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Regularized All-Pole Models for Speaker
Verification Under Noisy Environments

Cemal Hanilgi, Tomi Kinnunen, Figen Ertas, Rahim Saeidiini Pohjalainen and Paavo Alku

Abstract—Regularization of linear prediction based mel- compensation of speaker models [3] and score normalization
frequency cepstral coefficient (MFCC) extraction in speake [4] are commonly applied.

verification is considered. Commonly, MFCCs are extractedrom ;
the discrete Fourier transform (DFT) spectrum of speech franes. In [5], the present authors extracted MFCCs from parametric

In this paper, DFT spectrum estimate is replaced with the gll—pole spectral models based 9” linear prgdiction (L.I-Patm
recently proposed regularized linear prediction (RLP) mehod. its temporally weighted extensions [7]. This led to inceshs
Regularization of temporally weighted variants, weighted LP  speaker verification accuracy over the standard DFT method
(WLP) and stabilized WLP (SWLP) which have earlier shown ynder additive noise contamination. A possible explameftio
success in speech and speaker recognition, is also introitt A ;¢ i that Jow-order all-pole models, due to smaller nundie
novel type of double autocorrelation (DAC) lag windowing isalso - - ! L .
proposed to enhance robustness. Experiments on the NIST 2po [T€€ parameters in comparison to DFT, exhibit less vanatio
corpus indicate that regularized all-pole methods (RLP, RW.P  between clean and noisy utterances. In this paper, we would
and RSWLP) yield large improvement on recognition accuracy like to explore this further by introducingegularization of
under additive factory and babble noise conditions in termsof  these all-pole models. In the field of pattern recognition,
b’aghggl::al error rate (EER) and minimum detection cost funcion  oqyjarization techniques are commonly used for tradirig of
( Ilrr:dex 'I)'t.arms—Speakerverification spectrum estimation, linear petyveen training and test errors to enhance cla}ssifier gener
prediction, regularized linear predict'ion. ' |zat|on_[8] but they have been mych_ less studied for feature
extraction and speech parameterization [9].

Regularized LP (RLP) [9] is a parametric spectral modeling

method motivated from a speech coding point of view for
PEAKER verification aims to verify speaker’s identitytackling a known problem in that field, over-sharpening of
rom a given speech signal [1]. A speaker verificatioformants. RLP penalizes rapid changes in all-pole spectral

system consists of two moduldsature extraction (front-end)  envelopes, thereby producing smooth spectra withouttirffgc
andpattern matching (back-end). In pattern matching, featureformant positions. However, RLP has not been applied to any
extracted from a given speech input are compared to th&ognition tasks to the best of our knowledge. Intuitively
claimed speaker’'s model. Gaussian mixture models (GMMgje use of RLP is justified in speaker verification because it
[2] and support vector machines (SVMs) are two popular backnables computing smooth spectral models and is therefore
ends, while mel-frequency cepstral coefficients (MFCC®) aéxpected to reduce mismatch between training and test utter
commonly used as acoustic features. MFCCs are generglfces. Since clean speech was used in [9], the present study
obtained from the discrete Fourier transform (DFT) spewtruwill address the performance of RLP under additive noise
of windowed speech frames. contamination. Moreover, in [9] only boxcar (rectangular)

Speaker verification accuracy under clinical and contdlleyindow was used for autocorrelation domain windowing to
conditions is hlgh but decreases significantly under Chlanl’&mpute the pena|ty function. Therefore, we Study the &ffec
mismatch and in the presence of additive noise. Chanrgldifferent autocorrelation windowing methods on recdigni
mismatch is the problem of having training and test speeg@curacy. Finally, in addition to conventional LP, we exten
samples from different types of channels or handsets, vasergegularization to the temporally weighted variants of LP,

additive noise refers to other interfering sound sourcesgoe weighted LP (WLP) [5] and stabilized WLP (SWLP) [7].
added to the speech signal. In literature, several methawks h

been proposed to tackle channel mismatch and additive.noise
These include, for instance, speech enhancement prioato fe _
ture extraction and feature normalization using cepstream A. Baseline FFT and LP Methods

and variance normalization (CMVN). In addition, intersess ~ MFCC features are generally obtained from the peri-
odogram of a Hamming-windowed speech frame given by

I. INTRODUCTION
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LP analysis [6] is based on the assumption that a speeChRegularized Linear Prediction

sample;z(n), can be predicted as a weighted sum opifsre- In regularization, a penalty measure is included in
vious samplesi(n) = — >°7_; axz(n—k), wherez(n) isthe the objective function and the predictor coefficients
original speech samplé;(n) is the predicted sample andis  are calculated by minimizing a modified cost function,

the predictor order. Usually, the predictor coefficiefus }_, S (@(n) + P, erx(n — k) + Ag(c), whereg(c) is the

are obtained by minimizing the energy of the predictiondesi perrllalty measure which is a function of the unknown predictor
ual, e(n) = z(n) — &(n) = z(n) + 32;_; axx(n — k). In the  coefficientsc and A > 0 is a regularization constant which

autocorrelation method, the solution faf},, = [a1, ... , ap]"  controls the smoothness of the spectral envelope. In [€], th
is given by penalty measure was chosen as
ag;t = —Rl_plrl107 2 R
1 [T 1C (e?%)
whereR;,, is the Toeplitz autocorrelation matrix amg is the ¢c) = 5- /_ W (w) dw 6)
autocorrelation vector. Given the predictor coefficienfs,the "
LP spectrum is obtained by where 1/|W(w)/|2 is a coarse approximation of the spectral
envelope and” (e/*) is the frequency derivative of the RLP
Se(f) = 1 : . (3) inverse filter,C(e/*) = S0 _cke <k with ¢g = 1. The
|1+ >0 are=727 k| advantage of this penalty function is that a closed form non-
iterative solution exists and it is computationally effitie
B. Temporally Weighted All-pole Models In [9], the coarse spectral envelopg|W (w)|?> was derived

) ) o from windowed autocorrelation sequence, in which the ggnal
In contrast to LP, weighted linear prediction (WLP) [10] defynction was shown to have the following form:
termines the predictor coefficients by minimizing a temfigra

weighted energy of the prediction errof = 3", €?(n)¥,, = ¢(c) = c"DFDc. )
> (@(n)+3 2k, bra(n—F))* Wy, wherew,, is a time-domain pere ¢ — [y, ... cp]T are the predictor coefficientd
weighting function. In matrix notation, the optimum preic s 5 giagonal matrix where each diagonal element is the
coefficients of WLP are computed by corresponding row number arfdl is a Toeplitz matrix corre-
w - sponding to the autocorrelation sequen = .
boég _ _Rwllprwlpv (4) p g q ﬂen) r(m)v(m)

wherer(m) is the original autocorrelation sequencemn) =
whereb = [by, ... , b,|T are the predictor coefficients,zr]y:plx(”)ff(n—m)7_m: 0,...,p—1,andv(m) is a window
Rup = 3, x(0)x(n)TW,, ryp = 3, 2(n)x(n)¥, and functlo_n. The matrixF' represents the deno_mmator term,
x(n) = [#(n — 1) z(n — 2) ... z(n — p)]T. Note thatR., W(w) in (6)._ The ma_ltan is equal to conventional Toeplitz
andr,, correspond taR,, andr,, respectively, if and only agtocorrelatlon matriRy, V\_/hen usm.g.boxcar (rectangular)
if ,, = 1 for all n. The matrixR,, is symmetric but in window. The optimum predictor coefficients are now given by
general doles not have Toeplitz structure. Cf)llft = —(Ryp + )\DFD)*lrlp. (8)
Conventional autocorrelation LP guarantees that the €orre
sponding all-pole model is stable, i.e., a filter whose pales
within the unit circle. For WLP, however, the stability ofeth
all-pole model is not guaranteed. The stability conditidn o )
an all-pole model is essential in speech coding and syrsthesjReégularization can be imposed on LP, WLP or SWLP
applications. Besides the coding and synthesis applitsitio methods _by using corresponding autocorrelation matrix and
has been noted that stabilization improves speaker verifi®gctor pair Ry, andriy; Ry, andryp; Rewip andrayip). As
tion performance as well [5]. Thus, stabilized WLP (SWLP) increases, the spectral envelope gets smoother ahd-28,
was proposed in [7]. In SWLP, the weighted autocorrelatidh"educes to conventional LP, WLP or SWLP depending on
matrix and the weighted autocorrelation vector are expasghe way the autocorrelation is computed.
as Ruyp = YTY and Towlp = Y7y,, respectively (the _We consider different window functions to gomplEana-
original article [7] presents the problem in a slightly difént trix. In [11] and [9] the authors used, respectively, Blackm
form). The columns of the matriyY = [y; y» ... y,] are and ngcar windows to .compulé matrix. We compare thesg
calculated byyy.1 = By, for 0 < k < p — 1, where WO wmdow.s.anq, additionally, also the. Hamming window in
vo = [vVTiz(1) ... VINz(N)O ... 0] andB is a matrix speaker verification. In [12],_ [13], [14], it was shown thhet
where all the elements are zero outside the subdiagonal &fcalleddouble autocorrelation (DAC) sequence can be used

the elements of the subdiagonal, forx i < N +p — 1, are  for robust estimation of spectral envelope in the preserice o
- additive noise. Thus, besides the different window funio

B { U1/, U, < U4 we use DAC sequence(t) = fn;lor(m)r(m —t),t =
i+1,i =
; 1,

D. Extending Regularization for Other All-pole Models and
6Aut0correl ation Lag Windows

U, > 0. ®) 0, ... ,p— 1, to computeF. Differently from [14], we use
the firstp autocorrelation coefficients (0) — r(p — 1)) when
In [10] and [7], short-time energy (STE) was chosen as tleomputing DAC sequence.
weighting function,¥,, = Zf\il 2%(n — i), where M is the Figure 1 shows the RLP spectra computed using different
length of the STE window. windowed autocorrelationg(m) of a voiced speech frame
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[—FFT —LP - - -RLP (Boxcar) - - RLP (Blackman) — RLP (Hamming) - - - RLP (DAC)]
Lb)
R

into MFCCs using the discrete cosine transform (DCT). After
RASTA filtering the 12 MFCCs, their first and second order
time derivatives A andAA) are appended. The last two steps
are energy-based voice activity detector (VAD) followed by
cepstral mean and variance normalization (CMVN).

As the performance criteria, we consider both equal error
rate (EER) and minimum detection cost function (MinDCF).
EER is the threshold value at which false alarm ralg,)(

0 Frequency (Hz) 4000 0 Frequency (Hz) 4000 and miss rate}(’miss) are equal and MinDCF is the minimum

h fa(a)dl h cen value of a weighted cost function which is given byl x

Fig. 1. Short-term spectra of a (a) clean speech frame ta IST 2002 ) .

SRE and (b) its factory noise corrupted (0 dB SNR) countérddre spectra Priss +0.99 x Pp,. Detection error.tradeoff (DET) curves are
in each plot have been shifted by 10 dB for better visuatizatix = 10~7  also presented to show full behavior of the proposed methods
is used for RLP (DAC) and\ = 10~* is used for the RLP with boxcar,  For additive noise contamination, we uttory2 (which
Blackman and Hamming windows.) we refer to as factory noise”) and babble noises from

taken from the NIST 2002 SRE corpus and its 0 dB noigyOISEX-Qzl. In the noisy experiments, the target speaker
counterpart. As seen from the figure, regularized metho[ﬂ?_dels’ bgckground_models and Tnorm cqhort models are
give a smoother spectrum compared to conventional FEFRined using the original data and noise is added to test
and LP methods. Different window functions do not show@mples with five different average segmental signal-ieero
large differences on spectra but estimatifg from DAC 'atios (SNRs):SNR € {clean, 20,10,0,-10} dB, where
does. Dynamic range differences between original and nofdga" refers to the original NIST samples.
spectra for DAC are smaller compared to conventional LP or
RLP with boxcar, Blackman and Hamming windows. We will ) ) ) ) )

- We first examine the effect of different window functions,

demonstrate that this leads to considerable improvemaents i -11e i '
speaker verification accuracy. v(m), to computeF matrix in RLP method as described in

Section Il. The EER and MinDCF values for different window
IIl. EXPERIMENTAL SETUP functions are given in Table I. As seen from the table, déffer
Speaker recognition experiments are carried out on the NI®hdow functions do not show large differences on recogniti
2002 SRE corpus which consists of conversational telephaomecuracy as expected from Fig. 1. However, using the DAC
speech sampled at 8 kHz and transmitted over differentlaellusequence to compul® matrix improves recognition accuracy
networks. It involves330 target speakers189 males and extensively.
191 females) and39259 verification trials 2982 targets and  Next, we analyze regularization of the temporally weighted
36277 impostors). For each target speaker, approximately tvad-pole methods, RWLP and RSWLP, using the DAC se-
minutes of training data is available whereas duration ef tlquence. The results are given in Table Il. Figure 2 shows
test utterances varies between 15 seconds and 45 secondthe DET plots of each regularized and unregularized all-
Gaussian mixture model with the universal backgroumble method in comparison to the baseline FFT method for
model (GMM-UBM) [2] is used as the classifier. Test norbabble noise at SNR level of -10 dB. Recognition accuracy
malization (Tnorm) [4] is applied on the log-likelihood ses of all methods degrades under additive noise as expected. Th
for score normalization. Two gender-dependent backgroufadlowing observations can be made:
models and cohort models for Tnorm wii2 Gaussians are e |n clean condition, LP, RLP and WLP methods slightly

trained using the NIST 2001 SRE corpus. outperform the baseline FFT technique.

Power spectral subtraction (as described in [15]) is used For factory noise contamination, RLP outperforms other
as a pre-processing step in the signal domain to suppressmethods at low SNR levels (0 dB and -10 dB). RWLP and
additive noise. The MFCC features are extracted f&imms RSWLP show minor improvements over a||-po|e methods
Hamming windowed speech frames evafyms. Magnitude  at high SNR levels (20 dB and 10 dB). In terms of
spectrum estimation method differs depending on the method MinDCF, RLP outperforms the other methods at low SNRs
Our baseline system uses the FFT magnitude spectrum of (0 dB and -10 dB) while RWLP wins at high SNRs (10
windowed frames. For all-pole methods and their reguldrize  dB and 20 dB)
versions, the predictor coefficients and short-time speate ¢ Forbabble noise RLP achieves the smallest EER in nearly
computed as described in Section II. All the all-pole method gl cases (WLP is slightly better at 20dB). In terms of
usep = 20 as in [5]. WLP and SWLP are computed as in  MinDCF, WLP gives smaller MinDCF values at high SNR

Power Spectrum (dB)
Power Spectrum (dB)

IV. EXPERIMENTAL RESULTS

[5] by utilizing the STE window function with\/ = 20. levels. In the noisier cases, RLP yields the smallest values
The regularization factok is 10~7, 10719 and10~'° in RLP,
RWLP, and RSWLP, respectively. For the Blackman, boxcar V. CONCLUSION

and Hamming windowed RLP the regularization factofs Regularization of all-pole models was introduced for ro-

fixed to 107%. The A value for each method was optimized st speaker verification. The proposed methods outpegirm

based on the smallest equal error rate criterion on clean d&§andard DFT and LP techniques under two different additive
The spectra are processed through a 27-channel triangular

filterbank and logarithmic filterbank outputs are converted!http:/iwww.speech.cs.cmu.edu/comp.speech/Sectiaia/Boisex.html



MANUSCRIPT, SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS. 4
TABLE |
EFFECT OFAUTOCORRELATION DOMAIN WINDOW FUNCTION USED FOR COMPUTING RE F MATRIX IN RLP
SNR Equal error rate (%) MinDCFx100
(dB) Boxcar Blackman Hamming DAC| Boxcar Blackman Hamming DAQ
clean 7.57 7.52 7.37 7.38 3.07 3.02 3.03 3.03
> 20 7.81 7.78 8.04 7.84 3.18 3.18 3.16 3.19
g 10 8.75 8.85 8.85 8.38 3.57 3.55 3.57 3.45
K 0 10.29 10.02 10.16 9.41 4.17 4.16 4.16 3.81
-10 15.02 15.08 1545 13.61 6.10 6.15 6.06 5.81
o | 20 7.81 7.81 7.78 7.90 3.19 3.15 3.14 3.30
2] 10 8.92 8.51 8.68 8.35 3.44 3.41 3.37 3.46
gl0 10.94 11.05 11.20 9.61 4.32 4.27 4.26 3.96
-10 20.12 20.92 20.73 16.93 7.55 7.76 7.65 6.63
TABLE Il

SPEAKER RECOGNITION PERFORMANCE UNDER ADDITIVE NOISEDAC SEQUENCE IS USED FOR REGULARIZED METHODS FOR A GIVEN NOISE TYPE
AND SNRLEVEL, ALL THE DIFFERENCES ARE STATISTICALLY SIGNIFICANT WITH95% CONFIDENCE ACCORDING TOMCNEMAR’'S TEST.

Fig.

SNR Equal error rate (%) MinDCFx100
(dB) FFT LP RLP WLP RWLP SWLP RSWLH FFT LP RLP WLP RWLP SWLP RSWLH
clean| 7.65 744 7.38 7.48 8.10 7.81 794 | 3.07 3.05 3.03 299 3.33 3.08 3.41
> 20 8.08 7.83 7.84 781 7.75 8.22 7.85 325 322 319 312 3.14 3.21 3.24
% 10 9.32 8.50 8.38 8.79 8.32 9.11 8.50 3.64 356 3.45 357 332 3.62 3.45
R 0 10.46 9.93 941 10.34 9.62 10.06 959 | 413 421 381 419 3.92 4.17 3.92
-10 1535 1496 13.61 15.19 13.86 14.35 13.32 6.63 6.14 581 6.19 6.03 5.94 5.87
o | 20 7.83 7.78 790 7.71 8.21 8.11 8.17 314 312 330 3.09 3.35 3.19 3.44
2110 8.85 8.58 8.35 8.70 8.48 8.78 8.65 | 3.44 348 3.46 3.46 3.53 3.56 3.64
S 0 11.62 11.23 9.61 11.47 10.29 10.93 999 | 453 434 396 4.49 4.35 4.38 4.27
-10 21.27 20.35 16.93 21.02 18.40 19.69 17.64| 8.05 7.67 6.63 7.90 7.22 7.65 7.04
™, NIST 2002 NIST 2002, T NN NIST 2002,
w0 | -, babble noise, —10 dB SNR| | a0 L * babble noise, ~10 dB SNR a0 L babble noise, ~10 dB SNR
£ 20 £ 20+ £ 20 -
2 2 £
E 2 2
g 10 8 10+t 8 10t
"Eﬁ 5 'o‘.— é 5 ~'-~ é 5 |
—FFT (EER:21.28% MinDCF:8.05) | —FFT (EER:21.28% MinDCF:8.05) — FFT (EER:21.28% MinDCF:8.05)
2 | |—LP (EER:20.36% MinDCF:7.67) 1 2 | |—WLP (EER:21.02% MinDCF:7.90) 2 ||—SWLP (EER:19.69% MinDCF:7.65)
- - -RLP (EER:16.93% MinDCF:6.73) - - -RWLP (EER:18.40% MinDCF:7.22) - - -RSWLP (EER:17.64% MinDCF:7.04)
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5 10 20
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noise types, factory and babble noises. In general, ragatar

tion using the DAC sequence yielded considerable improve-
ment on the recognition performance especially at low SNR

for conventional and temporally weighted all-pole methdds
summary, the regularized LP based spectrum estimatiorshold
promise for speaker verification in noisy conditions. Adamt
selection of\ based on estimated SNR level or fundamenta
frequency (as in [9]) is a potential area of future studies.
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