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ABSTRACT These methods are usually combined in a full speaker retogni

Different short-term spectrum estimators for speakefigation ~ SYSt€mM- . o
under additive noise are considered. Conventionally, megjuency Recently, conventional DFT spectrum estimation was coetpar
cepstral coefficients (MFCCs) are computed from discreterigp 0 LP-based methods in speaker verification urjder additpisen
transform (DFT) spectra of windowed speech frames. Regdimd ~ [9]. It was reported that LP-based spectrum estimatorseofaipn
ear prediction (LP) and its temporally weighted variantgehaeen ~ the DFT method in terms of recognition accuracy. In anoteer r
substituted as the spectrum analysis method in speech aattesp Cent study, a non-parametric multitaper spectrum estimats
recognition. In this paper, 12 different short-term spattrestima- ~ used for MFCC extraction in speaker recognition [10, 11] that
tion methods are compared for speaker verification undeitieeld ~Study, the multitaper method also outperformed the stahB&T
noise contamination. Experimental results conducted @mp002 ~ Method. In [12], the minimum variance distortionless reweo
SRE show that the spectrum estimation method has a larga effe  (MVDR) method [13] was proposed for MFCC extraction in auto-
recognition performance and stabilized weighted LP (SWafy ~ Matic speech recognition (ASR) with promising results. 14][ the
minimum variance distortionless response (MVDR) methagidy ~MVDR method was applied to speaker verification. It was reggbr
approximately? % and8 % relative improvements over the stan- that baseline MFCCs outperforms the proposed method wherea
dard DFT method at -10 dB SNR level of factory and babble mpise fusion of two systems improves the recognition accuracy.
respectively in terms of equal error rate (EER). Another LP-based method, regularized LP (RLP), was prapose
in [15] to improve spectral envelope estimation by penafjziapid
spectral changes in the conventional LP method. Anotheplsim
technique for spectrum envelope estimation method usestiite
1. INTRODUCTION cepstral smoothing (ICS) to remove harmonic informatiamnfra
DFT spectrum [16]. To the best of our knowledge, the RLP and
Short-term spectrum estimation is an integral part in dpesd au-  ICS methods have not been previously applied to speakegméco
dio applications. Discrete Fourier transform (DFT) anckéinpre-  tion. The LP variants and multitaper methods in [9, 10, 11lteve
diction (LP) are the two most commonly used methods for esticompared with different speaker recognition set-ups.
mating the short-term spectrum, which is subsequentlysfeamed In this paper, we compare a wide range of different short-
into a feature vector [1]. Typically, mel-frequency cepbiroeffi-  term spectrum estimation methods for MFCC feature exwacti
cients (MFCCs) and linear predictive cepstral coefficihBCCs)  on speaker recognition performance under additive nois¢ant-
are used as features in speech and speaker recognitionhi@ffe@-  nation. Seven different all-pole spectrum estimation mesh the
tures are used for modeling speakers or phonemic informasng,  multi-taper method with three different window functionsdathe
e.g., Gaussian mixture models [3, 4, 5]. ICS based spectrum estimation method are evaluated in cizupa
Two major challenges in speaker recognition are to deal witho a standard DFT method. The all-pole methods are conveitio
channel mismatch and additive noise contamination. Canise  LP, weighted linear prediction (WLP), stabilized WLP (SWLP
match occurs when the training and test handsets or chaareels [17], eXtended weighted linear prediction (XLP) and itshélfaed
different (e.g., landline versus wireless). In additivéseocontam-  version (SXLP) [18], MVDR and RLP.
ination, recognition accuracy decreases because othepemen-
tal sounds get added to the speech signal. A number of tagsiq
have been proposed for compensating these adverse eBgetsch 2. SPECTRUM ESTIMATION METHODS
enhancement techniques such as spectral subtractionr{@jecap-
plied prior to feature extraction. Feature domain methathsas  2.1. Nonparametric spectrum estimators
RASTA filtering [7] and cepstral mean and variance norméiira
(CMVN), in turn, improve robustness against channel mismar  In the conventionaDFT spectrum estimator [1], the power spectrum
additive noise. Score normalization [8] is commonly useddieal- ~ of windowed speech frame is computed as:
ing with score variabilities across different conditionsspeakers.
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tapers with weights\r. Thus, the multitaper spectrum estimat
a weighted average df individual spectra. In the literature, the
exists a number of different tapers for spectrum estimatlarthis
study we consider thEhomsonmultipeakandsine weighted cej
strum estimato{SWCE) tapers as in [11].

The ICS method [16] is based on the cepstral smoothing t
nique. First, the DFT spectrum of the analysis fraffi¢) is com-
puted using (1). The spectral envelope at iteratioA;(f) is then
updated as the maximum of the original spectrum and the murre
spectral envelop&);—1(f),
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Fig. 1. Short-term spectra of an original speech frame taken fham t
NIST 2002 SRE corpus (left) and its factory noise corrup@dm
Ai(f) = max(log |S(f)], Ci—1(f)). 3) SNR) counterpart (right). (a) and (b) parametric (all-palpectra
(c) and (d) non-parametric spectra. The spectra in eachhphz
whereC;(f) is the cepstrally smoothed spectrum atiieteration.  been shifted for better visualization.
Ao(f) =log|S(f)]is used to computé€y(f) for the initial setting

as the starting point. ] ]
The RLP method [15] introduces a penalty measure into the

filter optimization. The objective function for RLP becomEs=

S (x(n) = P vpx(n — k))? 4+ Ag(v), where) is the regular-
A p'® order LP analysis [1] assumes that each speech sample dzation constant ang(v) is the penalty measure which is a function
a given discrete time index, can be estimated as a linear com- of prediction coefficientsy = [vo, v1, ..., v,|T. As ) increases,
bination of itsp previous samplesi(n) = Y V_, arz(n — k),  the corresponding spectral envelope gets smoother and-aso,
wherez(n) is the original speech sample affh) is the predicted RLP reduces to the conventional LP method. Minimizing tigure
sample. The objective of LP analysis is to find the predictwr ¢ larized objective function leads to the following solution
efficients,a, by minimizing the energy of the prediction residual, RLP .

E =% (z(n)—>?_ arz(n — k))*. Givenp prediction coeffi- Vopi = —(R+ADRD) r, (6)
cients,ar, k = 1, 2, ..., p, the LP spectral envelope is computed

2.2. Parametric all-pole spectrum estimators

. whereR is the autocorrelation matriXD is a diagonal matrix in
by: 1 which each diagonal element has the value of the row numlger an
Sue(f) = 5 TR (4) ris the autocorrelation vector. For WLP, SWLP, XLP, SXLP and
1= 2 %=1 ae | RLP the spectral envelope is computed by Fourier-transfayriine
In WLP [17], predictor coefficients)y, are computed by minimiz-  corresponding all-pole transfer function.
ing the energy of a weighted squared error sighai- > (z(n) — The MVDR spectrum estimation method (also known as the
>oh_, bra(n — k))*W,, whereW,, is the short-time energy (STE) Capon method or maximum likelihood (ML) spectrum estinmatio
of the signal history|V,, = Zfﬁl x?(n — i) andM is the length of ~ method) [13] was shown to be an effective method that models t
the STE window. The WLP method corresponds to conventioRal L unvoiced or mixed speech spectra by using the LP coefficigkrs
analysis for the case of weighting function choseriigs = d, for m'™ order MVDR spectrum is computed by
all n andd # 0.
Conventional autocorrelation LP guarantees the statufityre Smvpr(f) = D ! RT3
all-pole model (i.e. filter poles are inside the unit circlE)lter sta- | > ohe i (k)72 7|
bility is essential in speech coding and synthesis apjdioat How-
ever, such a guarantee does not exist for the WLP method., Thus
stabilized WLP S8WLP) was proposed in [17] which uses a recur-
sive weighting function.
In XLP [18], the predictor coefficients;,, are computed by
minimizing the following objective function:

@)

wherem is the MVDR filter order and the parameter§:) are com-
puted by a simple non-iterative method from the LP coeffitsi¢h3].

Fig. 1 shows the short-term spectra of an original voice@sipe
frame (left panel) and ite dB noisy counterpart (right panel) com-
puted using different methods. Prediction orgee= 20 has been
used for the all-pole methods.

P
Exie =) (@()Zno = ) cxa(n—k)Zur)®,  (5) 3. EXPERIMENTAL SETUP

n

where Z,;, = 2=17, 1; + L(ja(n)| + |z(n — j)|) and 3.1. Corpora, classifier and error measurement
Zn,; = 0forj < 0. The stabilized version of XLFSXLP,  To compare different spectrum estimators, we use a Gaussian
corresponds to the case of weighting functi@h ; chosen as  ture model - universal background model (GMM-UBM) [3] witrst

Z;w- =max(Zn,j, Zn—1,j—1). normalization (Tnorm) applied on the log-likelihood rasoores.



Table 1. EERs (in %) for different spectrum estimators under adelifactory noise (The smallest EER for each SNR level witldohe
sub-group is underlined and globally smallest EER in eaghisdolded).

Baseline methodg Temporally weighted methods Multitaper methods Other methods
SNR (dB) | DFT LP WLP SWLP XLP SXLP| Thomson Multipeak SWCH ICS MVDR RLP
original 7.65 7.44 748 7.81 7.94 7.78 7.39 7.41 7.32 8.01 7.62  _7.57
20 8.08 7.83 781 822 8.04 7.98 7.95 8.18 8.00 | 8.45 830 _7.81
10 9.32 8.50 879 911 8.85 8.85 9.12 9.42 9.20 | 9.55 9.12  8.75
0 10.46 9.93 10.34 10.06 10.01 _9.99| 10.63 11.07 11.09 | 10.88 10.36 _10.29
-10 15.35 1496 | 1519 14.35 1455 14.73| 15.43 15.59 _15.26| 16.05 14.78 15.02

Table 2 EERs (in %) for different spectrum estimators under adelibabble noise (The smallest EER for each SNR level withah ea
sub-group is underlined and globally smallest EER in eaghisdolded).

Baseline methods Temporally weighted methods Multitaper methods Other methods
SNR (dB) | DFT LP WLP SWLP XLP SXLP| Thomson Multipeak SWCH ICS MVDR  RLP
original 7.65 7.44 | 7.48 7.81 794 7.78] 7.39 741 7.32 | 8.01 762  _7.57
20 7.83 7.78 771 811 7.94 7.93 7.76 7.96 7.85 | 8.28 819  7.81
10 8.85 8.58 870 878 8.68 8.85 8.85 9.25 9.00 | 9.56 9.19  8.92
0 11.62  11.23 | 11.47 1093 10.63 10.83| 11.65 12.19 12.34| 11.91 11.70 10.94
-10 21.27  20.35 | 21.02 19.69 20.35 20.23| 21.77 21.86 _21.52| 22.03 19.68 20.12

This choice is mainly motivated by the large number of meshod pole methods, the prediction order is seipte= 20. In the tempo-
and control parameters to be evaluated. Experiments acucted  rally weighted LP methods, short-term energy window doraiare
on the NIST 2002 SRE corpus which consists of 330 target gpsak fixed to beM = 20 as in [9, 18]. The MVDR filter order is set to
(139 males, 191 females) and a total number of 39256 tri@1832 m = 28 and for RLP,A = 10~ regularization parameter is used.
genuine, 36277 impostor). The training material consis min- For the ICS spectrum estimatdr,= 6 iteration is selected with 30
utes of conversational telephone speech while the duratidgest  cepstral smoothing coefficieftsk = 6 tapers are used for SWCE
utterances varies from 15 to 45 seconds. Gender dependent ba and multipeak windowing methods aid = 4 tapers for Thomson
ground and Tnorm models with 512 Gaussians are trained ttsing in the multi-taper method.

NIST 2001 SRE corpus.

For the experiments under additive noise, we use factory and
babble noises from the NOISEX-92 databas@he target models,
background models and Tnorm cohort models are trained osigg
inal data and the noise is added to the test samples with a give

erage signal-to-noise-ratio (SNR). Five different valoéSNR are  ¢yq)1est EER of each row is bolded. Fig. 3 and Fig. 4 display th

considered in the experimentsNR € {clean, 20,10,0,-10} dB  pET curves for—10 dB SNR level of a few selected methods for
wherecleanrefers to the original NIST samples. We apply spectralfactory and babble noise, respectively.

subtraction on the test samples as a preprocessing method. Fororiginal data we observe that;

We use equal error rate (EER) as the performance criterigR E
corresponds to the threshold at which the false alarm(iatg and
miss rate( Pmiss) are equal. Additionally, a few selected detection
error trade-off (DET) curves are plotted to analyze the detepe-
haviour of the methods.

4. SPEAKER VERIFICATION RESULTS

Table 1 and Table 2 summarize the results for different speces-
timators under additive factory and babble noises, resmyt The

e The LP-based methods achieve slightly better recognititen r
than the DFT techniquer (65 %). XLP (7.34 %) and SWLP
(7.34 %) outperform the other all-pole methods.

e The Multitaper method with the SWCE window outperforms
the multipeak and Thomson windows. The SWCE method is
the best choice for original data condition.

MFCC features are extracted from 30 ms Hamming windowed * ICS technique gives the highest EERsub1%.
frames every 15 ms. Different methods are evaluated on tlge maForadditive factory noise contamination:
nitude spectrum estimation step of the MFCC extraction gulace. e Conventional LP method gives the smallest EER at high SNR
12 MFC.CS are extra_cted from a 27-channel _mel_-fllterbank.etAft levels (20 dB condition is slightly worse than WLP and RLP).
RASTA filtering, the first and second order derivativesgnd AA) )
are appended to the MFCC vectors. The last two steps areyenerg ~® Thomson method outperforms SWCE and multipeak tec-
based voice activity detection (VAD) and cepstral mean amhnce niques for 20, 10 and 0 dB conditions (e.40.63 %, 11.09

% and11.07 % at 0 dB for Thomson, SWCE and multipeak

normalization (CMVN).
methods, respectively) but SWCE wins at -10 dB SNR.

e For the noisiest case (-10 dB SNR) SWLIR.35 %) outper-
forms the other weighted all-pole method$.(19 %, 14.55
% and14.73 % for WLP, XLP and SXLP, respectively).

3.2. Feature extraction

3.3. Parameter setup for the spectrum estimators

Each spectrum estimator have its own control parameteesnlim-
ber of spectral bins;12, is common for all methods. For the all-

INote that this is different from the number of MFCCs which &sit all
methods

Ihttp://iwww.speech.cs.cmu.edu/comp.speech/Sectiata/Boisex.html
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Fig. 2. DET curves for different spectrum estimation methods uvadeélitive factory (left) and babble (right) noise {0 dB SNR level)

e The ICS method gives the highest EERs at nearly all SNR

levels.

For additive babble noisecontamination, the performance of spec-

trum estimators are very similar to the case of factory noi¢ew-

ever, MVDR method yields the smallest EER for the noisieseca

(-10 dB SNR).

5. CONCLUSION

We compared 12 different spectrum estimators in speakéficeer
tion under additive noise contamination. In clean conditimul-
titaper method with SWCE window outperformed remaining et
ods. In the baseline group, LP outperformed FFT in all cagds?

yielded smaller EER for high SNR levels in comparison to pthe
However, SWLP gave the small-

temporally weighted methods.
est EER in the noisiest case. For the multitaper methodsl|esha

(6]
[7]

(8]

9]

(10]

EERs have been obtained with Thomson window for high SNRs. I111)

the noisiest case, the best recognition accuracy has baamedh
with SWCE. Under factory noise, in noisiest case the SWLhoukt
showed improvement on recognition accuracy over stand&d D
and LP techniques. In our experiments, for babble noiseGatBL

(12]

SNR level, SWLP and MVDR techniques are found to be the two

best choices. Overall, the spectrum estimation step hagdisant
impact on recognition performance under additive noiseasoit

nation and temporally weighted methods and MVDR techniqee a

promising for speaker recognition.
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