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Abstract
Most of the single-channel speech separation (SCSS) systems
use the short-time Fourier transform as their parametric fea-
tures. Recent studies have shown that employing sinusoidal
features for the SCSS application results in a high perceived
speech quality. In this paper, we make a systematic study on au-
tomatic speech recognition results for a SCSS system that uses
sinusoidal features composed of amplitude and frequency. We
compare the speech recognition results with those already re-
ported by other participants in the single-channel speech sepa-
ration and recognition challenge. Our results show that a newly
proposed system achieves an overall recognition accuracy of
52.3%, ranges at the median over all other participants in the
challenge.
Index Terms: sinusoidal modeling, single-channel speech sep-
aration and recognition challenge.

1. Introduction
Robust speech recognition for single-channel recorded mixture
is known as one of the most challenging topics in speech
processing. This difficulty is because of the rapid degradation
in the accuracy of typical speech recognition systems as
the desired speaker signal (target) gets corrupted by other
interfering speaker signals (masker). To mitigate this difficulty,
a large group of methods have been proposed.

For instance, in the single-channel speech separation and
recognition challenge provided in [1], several participants
developed separation systems in the form of the combination
of a single-channel speech separation engine and automatic
speech recognition back-end. The challenge aimed at compar-
ing the speech recognition accuracy of different single-channel
speech separation systems suggested by the participants. A
range of different methods were proposed as the separation
engine. The methods are divided into source-driven [2, 3]
and model-driven [4, 5, 6, 7, 8] approaches. The first class of
methods relies on the observed mixture only while the methods
in the second class are entirely based on pre-trained speaker
models. According to the speech recognition results reported
in the aforementioned challenge, the system proposed by IBM
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[7] achieved the highest recognition performance, and since its
performance surpassed the average performance of the human
listeners, it was called the super human speech recognition
system.

The methods suggested in the challenge were either based
on the short-time Fourier transform (STFT), Gamma-tone
filter or pitch frequency features. The objective and subjective
performance measures reported in [8] show that employing
sinusoidal parameters of amplitude and frequency for sep-
aration purposes offers a viable choice by achieving higher
scores in terms of the perceived speech quality compared to the
conventionally used STFT-based separation methods.

While the signal quality results reported for the sinusoidal
single-channel speech separation methods are promising [8, 9],
investigating the impact of sinusoidal model on automatic
speech recognition has been less exploited in the robust speech
recognition literature. In this paper, we study single channel
speech separation and recognition using sinusoidal parameters.
In this way, we build a full separation and recognition system
using speaker identification, signal-to-signal (SSR) estimation,
speech separation and speech recognition modules as shown in
Figure 1. The full system performance is reported in terms of
speech recognition accuracy and is compared to that of other
systems in the challenge.

2. Sinusoidal Single-Channel Speech
Separation and Recognition System

Figure 1 shows the block diagram of the sinusoidal single-
channel speech separation and recognition system for the
speech separation and recognition challenge in [1]. The sys-
tem is targeted to separate speech mixtures composed of two
speakers and then recognize without anya priori knowledge of
their identities or gain value under which the speaker signals
have been mixed together. The separation and recognition sys-
tem is composed of these major parts: (1) speaker identification
(SID) whose goal is to identify the identities of the underlying
speakers in the mixture followed by a gain estimation module
which estimates the mixing gain under which they are mixed
together, (2) a speech separation module which aims at separat-
ing the mixed speech into two separated output signals, and (3)
speech recognition which recognizes the separated signals. In
the following, we briefly explain each block.



Figure 1: Block diagram of the proposed joint speaker identification, speech separation and recognition system. The codebooks for
speaker one and two are indicated byC1 andC2, respectively.

2.1. Sinusoidal Feature Parameters

The features to be selected for a model-driven speech separation
system need to meet at least two requirements: (1) low number
of features for computational and statistical reasons (curse of
dimensionality), and (2) high re-synthesized signal quality to
ensure a good separation performance. Here we choose sinu-
soidal parameters which satisfy both of the aforementionedre-
quirements [8]. Using the sinusoidal modeling as in [10], the
underlying speaker signals are transformed into a parametric
feature set composed of amplitude, frequency and phase vec-
tors of sinusoidals. Furthermore, it was concluded in [8] that
using the sinusoidal parameters results in improved speechsep-
aration performance compared to the STFT counterpart in terms
of both objective and subjective measures.

At each frame, we represent thekth speaker signal as below

sk(n) =

L∑

i=1

Ak,i cos(nωk,i + φk,i) + ek(n), (1)

wherei is an index used to refer to theith sinusoidal component
characterized by the amplitudeAk,i, frequencyωk,i and phase
φk,i, respectively,0 ≤ n ≤ N − 1 with N as the window
length,k denotes thekth speaker in the mixture withk ∈ [1, 2],
ek(n) is the additive noise andL is the sinusoidal model order.
Among many sinusoidal modelings in the literature, here, we
employ a modified version described in [10]. The spectral coef-
ficients are translated according to the mel-frequency scale. At
each frequency band, we select sinusoidal amplitude and fre-
quency corresponding to the peak with the highest amplitude
which is equivalent to choosing the maximum likelihood esti-
mate for frequency of single sinusoid in white Gaussian noise
per band.

2.2. Speaker Identification and SSR Estimator

The speaker identities and the SSR level, under which the un-
derlying speakers are mixed together, are not knowna priori in
the observed mixture. These two parameters are required forthe
separation engine. The system in [7], namedIroquois, which in
conjunction with a speech separation system, provided an aver-
age identification accuracy of 98% on the GRID corpus [1]. A
modified version of theIroquois system, by flooring the expo-
nential argument in likelihood computation obtained slight im-
provement [4]. A text-independent stand-alone single-channel
speaker identification system was proposed in [11] and is em-
ployed in current architecture, which is designed to be indepen-
dent of the speech separation module. This helps in keeping

the complexity of the algorithm low. It also provides the SSR
estimate as a by-product.

2.3. Speaker Models

Following the selection of sinusoidal features, we need an ap-
propriate approach to model the distribution of these features
for each speaker. The separation system here works based on
the pre-trained source models in the form of speaker codebooks
in the sinusoidal domain [10]. Furthermore in [10], it was con-
cluded that employing a sinusoidal coder as speaker models
results in better quantization performance compared to when
quantizers are trained for STFT features. A better quantiza-
tion performance also means a higher upper-bound separation
performance [8] because the upper-bound performance for a
model-driven speech enhancement method is determined by the
used quantizer [12].

2.4. Double-Talk Detector

In single-channel speech separation problem, it can be very
helpful to classify the mixture speech segments into what isof-
ten referred to as single-talk, double-talk, and noise-only re-
gions. The resulting detector is commonly referred to as a
double-talk detector. Knowledge of such regions is useful since
we are able to process the underlying signals differently depend-
ing on the type. In this regard, such a detector can be effectively
used as a pre-processor for improving the performance [13].

The mixed signal together with the estimated identities are
sent to a double-talk/single-talk detector which classifies the
mixed speech signal into single-talk, double-talk, and noise-
only regions. This information is used to simplify the com-
putationally expensive separation task since one is required to
process only the mixed frames with the separation system. To
detect the double-talk regions with two speakers present, we
employ amaximum a posteriori(MAP) detector proposed re-
cently in [13]. The proposed method is based on the multiple
hypothesis test and works in a speaker-dependent framework
since the information for the speaker identities are already pro-
vided by the SID module.

2.5. Mixture Estimator

In a model-driven single-channel speech separation (SCSS)
method, we need a mixture estimator aimed at searching the
possible codevectors of the speaker models to find two opti-
mal codevectors, one from each speaker model, such that when
mixed, they satisfy a minimum estimation error criterion com-
pared to the mixed signal. Previous separation systems use



either max-model or Wiener filter as their mixture estimator,
which are the MMSE estimator for logarithm and power spec-
trum domain, respectively. In contrast, in the MMSE mixture
estimator for the amplitude spectrum [14], the phase term is
considered as a random variable which provides a more accu-
rate mixture approximation compared to the log-max or Wiener
filter estimators in terms of achieving lower mean square error
for mixture estimation.

It should be noted that under specific conditions, the MMSE
sinusoidal estimator for the magnitude mixture spectrum re-
duces to the log-max and Wiener filter estimators [14]. When
one speaker dominates the other, the mixture estimate reduces
to log-max mixture approximation. Another important case is
when the speaker spectra are orthogonal. Then the mixture es-
timate reduces to the Wiener filter mixture estimate.

2.6. Reconstruction

The two codevectors provided by the mixture estimator in the
previous stage are then passed to a reconstruction module,
which produces the separated signals (see Figure 1). In terms
of how to reconstruct the separated signals, separation meth-
ods can be divided into reconstruction-based [6, 7, 8] and mask
methods [4, 5, 9]. In the former approach, the codevectors
found in the mixture estimation stage are directly used for re-
constructing the separated signals. The mask methods, as the
name suggests, produce a mask based on the codevectors se-
lected from the speaker models. These masks are then applied
to mixture to provide separated speaker signals. Here we usethe
sinusoidal Wiener masks which balance the trade-off between
the cross-talk suppression and minimizing the resulting speech
distortion of the target signal. It also achieves a higher sepa-
ration performance compared to the widely used STFT-based
masks [9].

2.7. Automatic Speech Recognition

The last block as shown in Figure 1 is automatic speech recog-
nition. The words are modeled as whole-word hidden Markov
models with a left-to-right model topology, with no skips over
states. We employed mean subtraction, variance normalization,
and ARMA filtering (MVA) processing of speech features be-
fore modeling [15]. Following the challenge described in [1],
here, we report the speech recognition results (percent correct)
for the target separated output. For the recognition setup,39-
dimensional Mel-frequency cepstral coefficients (MFCC) in-
cluding the logarithmic energy were used. Hamming window
of 25 ms was used. The frame shift was set to 10 ms.

3. Experiments and Results
In this section, we present the speech recognition results ob-
tained for the sinusoidal SCSS explained earlier. We compare
the obtained speech recognition results with those reported by
other participants in the challenge.

3.1. Database

The task in the challenge in [1] is to separate the speech mix-
tures of two speakers drawn from the test dataset composed
of 34 speakers. The corpus consists of 34,000 distinct utter-
ances from 34 speakers (18 males and 16 females). The sen-
tences in the database follow a command-like structure witha
unique grammatical structure as six word composed of verb,
color, preposition, letter, digit and coda such as “set blue at z

Table 1: Percent correct for the sinusoidal separation system
shown in Figure 1 at different mixing scenarios: same talker,
same gender, and different gender.

SSR (dB) -9 -6 -3 0 3 6
Same Talker 43.9 45.9 49.8 53.6 54.1 57.2
Same Gender 43.8 47.5 48.0 50.0 55.3 57.8

Different Gender 48.5 50.5 54.8 57.5 60.2 63.3
Average 45.4 47.9 50.9 53.8 56.5 59.4

five please”. The keywords emphasized for speech recognition
task in the challenge are the items in position 4 and 5 referring
to letter and digit, respectively.

3.2. System Setup

For each speaker, 500 clean utterances are provided for train-
ing purposes. The test data is a mixture of target and masker
speakers mixed at six SSR levels ranging from -9 dB to 6 dB
with a step of 3 dB. For each of the six test sets, 600 utterances
are provided of which 200 are for same gender, 179 for differ-
ent gender, and 221 for same talker. The sentences were orig-
inally sampled at 25 kHz. For practical reasons, we decrease
the sampling rate to 16 kHz. The speech recognition results to
be reported are averaged over all the utterances in the dataset.
For speaker identification, we followed the fusion of the two-
subsystems setup reported in [11]. The SSR is estimated as a
by-product from the SSR-dependent speaker model providing
the maximum likelihood.

For the separation setup, we extract features by employing
a Hann window of length 32 ms and shift of 8 ms. We use split-
VQ based on sinusoidal parameters composed of amplitude and
frequency. The source models are divided into magnitude spec-
trum and frequency parts where each entry is composed of a
sinusoidal amplitude vector and several sinusoidal frequency
vectors as its candidates (for more details see [10]). Accord-
ing to previous experiments, we set the sinusoidal model order
to 100 and for speaker modeling, we use 11 bits for amplitude
and 3 bits for frequency part in the sinusoidal coder. The pre-
trained speaker codebooks are then used in the test phase to use
for the speech separation module. The codebooks are used for
both the mixture estimator and double-talk detection blocks (see
Figure 1).

3.3. Speech Recognition Results

Detailed results for the speech recognition accuracy are shown
in Table 1 for different SSR levels and for different mixing
scenarios. The speech recognition score for the sinusoidal
separation approach gives an overall recognition accuracyof
52.3%. Comparing this result with those reported in [1], it is
observed that the sinusoidal separation approach lies in the me-
dian among the others.

We also compare the speech recognition performance of the
proposed method with those already reported by several other
participants in the challenge [1]. Figure 2 shows the speech
recognition accuracy for all participants in the challengeacross
different SSR levels. From the figure, we conclude that the
proposed method achieves a relatively high performance at low
SSR levels. Compared to other model-driven methods [2, 4, 6],
the method handles low SSR scenarios rather well. This can
be because at such low SSR levels, the MMSE estimator in si-
nusoidal domain performs better than log-max or Wiener filter.
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Figure 2: Recognition results (percent correct) of the automatic
speech recognition systems entered in the the speech separation
and recognition challenge [1].

The other reason for good ASR performance at low SSR lev-
els might be because of strong interference rejection capability
of sinusoidal method as reported in [8, 9]. On the other hand,
as the SSR increases, the proposed method asymptotically gets
close to its best possible performance (quantizer upper bound).
This behavior is quite similar to other model-driven methods
and to the conclusion in [12] that the performance of a model-
driven speech enhancement method is upper-bounded by the
quality of the used quantizer (equivalent to when the correct
codebook indices are knowna priori).

4. Conclusions and Future Work
In this paper, we presented the speech recognition performance
for a sinusoidal single-channel speech separation (SCSS) sys-
tem proposed for the speech separation and recognition chal-
lenge. The experimental results showed that the proposed
system gives a comparable speech recognition performance to
other model-driven SCSS methods and is located on the range
of median over all other participants in the challenge.

In this work, we only reported the speech recognition re-
sults obtained for the task defined in the challenge. Future re-
search should address some of the limitation existing in thecur-
rent task in the challenge. To name a few, the training samples
used to train the speaker models are noise-free and relatively
large and the evaluation corpus consists of only digitally added
mixtures with constant gains. The challenge also neglects the
environmental or background noise effects, as well as the re-
verberation problem. In practice, each one of these issues and
their effect on the overall performance should be carefullystud-
ied. Future work should systematically address how these sim-
plifying yet restrictive and impractical pre-assumptionscan be
relaxed. As an example, recently in [16], a new corpus was
provided for noise-robust speech processing research where the
goal was to prepare realistic and natural reverberant environ-
ments using many simultaneous sound sources.
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