methods, decimation and temporal 
mixture tracking algorithms. 
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Figure 3: DET curves for SGMM-2 algorithm without (left) and with (right) test normalization (Tnorm). 

 
Figure 4: Algorithms Comparison in the space of EER versus 
speed-up factor (relative to standard top-scoring in GMM-UBM). 
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