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Abstract. This paper describes our recent efforts in exploring effective 
discriminative features for speaker recognition. There is an obvious trend in the 
past few years that the information fusion from multiple resources is critical to 
improve the performance of speaker recognition system. The extracted 
information for speaker recognition varies from acoustic features to high 
dimensional vectors with different levels of tokenization. In the IIR NIST 2006 
Speaker Recognition System, we integrated cepstral GMM modeling, cepstral 
SVM modeling and tokenization at both phone level and frame level. The 
experimental results on both NIST 2005 SRE corpus and NIST 2006 SRE 
corpus are presented. 
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1   Introduction 

Automatic speaker recognition is the task of identifying a speaker corresponding to a 
given voice. In the past decade, much progress has been made in text-independent 
speaker recognition by using acoustic features, such as Gaussian Mixture Modeling 
(GMM) on amplitude spectrum based features [1] and Support Vector Machine 
(SVM) on Shifted Delta Cepstral (SDC) [2]. In recent years, some tokenization 
methods with higher level information have attracted great interests. These 
tokenization methods convert the speech into different levels of tokens, such as 
words, phones and GMM tokens. For example, lexical features based on word n-
grams has been studied in [3] for speaker recognition; Parallel Phone Recognition 
followed by Language Modeling (PPRLM) [4] has been extensively adopted in 
language and speaker recognition; Gaussian Mixture Model Tokenization [5], [6] has 
been used with the tokens at the frame level for language and speaker recognition. 

It is generally agreed that the integration with different degrees of discriminative 
information can improve the performance of speaker recognition system. The 
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extraction and organization of multiple resource information has become a critical 
task to the success of speaker recognition. 

The acoustic features, such as MFCC features, adopted in speech recognition 
systems are the natural choices for speaker recognition. The Gaussian mixture 
modeling (GMM) based on MFCCs has demonstrated a great success for text-
independent speaker recognition [1]. To model out-of-set speakers, Universal 
background model (UBM) is used to normalize the likelihood scores from different 
speakers. The model of a specific speaker is obtained with Bayesian adaptation based 
on UBM by using the training data of that speaker [1]. Test normalization (Tnorm) [7] 
is another good choice to make score normalization by calculating the mean and 
variance parameters from multiple non-target speaker models. In this paper, a new 
proposed acoustic feature termed temporal discrete cosine transform (TDCT) feature 
[8] is also used to capture the long time dynamic information in the GMM framework. 

Support vector machines (SVMs) have been a powerful classifier in many pattern 
classification tasks. An SVM is a discriminative classifier to separate two classes with 
a hyperplane in a high-dimensional space. In [2], the generalized linear discriminant 
sequence kernel (GLDS) is proposed for speaker and language recognition. The 
feature vectors extracted from an utterance are expanded to a high-dimensional space 
by calculating all the monomials. To simplify the computation, it is assumed that the 
kernel inner product matrix is diagonal. It also shows that the front-end with linear 
prediction cepstral coefficients (LPCCs) give better performance than the front-end 
with MFCCs. We construct two SVM subsystems based on both MFCCs and LPCCs. 

In the passed several years, phonotactic features have proven to provide effective 
complementary cues for speaker and language recognition. The phonotactic features 
are extracted from an utterance in the form of tokens. The tokens may be at different 
levels, words, phones and even frames. PPRLM [4] uses multiple parallel phone 
recognizers to convert the input utterance into phone token sequence. It is followed by 
a set of phone n-gram language models that impose constraints on phone decoding 
and provide language scores. Instead of n-gram phone language models, we proposed 
to use vector space modeling (VSM) as the backend classifier [9]. For each phone 
sequence generated from the multiple parallel phone recognizers, we count the 
occurrences of phone n-grams. A phone sequence is then represented as a high-
dimensional vector of n-gram occurrences. SVM is used as the classifier on the 
concatenated vectors from multiple phone sequences, named as Bag-of-Sounds (BOS) 
vectors. 

The tokenization can also be made at the frame level, such as Gaussian Mixture 
Model Tokenization [5] for language identification. It captures another aspect of 
acoustic and phonetic characteristics among the languages and the speakers, and 
provides more tokens than the phone recognizers from the limited speech data. Same 
as PPRLM, multiple parallel GMM tokenizers can be used to improve speaker 
coverage in speaker recognition. We propose to use speaker cluster based GMM 
tokenization as one of the subsystems in our speaker recognition system that multiple 
GMM tokenizers are constructed according to the speaker characteristics. 

This paper is organized as follows. In Section 2, we introduce the speech corpora 
we used, including the training data, development data and the NIST 2006 Speaker 
Recognition System (SRE) corpus. In Section 3, we describe our six subsystems and 
the score fusion strategy. In Section 4, we present the experimental results on the 



development data (NIST 2005 SRE) as well as on the NIST 2006 SRE data. We make 
discussions in Section 5. 

2   IIR Submission and Speech Corpora 

The NIST 2006 SRE evaluation task is divided into 15 distinct and separate tests. 
Each of these tests involves one of the five training conditions and one of four test 
conditions [10]. The five training conditions are 10-second speech excerpt from a 
two-channel/4-wire (10sec4w), one conversation side of approximately five minutes 
total duration from a two-channel/4-wire (1conv4w), three conversation sides 
(3conv4w), eight conversation sides (8conv4w) and three conversation sides from a 
summed-channel/2-wire (3conv2w). The four test conditions are 10-second speech 
excerpt from two-channel/4 wire (10sec4w), one conversation side from a two-
channel/4-wire (1conv4w), one conversation side from a summed-channel/2-wire 
(1conv2w) and 1 conversation side recorded by auxiliary microphone (1convMic). 

The performance of the NIST speaker recognition system is evaluated by the 
detection cost function. It is defined as a weighted sum of miss and false alarm error 
probabilities:  

 

)1( argarg|argarg| etTetNonTFalseAlarmFalseAlarmetTetTMissMissDet PPCPPCC −××+××=  (1) 

 
 In NIST 2006 SRE, 10MissC = , 1FalseAlarmC =  and arg 0.01T etP = . The 

experiment results presented in this paper are reported in Equal Error Rate (EER) and 
DET curves. EER is used to decide the operating point when the false acceptance rate 
(FAR) and false rejection rate (FRR) are equal. 

2.1 IIR Submission for the NIST 2006 SRE 

IIR’s speaker recognition system participating seven tests that involve 4 training 
conditions and 2 test conditions: 10sec4w-10sec4w, 1conv4w-10sec4w, 3conv4w-
10sec4w, 8conv4w-10sec4w, 1conv4w-1conv4w, 3conv4w-1conv4w and 8conv4w-
1conv4w.  Table 1 shows the total 15 tests of the NIST 2006 SRE and the 7 tests that 
IIR participated. 

There are six subsystems in the IIR speaker recognition system for the NIST 2006 
SRE. These subsystems fall into three categories: (i) spectral features with SVM 
modeling including MFCC feature based spectral SVM (Spectral MFCC-SVM) and 
LPCC feature based spectral SVM (Spectral LPCC-SVM); (ii) spectral feature with 
GMM modeling including MFCC feature based GMM (MFCC-GMM) and TDCT 
feature [8] based GMM (TDCT-GMM); (iii) tokenization features with vector space 
modeling (VSM) including parallel phone recognizers based tokenization: Bag-of-
Sounds (BOS) and speaker clustering based multiple GMM tokenizers (GMM token). 
The first four subsystems capture the characteristics of spectral features while the last 



two tokenization subsystems capture the phonotactic information. Fig. 1 shows the 
system framework of IIR submission. The score fusion is conducted with the six 
subsystems to make the final decision. 

Table 1. The seven tests that IIR participated in the NIST 2006 SRE 

Test segment condition   
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2-chan 
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2-chan 

1conv 
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1 conv 
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raining condition 3conv 

summed-chan  N.A. N.A.  

 

 

Fig. 1. System framework of IIR submission for the NIST 2006 SRE 

2.2 Speech Corpora 

Table 2 shows the training and development data for each subsystem. The tokenizer 
training data are used to model the parallel phone recognizers or to model the parallel 
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GMM tokeniers. Background speaker data are used to train UBM models or to train 
speaker background models.  Cohort data are used to make the Test normalization 
(Tnorm). The NIST 2005 SRE corpus is used to evaluate the performance of 
individual systems. The output scores of the six subsystems are used to train the score 
fusion to facilitate the final decisions on the NIST 2006 SRE data. We will describe 
each of these speech corpora in next section together with the subsystems. 

Table 2. Speech corpora for the training and development 
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N.A. 
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3   System Description 

For the spectral SVM and GMM subsystems, an energy-based voice activity detector 
(VAD) is applied after feature extraction to remove non-speech frames. We train two 
GMMs with 64 mixture components to model the energy distributions of the speech 
frames as well as the non-speech frames by using the development set of the NIST 
2001 SRE corpus. With such a VAD algorithm, about 38% speech and 62% non-
speech frames were detected in the NIST 2006 SRE corpus. 

For the Bag-of-Sounds and GMM token subsystems, the VAD algorithm chunks 
the long conversations into smaller utterances so that the tokenization methods can be 
applied to create phone or GMM token sequence for each of the utterances. The 
utterance based cepstral mean subtraction is performed to filter off the channel 
distortion. 

3.1   Spectral LPCC-SVM and Spectral MFCC-SVM subsystems 

Support vector machine (SVM) is a two-class classifier. In speaker recognition, it can 
be used to model the boundary between a speaker and a set of background speakers. 
The background speakers represent the population of imposters expected during 
recognition. We follow the work reported in [2] and [11] in which generalized linear 



discriminant sequence kernel (GLDS) is proposed for speaker and language 
recognition. 

Two kinds of acoustic spectral features, MFCC features and LPCC features, both 
with a dimension of 36, are used in the two SVM subsystems. For the MFCC front-
end, we use a 27-channel filterbank, and 12MFCC + 12∆ + 12∆∆ coefficients. For the 
LPCC front-end, 18LPCC + 18∆ coefficients are used. 

The feature vectors extracted from an utterance is expanded to a higher 
dimensional space by calculating all the monomials up to order 3, resulting in a 
feature space expansion from 36 to 9139 in dimension. The expanded features are 
then averaged to form an average expanded feature vector for each of the utterances 
under consideration. In the implementation, it is also assumed that the kernel inner 
product matrix is diagonal for computational simplicity. 

During enrollment, the current speaker under training is labeled as class +1, 
whereas a value of -1 is used for the background speakers. The set of background 
speaker data is selected from Switchboard 3 Phase 1 and Phase 2 (for Cellular data) 
and Switchboard 2 Phase 2 and Phase 3 (for landline telephone). We randomly select 
2000 utterances from each of the 4 datasets to form the background speaker database 
of 8000 utterances, with roughly equal amounts of male and female speakers. Each 
utterance in the background and the utterance of the current speaker under training is 
represented with an average expanded feature vector . These average expanded 
features are used in the SVM training. The commonly available toolkit SVMTorch 
[13] is used for this purpose. The result of the training is a vector  of dimension 
9139 which represents the desired target speaker model [11]. During evaluation, an 
average expanded feature vector is formed for each of the input utterances, and 

the score is taken as the inner product between these two vectors, i.e, .  

avb

w

avb
T

avw b
Test normalization (Tnorm) method [7] is adopted in the two subsystems. The 

NIST 2004 training data is used to form the cohort models. In particular, the speaker 
models in the NIST 2004 are used as the cohort models. The training condition of the 
cohort models and evaluation corpus are matched. For example, the trained models in 
the 1side of NIST 2004 are used as the cohort models for the target models in the 
1conv4w training condition of the NIST 2005 and 2006 SRE corpus. Similar concept 
is applied to 10sec4w, 3conv4w, and 8conv4w training conditions. 

3.2 MFCC-GMM and TDCT-GMM subsystems 

Two kinds of spectral features are used in the two GMM modeling subsystems. One is 
the MFCC features same as those adopted for spectral SVM subsystem. Another use 
the temporal discrete cosine transform (TDCT) features [8]. 

Conventional MFCC features characterize the spectral character in a short-time 
frame of speech (typically 20~30 ms). Psychoacoustic studies [13] suggest that the 
peripheral auditory system in humans integrates information from much larger time 
spans than the temporal duration of the frame used in speech analysis. Inspired by this 
finding, the TDCT feature is aiming at capturing the long time dynamic of the spectral 
features. Fig. 2 illustrates the TDCT feature computation procedure. Each cepstral 
coefficient is considered as an independent signal which is windowed in blocks of 



length B. Discrete cosine transform (DCT) is applied on each block, and the lowest L 
DCT coefficients, which contain most of the energy, are retained. Suppose we have M 
coefficients in the MFCC feature vector, the DCT coefficients can be stacked to form 
a long vector with the dimensionality of M L×  . The next TDCT vector is computed 
by advancing the block by one frame. Experimental results show that a block size of 
B = 8, and L = 3 for the DCT, give the best performance on the NIST 2001 SRE 
dataset [8]. The resulting TDCT feature vector has a dimension of 36×3 = 108, and 
corresponds to a total time span of 250ms. 
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Fig. 2. Illustration of the TDCT feature computation 

For both the two GMM subsystems, the gender-dependent background models 
with 256 Gaussian mixtures are trained by using the NIST2004 1-side training data 
subset. The background model having the same gender with the target is used for 
adaptation. In the evaluation, the background model of the same gender with the 
target speaker is used to give the background score. 

3.3 Bag-of-Sounds subsystem 

This approach uses parallel phone tokenizers as the front end, and vector space 
modeling as the back end classifier [9].  

Seven phone tokenizers are constructed, including English, Korean, Mandarin, 
Japanese, Hindi, Spanish and German. English phone recognizer is trained from IIR-
LID database [14]. Korean phone recognizer is trained from LDC Korean corpus 
(LDC2003S03). Mandarin phone recognizer is trained from MAT corpus [15]. Other 
four phone recognizers are trained from OGI-TS corpus [16]. Each phone is modeled 
with a three-state HMM, and 39-dimensional MFCC features are used. Each HMM 
state in English, Korean and Mandarin are modeled with 32 Gaussian mixtures, while 
the states in other languages are with 6 Gaussian mixtures considering the availability 
of training data. Phone recognition is performed with the Viterbi search using a fully 
connected null-grammar network of phones. 

For a given speech utterance, the tokenizers yield seven phone sequences. They are 
converted to a vector of weighted terms in three steps. Firstly, we compute unigram 
and bigram probabilities for each phone sequence, and then organize the probabilities 



into a vector. Secondly, each entry in the vector is multiplied by a background 
component [17]. Finally, we concatenate the seven vectors to form a long vector. 

In the training process of the SVM training, a single vector of weighted 
probabilities is derived from each conversation side. We use a one-versus-all strategy 
to train the SVM model for a given speaker. The conversation side of the target 
speaker is labeled as class +1, while all the conversation sides in the background are 
labeled as class -1. NIST 2002 SRE corpus is used as background data.  During the 
evaluation, the input utterance is converted to the long vector and a score is produced 
from the SVM model. The toolkit SVMTorch [12] with a linear kernel is used. 

3.4   GMM Token subsystem 

This approach uses multiple GMM tokenizers as the front end, and vector space 
modeling as the back end classifier [6]. Each GMM tokenizer converts the input 
speech into a sequence of GMM token symbols which are indexes of the Gaussian 
components scoring highest at every frame in the GMM computation. The GMM 
token sequences are then processed in the same way as the process of phone 
sequences in the bag-of-sounds approach, i.e., the sequences are converted to a vector 
of weighted terms and then recognized by a speaker’s SVM model. 

Inspired by the finding of PPRLM in language recognition where multiple parallel 
single-language phone recognizers in the front-end enhance the language coverage 
and improve the language recognition accuracy over single phone recognizer, we 
explore multiple GMM tokenizers to improve speaker characteristics coverage and to 
provide more discriminative information for speaker recognition [6]. By clustering all 
the speakers in the training set into several speaker clusters, we represent the training 
space in several partitions. Each partition of speech data can then be used to train a 
GMM tokenizer. With each of these parallel GMM tokenizers, a speech segment is 
converted to the feature vector of weighted terms. The multiple feature vectors are 
then concatenated to form a composite vector for SVM modeling. We use the NIST 
2002 SRE corpus for the training of speaker cluster based GMM tokenizers, and use 
the NIST 2004 SRE corpus as the background data. 10 parallel GMM tokenizers, each 
having 128 mixtures of Gaussian components, are constructed. 

3.5 Score fusion of subsystems 

The six subsystems described above are combined together. We use SVM classifiers 
again for the final decision as shown in Fig. 3. For a given speech utterance and the 
reference speaker, a 6-dimensional score vector is derived from the six subsystems. 
The score vectors are first normalized to zero mean and unit variance. Then the 
polynomial expansion of order 1, 2 and 3 are applied to the normalized score vectors. 
Three sets of expanded score vectors with dimension 7, 28 and 84 are obtained. Each 
set of the expanded score vectors are used to train a SVM model. The final decision is 
made according to the averaged value of three SVM scores. 

The NIST 2005 SRE evaluation corpus is used as the training data for these three 
SVMs. The score vectors generated from the genuine utterances are labeled as class 



+1, and the score vectors generated from the impostor utterances are labeled as class -
1. The thresholds estimated from the NIST 2005 SRE corpus are used for final 
True/False decision on the NIST 2006 SRE. The toolkit SVMTorch [12] with a radial 
kernel is used. 

Fig. 3. Score fusion of the six subsystems 

4   Experiment Results 

The NIST 2005 SRE evaluation set is used to evaluate the performance of the six 
subsystems before the whole system is submitted to the NIST 2006 SRE. It is also 
used as the development set to estimate the thresholds of the score fusion which 
provides the genuine/impostor decision for all the trials in the NIST 2006 SRE. Table 
3 shows the equal error rates (EER%) of the six subsystems as well as the score 
fusion on seven test conditions in the NIST 2005 SRE. 

Table 3. EER% of subsystems and fusion on the NIST 2005 SRE evaluation set 

Test / System LPCC 
SVM 

MFCC 
SVM 

MFCC 
GMM 

TDCT 
GMM BOS GMM 

Token Fusion 

10sec4w-10sec4w 29.41 31.28 28.72 30.39 41.80 40.35 24.62 

1conv4w-10sec4w 18.74 19.92 19.78 18.76 28.96 31.05 13.80 

1conv4w-1conv4w 10.55 11.32 13.55 13.81 19.31 22.38 7.82 

3conv4w-10sec4w 14.40 16.02 16.16 15.60 24.93 25.26 11.32 

3conv4w-1conv4w 6.87 8.07 10.26 9.97 14.32 16.11 5.67 

8conv4w-10sec4w 13.05 14.00 14.54 14.45 22.29 24.34 9.76 

8conv4w-1conv4w 5.73 7.17 9.42 9.11 12.22 17.27 4.56 
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Among the six subsystems, four acoustic feature based subsystems outperform the 
two tokenization subsystems and spectral SVM method with LPCC features gives the 
best performance in all the seven test conditions. The score fusion combines the 
scores from both the acoustic feature modules and the tokenization feature modules. It 
improves the overall accuracies significantly. 

With the six subsystems and the thresholds of the score fusion obtained from the 
NIST 2005 SRE corpus, we can now process the NIST 2006 SRE data. Fig. 4 shows 
the performance of the seven test conditions of the NIST 2006 SRE. We show both 
the DET curves and the EER% for the three test conditions, 10sec4w-10sec4w, 
1conv4w-1conv4w and 8conv4w-1conv4w. The other four test conditions have only 
EER% included. In the DET curves, the points of Min C-det denote the best results 
we can achieve from all possible thresholds for the final decision. The points of 
Actual Decision denote the results on our actual designed thresholds. 
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To study the contribution of each subsystem category to the final fusion, we use 
spectral LPCC-SVM subsystem as the baseline. Three other subsystems, MFCC-
SVM, MFCC-GMM and Bag-of-Sounds (BOS), will be combined with LPCC-SVM 
subsystem individually. The experiments are conducted on three test conditions of 
NIST 2006 SRE, 10sec4w-10sec4w, 1conv-1conv4w and 8conv4w-1conv4w that 
involve three training segment conditions and two test segment conditions. Table 4 
shows the results. The numbers in the bracket are relative EER reduction compared 
with the baseline system, the spectral SVM with LPCC features only. 

Since more information is provided, the combinations generally give us better 
performance. For the short test segment (10sec4w-10sec4w), the MFCC-GMM 
subsystem brings the larger error reduction. Although both MFCC-GMM and LPCC-
SVM use acoustic features, they model the spectral features with different method and 
can make good use of more discriminative information. Bag-of-Sounds subsystem 
uses phonotactic features that provide complementary information to acoustic features 
for the speaker recognition task. A relative EER reduction of 22.6% has been 
achieved based on the LPCC-SVM subsystem on the 8conv4w-1conv4w. The 
combination of LPCC and MFCC features with SVM method also produce better 
results in all the three test conditions. 

Table 4. Performances (EER%) of different subsystem combinations on the NIST 2006 SRE 

Test/ 
System 

LPCC-SVM LPCC-SVM 
MFCC-SVM 

LPCC-SVM 
MFCC-GMM 

LPCC-SVM 
BOS 

10sec4w-
10sec4w 23.08 22.94 (0.6%) 21.27 (7.8%) 23.47 (-1.7%) 

1conv4w-
1conv4w 9.55 8.72 (8.7%) 8.44 (11.6%) 8.78 (8.1%) 

8conv4w-
1conv4w 6.33 5.18 (18.2%) 5.07 (19.9%) 4.90 (22.6%) 

5   Summary and Discussion 

We present the IIR speaker recognition system for NIST 2006 SRE. The system 
consists of six subsystems that capture both acoustic features and phonotactic   
information. For the acoustic features, both GMM modeling and spectral SVM 
modeling are adopted. Besides the conventional features, such as MFCCs and LPCCs, 
we propose to use TDCT features to model the long time dynamic of the spectral 
information. To capture speaker discriminative information from the higher level, 
tokenization methods are used to create phone token sequence and GMM token 
sequence from each of the utterances. For a given utterance, all the n-gram 
probabilities of the token sequence are calculated and combined into an n-gram 
statistic vector. A high dimensional vector is obtained by concatenating multiple 
token sequences obtained from parallel phone recognizers or parallel GMM 
tokeniziers. Vector space modeling method is adopted as the backend classifier to 
model these high dimensional vectors.  



The experimental results show that the acoustic features are more effective in 
speaker recognition. The phonotactic features also provide complementary 
information and can improve the system performance significantly on longer speech 
segments. The experiment results on the subsystem fusion proved that the 
combination of the discriminative features from multiple sources is an effective 
method to improve the speaker recognition accuracy. 

References 

1. Reynolds, D. A., Quatieri, T. F. and Dunn, R. B.: Speaker Verification Using Adapted 
Gaussian Mixture Modeling. Digital Signal Processing, 10 (2000), pp. 19-41. 

2. Campbell, W. M., Campbell, J. P., Reynolds, D. A., Singer, E. and Torres-Carrasquillo, P. 
A.: Support Vector Machines for Speaker and Language Recognition. Computer Speech 
and Language, 20 (2006), pp. 210-229. 

3. Doddington, G.: Speaker Recognition based on Idiolectal Differences between Speakers. 
Proc. Eurospeech, 2001. 

4. Zissman, M. A.: Comparison of Four Approaches to Automatic Language Identification of 
Telephone Speech. IEEE Trans. on Speech and Audio Processing, vol. 4, no. 1, 1996. 

5. Torres-Carrasquillo, P. A., Reynolds, D. A. and Deller, Jr., J. R.: Language Identification 
using Gaussian Mixture Model Tokenization. Proc. ICASSP, 2002. 

6. Ma, B., Zhu, D., Tong, R. and Li, H.: Speaker cluster based GMM tokenization for speaker 
recognition. To appear in Interspeech 2006. 

7. Auckenthaler, R., Carey, M. and Lloyd-Thomas, H.: Score normalization for text-
independent speaker verification systems. Digital Signal Processing, vol. 10, no 1-3, pp. 42-
54, Jan 2000. 

8. T. H. Kinnunen, C. W. E. Koh, L. Wang, H. Li and E. S. Chng, “Shifted delta cepstrum 
amd temporal discrete cosine transform features in speaker verification,” submitted to 5th 
International Symposium on Chinese Spoken Language Processing, 2006. 

9. Li, H. and Ma, B.: A Phonotactic Language Model for Spoken Language Identification", 
43rd Annual Meeting of the Association for Computational Linguistics (ACL05), June 
2005, Ann Arbor, USA. 

10. http://www.nist.gov/speech/tests/spk/2006/sre-06_evalplan-v9.pdf 
11. W.M. Campbell, “Generalized linear discrininant sequence kernels for speaker 

recognition,” in Proc. ICASSP, pp. 161-164, 2002 
12. Collobert, R. and Bengio, S.: SVMTorch: support vector machines for large-scale 

regression problems. Journal of Machine Learning Research, vol. 1, pp. 143-160, 2001. 
13. H. Hermansky, “Exploring temporal domain for robustness in speech recognition,” invited 

paper. Proceedings of the 15th International Congress on Acoustics, 3:61-64, 1995. 
14. Language Identification Corpus of the Institute for Infocomm Research 
15. Wang, H.-C.: MAT-a project to collect Mandarin speech data through networks in Taiwan. 

Int. J. Comput. Linguistics Chinese Language Process. 1 (2) (February 1997) 73-89. 
16. http://cslu.cse.ogi.edu/corpora/corpCurrent.html 
17. Campbell, W. M., Campbell, J. P., Reynolds, D. A., Jones, D. A. and Leek, T. R.: Phonetic 

speaker recognition with support vector machines. Proc NIPS, 2003  
 

http://www.nist.gov/speech/tests/spk/2006/sre-06_evalplan-v9.pdf

	IIR Submission for the NIST 2006 SRE
	Speech Corpora

