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Abstract. In this paper, we propose the temporal discrete cosine transform 
(TDCT) feature for the speaker verification task. The TDCT feature captures 
temporal information from a longer time context beyond the conventional delta 
and double-delta coefficients. We evaluate the effectiveness of the TDCT 
feature on the NIST 2001, NIST 2004, and NIST 2005 speaker recognition 
benchmark corpora by using a standard GMM-UBM recognizer. We compare 
our results against the standard MFCC+Δ+ΔΔ front end, and with the shifted 
delta cepstrum (SDC) feature which is commonly used in the language 
identification task. The results indicate that the TDCT and SDC give similar 
accuracy, and that the TDCT feature outperforms MFCC+Δ+ΔΔ in most of the 
cases. 
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1   Introduction 

Speaker verification is a task of determining whether a given voice sample was 
produced by a claimed person. A speaker verification system extracts features from 
the unknown person’s utterance and compares them with a previously stored model of 
the claimed person. The match score is then compared with a decision threshold so as 
to make an “accept” or “reject” decision. 

Many features have been proposed for speaker verification, including spectral 
features, prosodic patterns, phonetic features and lexical features [1]. In this study, we 
focus on spectral features as they provide the best individual accuracy. The spectral 
front-end of speaker recognition systems extracts short-term features from 20-30 
millisecond frames. The feature vectors are appended with their first- and second 
order time derivative estimates, respectively known as delta- (Δ) and double-delta 
(ΔΔ) features. Each speaker’s training vectors are then used to train a Gaussian 
mixture model (GMM). 
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The delta and double-delta coefficients capture short-term speech dynamics 
(temporal context about 50-100ms). This interval however doesn’t capture longer 
term features like prosodic gestures and syllable usage. These “high-level” features 
are already used in speaker recognition systems [1, 2]. The basic idea in these 
approaches is to first convert the utterance into a sequence of discrete symbols by 
using a tokenizer (such as phone recognizer). The symbol sequences are then modeled 
and matched as if they were text documents. One problem with this approach is the 
rather complex implementation. It is also time-consuming to include multiple 
recognizers based on different features and models. 

In this paper, we propose a temporal discrete cosine transform (TDCT) feature for 
speaker verification. The TDCT feature applies discrete cosine transform (DCT) to 
the cepstral feature “signals” over consecutive frames. Our work was inspired by a 
recent study [3] in which DCT was applied as a pre-processing step in a keyword 
spotting application. In [3], DCT was applied to the mel-filtered spectrogram. In this 
paper, we apply DCT directly to the MFCC coefficients so as to reduce computational 
overhead. 

Another similar temporal feature is the so-called shifted delta cepstrum (SDC) 
which stacks several delta cepstra vectors over a long time context into one vector. 
The SDC feature was originally proposed in [4] for the language identification task. A 
more recent study of the SDC feature is [5] and this feature is used presently as a 
standard method in language identification. We however are unaware of SDC studies 
in speaker verification. We were curious to know whether it could be applied to 
speaker verification as well. 

The rest of the paper is organized as follows. Section 2 describes the SDC and 
TDCT features. Section 3 describes the details of the data sets and classifier used in 
the experiments. Section 4 gives the experimental results. Finally, discussion and 
conclusions are given in Section 5.  

2 SDC and TDCT Features 

The usage of multiple frames around the current one increases the temporal context of 
each feature vector generated. This increase in the temporal context allows for the 
capturing of longer term speech dynamics. Previously, each MFCC vector only 
captures information in the immediate locality of the current frame. We hypothesize 
that the longer term dynamics would allow for better speaker discrimination. 

2.1 Shifted Delta Cepstrum 

The SDC feature [4, 5] as illustrated in Fig. 1, stacks several delta cepstrum frames 
together to form a longer feature vector. The method has four control parameters: 

• Number of MFCC coefficients (M) 
• Time delay for delta feature computation (d) 
• Number of delta vectors for concatenation (K) 
• Frame advance for consecutive SDC block computation (P) 



The typical MFCC+Δ+ΔΔ front-end for speaker recognition uses 12 coefficients and 
a time difference of 1 frame for delta and double-delta computation. This results in a 
36-dimension feature vector. The MFCC vectors that have been extracted traditionally 
are used for the computation of SDC. Therefore, we use M=12 and d=1 as a starting 
point and consider K and P as the major control parameters of the SDC method. 
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Figure 1: Illustration of the SDC feature computation. 

2.2 Temporal Discrete Cosine Transform 

TDCT features are also derived from MFCC features (see Fig. 2). In this method, 
each cepstral coefficient is considered as an independent “signal” which is windowed 
in blocks of length B. Each block is transformed into discrete cosine transform (DCT) 
coefficients. We retain the lowest K coefficients as they contain most of the energy. 
Finally, the DCT coefficients of all MFCC coefficients are stacked to form a long 
vector of dimensionality MK. The next TDCT vector is computed by advancing the 
block by one frame. 

 The difference between SDC and TDCT is in the way they reduce the 
dimensionality of the otherwise very high-dimensional temporal context. SDC sub-
samples the feature vector sequence by dropping intermediate frames. TDCT, on the 
other hand, utilizes information from all the frames within the block and reduces the 
number of features by retaining the “low-frequency” part of the feature stream.  
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Figure 2: Illustration of the TDCT feature computation. 



2.3 Setting the Parameters 

In dynamic features such as SDC and TDCT, the duration of the time context in 
physical units is of special interest as it determines what kind of information is 
contained in the feature vectors. Assuming that the original MFCC frame length is L 
milliseconds and frame advance is S milliseconds, a single Δ vector spans over S+L 
milliseconds. Similarly, a single ΔΔ vector spans over 2S+L milliseconds. Thus, a 
typical MFCC+Δ+ΔΔ vector (L=30ms, S=20ms) contains information over an interval 
of 70 milliseconds. 

For the SDC feature, the parameters d, P and K control the duration of the time 
context. Each SDC vector is computed over N = (K-1)P + 2d + 1 MFCC frames. This 
corresponds to a physical length of (N-1)S + L = [(K-1)P + 2d]S + L milliseconds. As 
d, P and K affect the time context duration, they are expected to be critical 
parameters. Table 1 lists some of the typical parameter values for this feature and the 
corresponding time context duration. 

For the TDCT feature, the time context duration is B cepstral vectors. Since we use 
the MFCC+Δ+ΔΔ vectors as the input to TDCT, this corresponds to a physical length 
of (B-1)S + L + 2S milliseconds. Table 2 lists some typical parameter values for the 
TDCT feature and their corresponding time context durations. 

Table 1: Time span of SDC feature in milliseconds (L=30ms,S=20ms). 

 d =1 d =2 d =3 
 P =1 P =2 P =3 P =1 P =2 P =3 P =1 P =2 P =3 

K=1 70 70 70 110 110 110 150 150 150 
K=2 90 110 130 130 150 170 170 190 210 
K=3 110 150 190 150 190 230 190 230 270 
K=4 130 190 250 170 230 290 210 270 330 
K=5 150 230 310 190 270 350 230 310 390 

Table 2: Time span of TDCT feature in milliseconds (L=30ms, S=20ms, d=1) 

B=1 B=2 B=3 B=4 B=5 
70 90 110 130 150 
B=6 B=8 B=12 B=16 B=20 
170 210 290 370 450 

3 Experimental Setup 

We use the standard GMM-UBM classifier [6] with a global verification threshold to 
assess the performance of the features. We follow the NIST speaker recognition 
evaluation rules in our experiments [7]. 



3.1 Data Sets 

We use the NIST 2001, NIST 2004, and NIST 2005 speaker recognition benchmark 
corpora for our experiments [7]. All of the corpora are conversational telephone 
speech recorded over various channel conditions and they are disjoint. The NIST 
2001 corpus is used for tuning the control parameters of the SDC and TDCT methods. 
The NIST 2004 corpus is used for studying the effects of channel and language 
mismatch and also for tuning the combination weight for the fusion of TDCT and 
MFCC+Δ+ΔΔ features. The NIST 2005 corpus is then used for validating the 
effectiveness of the fusion. Table 3 summarizes the data sets used, including the 
training data for the universal background model. 

Table 3: The data sets used in the experiments 

Task Evaluation set UBM training set 
1. Parameter setting of SDC and 
TDCT 

NIST 2001 (41 
speakers, 2000 trials) 

NIST 2001 development set 
 

2. Effects of VAD and feature 
normalization, and comparison of 
SDC, TDCT, and  MFCC+Δ+ΔΔ 

NIST 2001 (full set of 
174 speakers and 
22418 trials) 

NIST 2001 development set 
 

3. Study of mismatch, and tuning 
of fusion weight for MFCC+Δ+ΔΔ 
and TDCT 

NIST 2004 core test 
(1conv4w-1conv4w) 

NIST 2005 1conv training 

4. Validation of fusion NIST 2005 core test 
(1conv4w-1conv4w) 

NIST 2004 1conv training 

 
The 1-speaker detection task of the NIST 2001 corpus contains 174 target speakers 

and there are 22418 verification trials in total (2038 genuine + 20380 impostor). The 
amount of training data is two minutes per speaker and the length of the test segment 
varies from a few seconds up to one minute. In order to allow for faster 
experimentation, we used a small subset for preliminary parameter tuning. This subset 
has 41 target speakers (20M+21F) and 2000 verification trials. This list was generated 
by random sampling from the original NIST trial list while keeping the 
genuine/impostor ratio as per the original 1:10. 

The core test of the NIST 2004 corpus includes data from 616 speakers 
(248M+368F) and there are 26224 verification trials in total (2386 genuine and 23838 
impostors). On the other hand, the NIST 2005 corpus core test includes data from 646 
speakers (274M+372F) and the number of trials is 31418 (1941 genuine and 29477 
impostors). For both the NIST 2004 and NIST 2005 corpora, the training and testing 
files of the core test consist of five minutes of conversational speech. As each five 
minute conversation is shared between two parties, each conversation is estimated on 
average to contain about 2.5 minutes of speech data from the party of interest. 



3.2 MFCC and GMM-UBM Setup 

The MFCC coefficients 1-12 that we use are computed from a 27-channel mel-
filterbank over L=30ms frames and window shift S=20ms. For SDC feature, the 24 
MFCC+Δ features are used as input while for the TDCT feature, the 36-dimensional 
MFCC+Δ+ΔΔ features are used as input. We apply energy-based voice activity 
detection (VAD) followed by conversation-level mean and variance normalization for 
all of the three feature sets. Since the VAD was performed on a frame-by-frame basis, 
the dropping of low-energy feature vectors for the SDC and TDCT features is done 
using a voting scheme. In order for a feature vector to be dropped, 60% or more of the 
multiple frames that have been used to generate each SDC or TDCT vector must be 
deemed as non-speech. 

We use diagonal-covariance Gaussian mixture model (GMM) as the speaker model 
[6]. An N-component universal background model (UBM) is developed by training 
independently two gender-dependent GMMs of size N/2 using the expectation-
maximization (EM) algorithm. A gender-independent N-component background 
model is constructed by pooling the parameter vectors of the two models followed by 
mixture weight renormalization.  The target speaker models are obtained by adapting 
the UBM parameters towards the speaker’s training data using maximum a posteriori 
(MAP) adaptation principle. We adapt only the mean vectors and use a relevance 
factor of 15. The average log-likelihood ratio between the target model and the UBM 
is used as the match score. The fast GMM-UBM scoring algorithm [6] using the top-
20 mixture components is employed. 

4 Results 

4.1 Setting the Parameters 

We first study the effect of control parameters on recognition accuracy by using the 
41 speaker tuning set, each speaker model having 64 Gaussian components. For the 
SDC feature, parameters d=1, P=3, and K=3 are suggested in [5] for the language 
recognition task. We first start with P=3, K=3, using MFCC features as the input and 
vary d= {1, 2, 3}. The detection error trade-off (DET) curves in Fig. 3 show that d=1 
gives worse result when compared with d=2, and d=3. For the rest of the SDC 
experiments, we fix d=2. 

Next, we study the effect of the K and P parameters of the SDC feature. Equal 
error rates (EER) for the tuning set are given in Table 4. We observe that setting P=2 
and K=4 gives the best result (EER=13.6%), along with using MFCC+Δ features as 
the source. The dimensionality of the SDC feature for this setting is 4x24 = 96, and 
the time context duration 230 milliseconds. Interestingly, the other parameter setting 
having exactly same time span (P=3, K=3) gives a worse error rate of EER=14.3%. 
One reason for this could be smaller dimensionality (3x24=72). 
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Figure 3: Effect of the delay parameter of the SDC method (using NIST 2001 subset). 

Next, we study the parameters of the TDCT method. The results in Table 5 show 
that best parameter setting is B=8 and K=3, which corresponds to a time duration of 
210 millisecond and dimensionality of 3x36=108. Comparing the parameter stability 
of the SDC and TDCT method, the latter has smaller variance in the error rates over 
the experimented combinations. 

We next study the effects of voice activity detection (VAD) and feature 
normalization by using the full NIST 2001 detection list with GMM of 512 
components. Based on the tuning results, we set (P, K) = (2, 4) for the SDC feature 
and (B, K) = (8, 3) for the TDCT feature. The results in Figures 4 and 5 show that the 
usage of the VAD and feature normalization improved accuracy. 

Table 4: Effect of SDC control parameter on the NIST 2001 subset, EER (%) 

d=2, K=3 d=2, P=2 
P=1 15.1 K=1 19.4 
P=2 14.1 K=2 15.3 
P=3 14.3 K=3 14.1 
P=4 15.5 K=4 13.6 
P=5 14.8 K=5 14.4 

Avg.=15.1, Std=1.6 

Table 5: Effect of TDCT control parameters on the NIST 2001 subset, EER (%) 

K=2 K=3 K=4 
B=16 14.2 13.6 14.4 
B=12 13.8 14.1 13.9 
B=8 14.1 14.2 12.4 

Avg.=14.4, Std.=1.2 
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Figure 4: Effect of VAD & feature normalization on SDC (NIST 2001 core test). 
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Figure 5: Effect of VAD & feature normalization on TDCT (NIST 2001 core test). 

 

4.2 Comparison of MFCC+Δ+ΔΔ, SDC, and TDCT 

We next compare the MFCC+Δ+ΔΔ, SDC and TDCT features (see Fig. 6). VAD and 
feature normalization is used for all the features as explained in Section 3.2. The three 
individual recognizers yield rather similar performance in terms of EERs. However, 
the individual curves are rotated differently, implying differences in the extreme ends 
of the DET curve. For instance, the MFCC+Δ+ΔΔ recognizer is worse compared with 



the SDC and TDCT recognizers at low false rejection rates (user-convenient 
applications). The SDC feature in turn is worse compared with MFCC+Δ+ΔΔ and 
TDCT features at low false acceptance rates (secure applications). Since the SDC 
feature seems to be more sensitive to it’s parameter settings, we drop it from further 
experiments and concentrate on comparing the properties of MFCC+Δ+ΔΔ versus 
TDCT. 
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Figure 6: Comparison of the three features (NIST 2001 core test). 

4.3 Channel and Language Mismatch 

We next study the effects of channel and language mismatch on the core test of the 
NIST 2004 corpus. We further enhance the GMM-UBM recognizer by using gender-
dependent scoring in these tests, i.e. using a background model that has the same 
gender as the target speaker, as permitted by the NIST test protocol [7]. This yields an 
absolute improvement of about 1% in EER over the combined background model. 
Both the MFCC+Δ+ΔΔ and TDCT classifiers use the same background speakers, 
though the number of Gaussian components is optimized separately for each feature. 
We use 512- and 256-component gender-dependent GMMs for MFCC+Δ+ΔΔ and 
TDCT respectively. 

 
Using the information provided in the key file, we extract subsets of trials according 
to the similarity or difference of the testing and training utterance channel type 
(landline /cellular /cordless), and language (English / Spanish / Russian / Mandarin / 
Arabic). We decided to consider the “cordless” and “landline” channel types as being 
the same. From the results shown in Table 6, we observe that both features degrade 
when either channel or language mismatch is present. This is an expected result. 
Furthermore, the TDCT feature gives consistently better results. The improvement 
however is marginal. We therefore next study whether fusion of the two features 
improves accuracy. 
 



Table 6: Effect of channel and language mismatch (NIST 2004 core test), EER (%) 

Factor Condition #Trials MFCC+ 
Δ+ΔΔ 

TDCT 

Same channel 15023 13.9 13.5 
Different channel 10649 15.9 15.6 Channel 
Unknown 552 11.5 10.3 
Same language 16981 13.8 13.4 Language Different language 9243 16.2 16.1 

 All trials 26224 14.9 14.5 

4.4 Combining MFCC+Δ+ΔΔ and TDCT 

We combine the scores of the MFCC+Δ+ΔΔ and TDCT classifiers as wMFCCsMFCC + 
(1-wMFCC)sTDCT, where 0≤wMFCC≤1 is the weight of the MFCC+Δ+ΔΔ classifier and 
s(.) are the average log likelihood ratio scores of the individual classifiers. The result 
on the NIST 2004 corpus is shown in Fig. 7. Any combination weight improves the 
accuracy over the TDCT classifier alone. The best result is obtained by selecting 
wMFCC=0.8, which reduces the EER from 14.5% to 14.0%. 
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Figure 7: Accuracy of the score fusion of MFCC+Δ+ΔΔ and TDCT (NIST 2004 core set). 

 
Table 7 displays the fusion result on an independent validation set, the NIST 2005 
corpus. In addition to the core test (5min train + 5min test) we optimize the weights 
for six other test conditions. In all cases, the weight is set to an optimum value on the 
corresponding condition of the NIST 2004 corpus. We observe that the fusion is 
successful in most of the cases. The improvement itself however is minor, which 
would suggest perhaps using a different fusion strategy. 
 



Table 7: Accuracy of the recognizers on the NIST 2005 core test. The fusion weights 
 have been optimized separately for each of the conditions on the NIST 2004 core test. 

Average segment length EER (%) 
Training Testing MFCC TDCT Fusion 

10 sec 10 sec 28.6 30.4 27.8 
5 min 10 sec 19.8 18.8 18.6 
5 min 5 min 13.6 13.8 13.3 

3 x 5 min 10 sec 16.2 15.6 15.7 
3 x 5 min 5 min 10.4 10.1 10.0 
8 x 5 min 10 sec 14.5 14.5 13.8 
8 x 5 min 5 min 9.6 9.2 9.5 

5 Discussion and Conclusions 

In this paper, we introduced the TDCT feature for the speaker verification task 
with the aim of incorporating longer-term temporal information into the features. We 
have studied the accuracy of the TDCT feature using a GMM-UBM classifier 
approach on three NIST corpora, and compared the results with the conventional 
MFCC+Δ+ΔΔ front-end. We also compared results to an SDC front-end which is a 
standard feature for the language identification task. 

Comparing the SDC and TDCT methods, the differences as observed on the NIST 
2001 corpus were small. However, the TDCT feature with fewer number of control 
parameters seems more attractive. The best parameter settings of the SDC (d=2, P=2, 
K=4) and the TDCT (B=8, K=3) methods correspond to time contexts of 230 and 210 
milliseconds respectively. These durations are close to each other and they both are 
significantly longer compared with the 70 milliseconds of the standard MFCC+Δ+ΔΔ 
front-end. We hypothesize that these longer-term features contain added speaker 
information and believe this approach has room for further studies. 

Further analysis of the MFCC+Δ+ΔΔ and TDCT front-ends on the NIST 2004 and 
NIST 2005 corpora indicated that the TDCT outperforms MFCC+Δ+ΔΔ in most of 
the cases and a weighted score combination of the features yields also yields 
improvement. The improvement however was minor. A possible approach to better 
harness the potential of the TDCT feature would be to use a different classifier, such 
as the support vector machine (SVM) [8]. We are currently working on this direction. 

The simple weighted score fusion might also be inadequate to take full advantage 
of the individual benefits of the short- and long-term temporal features. A possible 
clue in that direction would be that we have successfully combined MFCC+Δ+ΔΔ, 
TDCT and LPCC+Δ features using a multilayer perceptron (MLP) score combiner in 
[9]. The relative improvements on the EER over the best individual classifiers when 
tested on the ISCSLP 2006 speaker evaluation special session’s evaluation corpus 
were 18% and 52% respectively on mismatched and matched channel conditions [9].  
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