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Regularized All-Pole Models for Speaker
Verification Under Noisy Environments

Cemal Hanilçi, Tomi Kinnunen, Figen Ertaş, Rahim Saeidi,Jouni Pohjalainen and Paavo Alku

Abstract—Regularization of linear prediction based mel-
frequency cepstral coefficient (MFCC) extraction in speaker
verification is considered. Commonly, MFCCs are extracted from
the discrete Fourier transform (DFT) spectrum of speech frames.
In this paper, DFT spectrum estimate is replaced with the
recently proposed regularized linear prediction (RLP) method.
Regularization of temporally weighted variants, weighted LP
(WLP) and stabilized WLP (SWLP) which have earlier shown
success in speech and speaker recognition, is also introduced. A
novel type of double autocorrelation (DAC) lag windowing isalso
proposed to enhance robustness. Experiments on the NIST 2002
corpus indicate that regularized all-pole methods (RLP, RWLP
and RSWLP) yield large improvement on recognition accuracy
under additive factory and babble noise conditions in termsof
both equal error rate (EER) and minimum detection cost function
(MinDCF).

Index Terms—Speaker verification, spectrum estimation, linear
prediction, regularized linear prediction.

I. I NTRODUCTION

SPEAKER verification aims to verify speaker’s identity
from a given speech signal [1]. A speaker verification

system consists of two modules:feature extraction (front-end)
andpattern matching (back-end). In pattern matching, features
extracted from a given speech input are compared to the
claimed speaker’s model. Gaussian mixture models (GMMs)
[2] and support vector machines (SVMs) are two popular back-
ends, while mel-frequency cepstral coefficients (MFCCs) are
commonly used as acoustic features. MFCCs are generally
obtained from the discrete Fourier transform (DFT) spectrum
of windowed speech frames.

Speaker verification accuracy under clinical and controlled
conditions is high but decreases significantly under channel
mismatch and in the presence of additive noise. Channel
mismatch is the problem of having training and test speech
samples from different types of channels or handsets, whereas
additive noise refers to other interfering sound sources being
added to the speech signal. In literature, several methods have
been proposed to tackle channel mismatch and additive noise.
These include, for instance, speech enhancement prior to fea-
ture extraction and feature normalization using cepstral mean
and variance normalization (CMVN). In addition, intersession
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compensation of speaker models [3] and score normalization
[4] are commonly applied.

In [5], the present authors extracted MFCCs from parametric
all-pole spectral models based on linear prediction (LP) [6] and
its temporally weighted extensions [7]. This led to increased
speaker verification accuracy over the standard DFT method
under additive noise contamination. A possible explanation for
this is that low-order all-pole models, due to smaller number of
free parameters in comparison to DFT, exhibit less variations
between clean and noisy utterances. In this paper, we would
like to explore this further by introducingregularization of
these all-pole models. In the field of pattern recognition,
regularization techniques are commonly used for trading off
between training and test errors to enhance classifier general-
ization [8] but they have been much less studied for feature
extraction and speech parameterization [9].

Regularized LP (RLP) [9] is a parametric spectral modeling
method motivated from a speech coding point of view for
tackling a known problem in that field, over-sharpening of
formants. RLP penalizes rapid changes in all-pole spectral
envelopes, thereby producing smooth spectra without affecting
formant positions. However, RLP has not been applied to any
recognition tasks to the best of our knowledge. Intuitively,
the use of RLP is justified in speaker verification because it
enables computing smooth spectral models and is therefore
expected to reduce mismatch between training and test utter-
ances. Since clean speech was used in [9], the present study
will address the performance of RLP under additive noise
contamination. Moreover, in [9] only boxcar (rectangular)
window was used for autocorrelation domain windowing to
compute the penalty function. Therefore, we study the effects
of different autocorrelation windowing methods on recognition
accuracy. Finally, in addition to conventional LP, we extend
regularization to the temporally weighted variants of LP,
weighted LP (WLP) [5] and stabilized WLP (SWLP) [7].

II. SPECTRUMESTIMATION

A. Baseline FFT and LP Methods

MFCC features are generally obtained from the peri-
odogram of a Hamming-windowed speech frame given by

SFFT(f) =
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, (1)

wheref is the discrete frequency index,x = [x(0) . . . x(N −
1)]T is a speech frame andw = [w(0) . . . w(N − 1)]T is
the Hamming window. The signalx(n) is assumed to be zero
outside of the interval [0, N − 1].
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LP analysis [6] is based on the assumption that a speech
sample,x(n), can be predicted as a weighted sum of itsp pre-
vious samples,̂x(n) = −

∑p
k=1 akx(n−k), wherex(n) is the

original speech sample,̂x(n) is the predicted sample andp is
the predictor order. Usually, the predictor coefficients{ak}pk=1

are obtained by minimizing the energy of the prediction resid-
ual, e(n) = x(n)− x̂(n) = x(n) +

∑p
k=1 akx(n− k). In the

autocorrelation method, the solution fora
lp
opt = [a1, . . . , ap]

T

is given by

a
lp
opt = −R−1

lp rlp, (2)

whereRlp is the Toeplitz autocorrelation matrix andrlp is the
autocorrelation vector. Given the predictor coefficients,ak, the
LP spectrum is obtained by

SLP(f) =
1

|1 +∑p
k=1 ake

−j2πfk|2
. (3)

B. Temporally Weighted All-pole Models

In contrast to LP, weighted linear prediction (WLP) [10] de-
termines the predictor coefficients by minimizing a temporally
weighted energy of the prediction error,E =

∑

n e
2(n)Ψn =

∑

n(x(n)+
∑p

k=1 bkx(n−k))2Ψn, whereΨn is a time-domain
weighting function. In matrix notation, the optimum predictor
coefficients of WLP are computed by

b
wlp
opt = −R−1

wlprwlp, (4)

where b = [b1, . . . , bp]
T are the predictor coefficients,

Rwlp =
∑

n x(n)x(n)
TΨn, rwlp =

∑

n x(n)x(n)Ψn and
x(n) = [x(n − 1) x(n − 2) . . . x(n − p)]T. Note thatRwlp

andrwlp correspond toRlp andrlp, respectively, if and only
if Ψn = 1 for all n. The matrixRwlp is symmetric but in
general does not have Toeplitz structure.

Conventional autocorrelation LP guarantees that the corre-
sponding all-pole model is stable, i.e., a filter whose polesare
within the unit circle. For WLP, however, the stability of the
all-pole model is not guaranteed. The stability condition of
an all-pole model is essential in speech coding and synthesis
applications. Besides the coding and synthesis applications, it
has been noted that stabilization improves speaker verifica-
tion performance as well [5]. Thus, stabilized WLP (SWLP)
was proposed in [7]. In SWLP, the weighted autocorrelation
matrix and the weighted autocorrelation vector are expressed
as Rswlp = YTY and rswlp = YTy0, respectively (the
original article [7] presents the problem in a slightly different
form). The columns of the matrixY = [y1 y2 . . . yp] are
calculated byyk+1 = Byk for 0 ≤ k ≤ p − 1, where
y0 = [

√
Ψ1x(1) . . .

√
ΨNx(N) 0 . . . 0]T andB is a matrix

where all the elements are zero outside the subdiagonal and
the elements of the subdiagonal, for1 ≤ i ≤ N + p− 1, are

Bi+1,i =

{

√

Ψi+1/Ψi, Ψi ≤ Ψi+1

1, Ψi > Ψi+1.
(5)

In [10] and [7], short-time energy (STE) was chosen as the
weighting function,Ψn =

∑M
i=1 x

2(n − i), whereM is the
length of the STE window.

C. Regularized Linear Prediction

In regularization, a penalty measure is included in
the objective function and the predictor coefficients
are calculated by minimizing a modified cost function,
∑

n (x(n) +
∑p

k=1 ckx(n− k))
2
+ λφ(c), whereφ(c) is the

penalty measure which is a function of the unknown predictor
coefficientsc and λ > 0 is a regularization constant which
controls the smoothness of the spectral envelope. In [9], the
penalty measure was chosen as

φ(c) =
1

2π

∫ π
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where 1/|W (ω)|2 is a coarse approximation of the spectral
envelope andC

′

(ejω) is the frequency derivative of the RLP
inverse filter,C(ejω) =

∑p
k=0 cke

−jωk with c0 = 1. The
advantage of this penalty function is that a closed form non-
iterative solution exists and it is computationally efficient.
In [9], the coarse spectral envelope1/|W (ω)|2 was derived
from windowed autocorrelation sequence, in which the penalty
function was shown to have the following form:

φ(c) = cTDFDc. (7)

Here c = [c1, . . . , cp]
T are the predictor coefficients,D

is a diagonal matrix where each diagonal element is the
corresponding row number andF is a Toeplitz matrix corre-
sponding to the autocorrelation sequence,f(m) = r(m)v(m),
wherer(m) is the original autocorrelation sequence,r(m) =
∑N−1

n=0 x(n)x(n−m), m = 0, . . . , p−1, andv(m) is a window
function. The matrixF represents the denominator term,
W (ω) in (6). The matrixF is equal to conventional Toeplitz
autocorrelation matrixRlp when using boxcar (rectangular)
window. The optimum predictor coefficients are now given by

c
rlp
opt = −(Rlp + λDFD)−1rlp. (8)

D. Extending Regularization for Other All-pole Models and
Autocorrelation Lag Windows

Regularization can be imposed on LP, WLP or SWLP
methods by using corresponding autocorrelation matrix and
vector pair (Rlp andrlp; Rwlp andrwlp; Rswlp andrswlp). As
λ increases, the spectral envelope gets smoother and asλ → 0,
it reduces to conventional LP, WLP or SWLP depending on
the way the autocorrelation is computed.

We consider different window functions to computeF ma-
trix. In [11] and [9] the authors used, respectively, Blackman
and boxcar windows to computeF matrix. We compare these
two windows and, additionally, also the Hamming window in
speaker verification. In [12], [13], [14], it was shown that the
so-calleddouble autocorrelation (DAC) sequence can be used
for robust estimation of spectral envelope in the presence of
additive noise. Thus, besides the different window functions,
we use DAC sequence,f(t) =

∑p−1

m=0 r(m)r(m − t), t =
0, . . . , p − 1, to computeF. Differently from [14], we use
the firstp autocorrelation coefficients(r(0)− r(p− 1)) when
computing DAC sequence.

Figure 1 shows the RLP spectra computed using different
windowed autocorrelationsf(m) of a voiced speech frame
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Fig. 1. Short-term spectra of a (a) clean speech frame taken from NIST 2002
SRE and (b) its factory noise corrupted (0 dB SNR) counterpart. The spectra
in each plot have been shifted by 10 dB for better visualization. (λ = 10

−7

is used for RLP (DAC) andλ = 10
−4 is used for the RLP with boxcar,

Blackman and Hamming windows.)

taken from the NIST 2002 SRE corpus and its 0 dB noisy
counterpart. As seen from the figure, regularized methods
give a smoother spectrum compared to conventional FFT
and LP methods. Different window functions do not show
large differences on spectra but estimatingF from DAC
does. Dynamic range differences between original and noisy
spectra for DAC are smaller compared to conventional LP or
RLP with boxcar, Blackman and Hamming windows. We will
demonstrate that this leads to considerable improvements in
speaker verification accuracy.

III. E XPERIMENTAL SETUP

Speaker recognition experiments are carried out on the NIST
2002 SRE corpus which consists of conversational telephone
speech sampled at 8 kHz and transmitted over different cellular
networks. It involves330 target speakers (139 males and
191 females) and39259 verification trials (2982 targets and
36277 impostors). For each target speaker, approximately two
minutes of training data is available whereas duration of the
test utterances varies between 15 seconds and 45 seconds.

Gaussian mixture model with the universal background
model (GMM-UBM) [2] is used as the classifier. Test nor-
malization (Tnorm) [4] is applied on the log-likelihood scores
for score normalization. Two gender-dependent background
models and cohort models for Tnorm with512 Gaussians are
trained using the NIST 2001 SRE corpus.

Power spectral subtraction (as described in [15]) is used
as a pre-processing step in the signal domain to suppress
additive noise. The MFCC features are extracted from30 ms
Hamming windowed speech frames every15 ms. Magnitude
spectrum estimation method differs depending on the method.
Our baseline system uses the FFT magnitude spectrum of
windowed frames. For all-pole methods and their regularized
versions, the predictor coefficients and short-time spectra are
computed as described in Section II. All the all-pole methods
usep = 20 as in [5]. WLP and SWLP are computed as in
[5] by utilizing the STE window function withM = 20.
The regularization factorλ is 10−7, 10−10 and10−10 in RLP,
RWLP, and RSWLP, respectively. For the Blackman, boxcar
and Hamming windowed RLP the regularization factorλ is
fixed to 10−4. The λ value for each method was optimized
based on the smallest equal error rate criterion on clean data.

The spectra are processed through a 27-channel triangular
filterbank and logarithmic filterbank outputs are converted

into MFCCs using the discrete cosine transform (DCT). After
RASTA filtering the 12 MFCCs, their first and second order
time derivatives (∆ and∆∆) are appended. The last two steps
are energy-based voice activity detector (VAD) followed by
cepstral mean and variance normalization (CMVN).

As the performance criteria, we consider both equal error
rate (EER) and minimum detection cost function (MinDCF).
EER is the threshold value at which false alarm rate (Pfa)
and miss rate (Pmiss) are equal and MinDCF is the minimum
value of a weighted cost function which is given by0.1 ×
Pmiss +0.99×Pfa. Detection error tradeoff (DET) curves are
also presented to show full behavior of the proposed methods.

For additive noise contamination, we usefactory2 (which
we refer to as ”factory noise”) and babble noises from
NOISEX-921. In the noisy experiments, the target speaker
models, background models and Tnorm cohort models are
trained using the original data and noise is added to test
samples with five different average segmental signal-to-noise-
ratios (SNRs):SNR ∈ {clean, 20, 10, 0,−10} dB, where
clean refers to the original NIST samples.

IV. EXPERIMENTAL RESULTS

We first examine the effect of different window functions,
v(m), to computeF matrix in RLP method as described in
Section II. The EER and MinDCF values for different window
functions are given in Table I. As seen from the table, different
window functions do not show large differences on recognition
accuracy as expected from Fig. 1. However, using the DAC
sequence to computeF matrix improves recognition accuracy
extensively.

Next, we analyze regularization of the temporally weighted
all-pole methods, RWLP and RSWLP, using the DAC se-
quence. The results are given in Table II. Figure 2 shows
the DET plots of each regularized and unregularized all-
pole method in comparison to the baseline FFT method for
babble noise at SNR level of -10 dB. Recognition accuracy
of all methods degrades under additive noise as expected. The
following observations can be made:

• In clean condition, LP, RLP and WLP methods slightly
outperform the baseline FFT technique.

• For factory noise contamination, RLP outperforms other
methods at low SNR levels (0 dB and -10 dB). RWLP and
RSWLP show minor improvements over all-pole methods
at high SNR levels (20 dB and 10 dB). In terms of
MinDCF, RLP outperforms the other methods at low SNRs
(0 dB and -10 dB) while RWLP wins at high SNRs (10
dB and 20 dB)

• Forbabble noise, RLP achieves the smallest EER in nearly
all cases (WLP is slightly better at 20dB). In terms of
MinDCF, WLP gives smaller MinDCF values at high SNR
levels. In the noisier cases, RLP yields the smallest values.

V. CONCLUSION

Regularization of all-pole models was introduced for ro-
bust speaker verification. The proposed methods outperformed
standard DFT and LP techniques under two different additive

1http://www.speech.cs.cmu.edu/comp.speech/Section1/Data/noisex.html
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TABLE I
EFFECT OFAUTOCORRELATION DOMAIN WINDOW FUNCTION USED FOR COMPUTING THE F MATRIX IN RLP

SNR Equal error rate (%) MinDCFx100
(dB) Boxcar Blackman Hamming DAC Boxcar Blackman Hamming DAC

clean 7.57 7.52 7.37 7.38 3.07 3.02 3.03 3.03

F
ac

to
ry 20 7.81 7.78 8.04 7.84 3.18 3.18 3.16 3.19

10 8.75 8.85 8.85 8.38 3.57 3.55 3.57 3.45
0 10.29 10.02 10.16 9.41 4.17 4.16 4.16 3.81
-10 15.02 15.08 15.45 13.61 6.10 6.15 6.06 5.81

B
ab

bl
e 20 7.81 7.81 7.78 7.90 3.19 3.15 3.14 3.30

10 8.92 8.51 8.68 8.35 3.44 3.41 3.37 3.46
0 10.94 11.05 11.20 9.61 4.32 4.27 4.26 3.96
-10 20.12 20.92 20.73 16.93 7.55 7.76 7.65 6.63

TABLE II
SPEAKER RECOGNITION PERFORMANCE UNDER ADDITIVE NOISE(DAC SEQUENCE IS USED FOR REGULARIZED METHODS). FOR A GIVEN NOISE TYPE

AND SNRLEVEL , ALL THE DIFFERENCES ARE STATISTICALLY SIGNIFICANT WITH95%CONFIDENCE ACCORDING TOMCNEMAR’ S TEST.

SNR Equal error rate (%) MinDCFx100
(dB) FFT LP RLP WLP RWLP SWLP RSWLP FFT LP RLP WLP RWLP SWLP RSWLP

clean 7.65 7.44 7.38 7.48 8.10 7.81 7.94 3.07 3.05 3.03 2.99 3.33 3.08 3.41

F
ac

to
ry 20 8.08 7.83 7.84 7.81 7.75 8.22 7.85 3.25 3.22 3.19 3.12 3.14 3.21 3.24

10 9.32 8.50 8.38 8.79 8.32 9.11 8.50 3.64 3.56 3.45 3.57 3.32 3.62 3.45
0 10.46 9.93 9.41 10.34 9.62 10.06 9.59 4.13 4.21 3.81 4.19 3.92 4.17 3.92
-10 15.35 14.96 13.61 15.19 13.86 14.35 13.32 6.63 6.14 5.81 6.19 6.03 5.94 5.87

B
ab

bl
e 20 7.83 7.78 7.90 7.71 8.21 8.11 8.17 3.14 3.12 3.30 3.09 3.35 3.19 3.44

10 8.85 8.58 8.35 8.70 8.48 8.78 8.65 3.44 3.48 3.46 3.46 3.53 3.56 3.64
0 11.62 11.23 9.61 11.47 10.29 10.93 9.99 4.53 4.34 3.96 4.49 4.35 4.38 4.27
-10 21.27 20.35 16.93 21.02 18.40 19.69 17.64 8.05 7.67 6.63 7.90 7.22 7.65 7.04
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Fig. 2. DET plots for different spectrum estimators under -10 dB SNR babble noise (DAC sequence is used for regularized methods).

noise types, factory and babble noises. In general, regulariza-
tion using the DAC sequence yielded considerable improve-
ment on the recognition performance especially at low SNRs
for conventional and temporally weighted all-pole methods. In
summary, the regularized LP based spectrum estimation holds
promise for speaker verification in noisy conditions. Adaptive
selection ofλ based on estimated SNR level or fundamental
frequency (as in [9]) is a potential area of future studies.
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