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Abstract

It is well known that automatic speaker verification (ASV¥sy
tems can be vulnerable to spoofing. The community has re-
sponded to the threat by developing dedicated countermesasu
aimed at detecting spoofing attacks. Progress in this argea ha
accelerated over recent years, partly as a result of thesfast
dard evaluation, ASVspoof 2015, which focused on spoofing
detection in isolation from ASV. This paper investigates it
tegration of state-of-the-art spoofing countermeasuresrimi-
nation with ASV. Two general strategies to countermeaswe i
tegration are reported: cascaded and parallel. The papertse
the first comparative evaluation of each approach performed
with the ASVspoof 2015 corpus. Results indicate that, even
in the case of varying spoofing attack algorithms, ASV perfor
mance remains robust when protected with a diverse setesf int
grated countermeasures.

Index Terms: Automatic speaker recognition, spoofing, coun-
termeasures, presentation attack detection.

1. Introduction

It has long been suspected that automatic speaker vewficati
(ASV) systems can be vulnerable to spoofing [1], also referre
to as presentation attacks [2]. Spoofing refers to the friandu
manipulation of an ASV system with specially crafted speech
data in order to provoke false alarms. The Interspeech 204-3 s
cial session on Spoofing and Countermeasures for Automatic
Speaker Verification [3] was organized to stimulate theatsl|
oration needed for the collection of standard datasets laad t
definition of protocols and metrics for future research.

The first Automatic Speaker Verification Spoofing and
Countermeasures ChallengaSVspoof) [4] followed soon af-
ter in 2015. This first evaluation aimed to promote the dgwelo
ment of generalized countermeasures [5], namely counterme
sures with the potential to detect varying and unforeseenfsp
ing attacks; the ASVspoof 2015 evaluation dataset condaine
spoofing attacks generated with 10 different speech syisthes
and voice conversion spoofing algorithms. Being the firskeva
uation of its kind, the evaluation focused on spoofing daiact
in isolation from ASV.

Evaluation results [4] showed considerable variation in
spoofing detection performance. Many systems obtained good
performance for some spoofing conditions, but relativelgrpo
performance for others, most notably the S10 conditiont(uni
selection attack) for which no similar training materialsyao-
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vided in the development set. These results suggest thatka ba
of fused countermeasures may prove beneficial.

While the broader picture was encouraging, with some ex-
ceptionally low error rates being achieved for some coonj
even small spoofing detection errors may yet have significant
impacts on ASV performance. The integration of spoofing
countermeasures with ASV was foreseen at the time as a future
goal [6].

The contributions of this paper are thus two-fold. First, we
report a new study of fused, state-of-the-art spoofing tetec
systems evaluated on the ASVspoof 2015 dataset. This work is
performed with a host of different countermeasures deeglop
by three different research groups. The second contribuée
lates to a study of different ASV and countermeasure integra
tion strategies. The manner in which the two tasks shoultl bes
be combined has attracted only modest attention to dat@ fig.
work reported in this paper is the first reported for the stadd
ASVspoof 2015 dataset.

2. ASV and countermeasure integration

Spoofing countermeasures (CMs) are expected to improve the
reliability of biometric systems by preventing fraudulestess.

It is however difficult to gauge the practical impact of CMs un
less they are evaluated when integrated with a biometrie sys
tem [8]. A diverse body of research reports the combination
of CMs in the context of many different biometric modalities
especially for fingerprint and face verification [9, 10, 12].1

While they have a common goal of preventing fraudulent
access, ASV and CM systems have specific objectives. They
are illustrated in Table 1. While the ASV system should regec
zero-effort impostor (the speakers differ), the CM shodtedt
a valid trial (which is genuine human speech). The problem of
ASV and CM integration is somewhat different to conventiona
fusion, such as combining two ASV systems trained on differe
features or datasets, which typically involves two systeritls
identical objectives.

Since genuine trials should be accepted by both systems
and since either ASV or CM systems could cause the rejection
of impostor or spoofed trials, a simple cascaded combinatio
of ASV and CMs provides a straightforward solution. This ap-
proach is illustrated in Fig. 1(a). The cascaded approaciresa
ported in [13] which describes a countermeasure to prot8st A
from synthetic speech spoofing attacks. A similar approaah w
reported in [14] for the protection of ASV from voice conver-
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Figure 1:Block diagrams showing integration of ASV with CM:
(a) cascade and (b) parallel.

Table 1: Definition of positive and negative trials for ASV and
CM tasks.

Task Genuine Z.ero-effort .Spoofing
impostor | impostor
Stand-alone ASV +1 -1 -1
Stand-alone CM +1 +1 -1
ASV with CM +1 -1 -1

sion spoofing attacks. The cascaded system illustratedyiriFi
will only accept trials which produce an ASV scof&:{reasv)
greater than or equal to the recognition threshéld.{. Only
accepted trials are then processed by the CM where trias wit
a CM score $corecn) greater that the CM threshold.,) are
then finally accepted. The final decision is thus obtained by
ANDing the ASV and CM decisions.

The cascaded approach is, however, not the only solution.

A parallel approach such as that illustrated in Fig. 1(b) lsan
used to combine ASV and CM scores in order to obtain the
decision for a given trial based on a single threshéidi;).

An approach similar to this was used in [15]. This paper repor
the performance of different ASV and CM systems which are
first combined separately and subsequently fused accotding
one of the approaches illustrated in Fig. 1. Until now, nohsuc
comparison has been reported in the literature.

3. System descriptions

The ASV and CM systems used for experiments reported in
this paper have been developed by different partners of the E
H2020 OCTAVE project There are two different ASV systems
(ASV1-2) and six different CM systems (CM1-CM6).

Ihttp://ww. oct ave- proj ect . eu/

3.1. CM systems

All CM systems employ the same back-end which is a simple
two-class classifier based on Gaussian mixture models (GMM)
A GMM is trained for each class, namely genuine and spoofed
speech by means of tlexpectation-maximizatio(EM) algo-
rithm. Scores are the log-likelihood ratio given the two mod
els. The GMM-based approach often outperforms more sophis-
ticated classification methods for the ASVsp@6fl5 dataset,
e.g. [22, 18].

Our six CM systems differ only in their front-ends. A sum-
mary of the different systems is shown in Table 2. All are re-
cent and at the state-of-the-art as judged by results geera
using the ASVspoof 2015 database [16, 18]. Common to all is
the use of cepstral processing and, importantly, the alesehc
static features; dynamic features give better performanpee-
liminary investigation [16]. Delta and delta-delta codffitts
are all extracted in the usual way. No speech activity digtect
is used since non-speech frames contain information uf=ful
spoofing detection at least on ASVspaofi5. Details of each
feature set and the common back-end are given below.

CM1: Conventionalmel-frequency cepstral coefficients
(MFCCs) are extracted using a bank of 20, triangular-shaped
filters positioned on a mel scale and the application of tise di
crete cosine transform (DCT) to the filterbank log energies.

CM2: Inverted-mel frequency cepstral coefficierfts-
FCCs) are extracted in similar fashion to MFCCs except that
filters are placed on an inverted-mel scale [23] (See [16&for
illustration).

CM3: Linear frequency cepstral coefficienisFCCs) are
computed in the same way as MFCCs except that filters are po-
sitioned on a linear scale.

CM4 Originally reported in [17],cochlear filter cepstral
coefficient{ CFCCs) have shown promise in detecting spoofed
speech. CFCCs model the physiological elements of the human
hearing system, namely the cochlea, the inner hair cellstand
nerve spike density. The work reported here uses the same con
figuration as [24] for the extraction of 12 static coefficent

CM5:  Originally reported in [18],constant Q cepstral
coefficients(CQCCs) are based on the constant Q transform
(CQT) [25] popular in music processing. The constant Q trans
form is a time-frequency analysis tool which employs vdgab
time-frequency resolution, providing higher frequencgale-
tion for lower frequencies and higher time resolution fagher
frequencies. First, the power spectrum is computed with the
CQT. Second, cepstral analysis is performed by first lisazagi
the frequency scale and then by computing the DCT in the usual
way to derive a set of 19 coefficients.

CME6: Gammatone frequency cepstral coefficients
(GFCCs) are based upon Gammatone filters derived from
psychophysical observations of the auditory periphery].[19
The filterbank is a standard model of cochlear filtering which
emulates the characteristics of the human basilar membrane
Filters and filter bandwidths are positioned according t® th
equivalent rectangular bandwidth (ERB) scale. In contrast
the standard approach, the gain of each filter is set to givaleq
emphasis to each of 128 bands. The DCT is applied in the usual
way to log filterbank outputs to produce a set of 20 coeffigent

3.2. ASV systems

ASV configurations are also summarised in Table 2. Details of
each are provided in the following.

ASV1: Our first ASV system is based on the MFCC fea-
tures and a Gaussian mixture model — universal background



Table 2:Summary of the countersmeasures (CM) and speaker veuficayistems used for experiments reported in this paper.

Task Name Feature (Dim.) Classifier Development Data|
CM1 [16] MFCC-40
CM2 [16] IMFCC-40
Countermeasures CM3 [16] LFCC-40 GMM-ML ASVspoof 2015
Systems CM4 [17] CFCC-40 Mixtures: 512 (Train Set)
CM5 [18] CQCC-40
CM6 [19] GFCC-40
Speaker ASV1 [20] MFCC-60 GMM-UBM TIMIT, RSR2015
Verification ASV2 [21] MFCC-60 i-Vector TIMIT, RSR2015

model (GMM-UBM) architecture [20]. MFCCs are the same
as those used for CM1. For ASV, however, static coefficients
are retained hence a feature dimension66f For training
target models, first a gender-dependent UBM6d2 compo-
nents is trained with the speech data from the TIMIT [26]
and RSR2015 [27] corpora. Target models are created using
maximum-a-posteriori (MAP) adaptation with a relevance fa
tor of 3. Scores are the log-likelihood ratio computed between
the target model and the UBM.

ASV2: The second is an i-vector system in which GMM
super-vectors are projected into a low-dimensional spaee r
ferred to as the total variability space [21]. Our i-vectars
computed using the same MFCCs as used for ASV1, from
the Baum-Welch statistics and the total variability mafiix
Gender-dependent UBMs are learned using the same TIMIT
and RSR2015 databases. Whereas we use the full TIMIT data
consisting of 630 speakers (438 male and 192 female) we use
only a subset o0 different sentences for 300 speakers (157
male and 143 female) from the RSR2015 database. This gives
5950 sentences for male speakers and 3350 sentences fte fema
speakers which are used as development data TFheatrix is
estimated on the same data. The i-vector dimension is set to
300. Since each target has five different sentences for enrol-
ment, extracted i-vectors are averaged to derive a singile-tr
ing i-vector per speaker. Finally, the score is given by th&re
similarity between the length normalized training anditest-
vectors. Note that using probabilistic linear discrimihanal-
ysis (PLDA) could be helpful for scoring [28], but we have not
used this in this study. Use of suitable development dath su
as WSJCAM [4], could be helpful.

4. Experimental setup

4.1. Database description

All experiments are conducted with the ASVsp@o6fi 5, a pub-
licly available corpusand supports both the study of ASV and
spoofing CMs. The database is summarized in Table 3. It con-

Table 3: Database description of ASVspoof 2015 database for
joint ASV and CM experiments.

Trial Male Female
Type Dev Eval Dev Eval
Genuine 1498 | 4053 | 1999 5351
Imposter 4275 | 8000 | 5700 | 10400
Spoofed (K) | 21375 | 40000 | 28500 | 52000
Spoofed (U) - 40000 - 52000

4.2. Evaluation metric

As per the ASVspoof 2015 evaluation plan [6], CM perfor-
mance is assessed in terms of dwpial error rate(EER), here
calculated using the BOSARIS toolkiand the so-callede-
ceiver operating characteristics convex hROCCH) method.
EERSs are reported for the development and evaluation subset
and separately for unknown and known spoofing attacks.

ASV performance is assessed in terms of filse rejec-
tion rate (FRR) and thefalse acceptance ratéFAR). With
this evaluation, involving two types of negative classesnaly
zero-effort impostoandspoofing impostqithe FAR is reported
separately for each. The FARs for two types of spoofing at-
tacks, known and unknown, are also computed separately. The
FAR for zero-effort impostors is referred to as FAR(Z), wéees
that for spoofing impostors is referred to as FAR(K) in the
case of known attacks and FAR(U) in the case of unknown
attacks. FARs and FRRs are calculated with EER thresholds
obtained from the gender-dependent development subsgéts an
where EERs are computed from genuine trials and zero-effort
impostors only.

5. Results and discussion

5.1. Countermeasure performance

Comparative CM results are illustrated in Table 4 for the de-
velopment set and the known (K) and unknown (U) subsets of

tains both genuine human as well as spoofed speech generatedthe evaluation set. All the systems perform well and theguerf

using 10 different voice conversion and speech synthesis-me
ods. A subset of five algorithms are used to generate spoofed
speech contained in both development and evaluation subset
and are thus referred to &aown(K) attacks. The evaluation
subset also contains spoofed speech generated with the othe
five spoofing algorithms and are thus referred tauaknown

(V) attacks. Full details of the ASVspoof 2015 database are
available in [4].

2http://datashare.is. ed. ac. uk/ handl e/ 10283/
853

mance of CM5, which uses the recently proposed CQCC fea-
tures [18], is the best among the six. Even then, performance
for the unknown spoofing attacks is poorer than for known at-
tacks.

Also illustrated in the last row of Table 4 are results for a
logistic regression based fusion of scores produced bybvall s
CMs. Here the fusion parameters are estimated from thescore
of development data. CM fusion delivers universally immgav
or equivalent performance to the single best system. Ofcpart

Shttps://sites. google.comsite/
bosari stool kit/



Table 4: Stand-alone spoofing detection performance (in terms
of % EER) for the ASVSpoof 2015 database.

System Male Female
Dev | Eval(K) | Eval(U) | Dev | Eval(K) | Eval(U)

CM1 0.54 0.53 1.58 0.25 0.23 4.21
CM2 0.12 0.12 0.96 0.19 0.25 291
CM3 0.03 0.06 0.76 0.21 0.16 2.43
CM4 1.41 1.10 1.26 0.74 0.61 1.75
CM5 0.01 0.02 0.41 0.03 0.03 1.34
CM6 0.10 0.11 0.61 0.09 0.06 1.95
Fused | 0.00 0.02 0.16 0.00 0.01 0.80

Table 5: Stand-alone ASV performance in terms of % of FRR
and FAR for the ASVspoof 2015 database. FAR(Z): FAR for
zero-effortimpostor, FAR(K): FAR for spoofed known attiack
postor, FAR(U): FAR for spoofed unknown attack impostor.

System Eval Male Female
Metric Dev Eval Dev Eval
FRR 5.67 | 785 | 7.60 | 7.77
ASV1 FAR(Z) | 567 | 6.61 | 7.60 | 6.51
FAR(K) | 59.89 | 59.80 | 34.50 | 30.81
FAR(U) - 39.48 - 33.42
FRR 10.62 | 15.96 | 14.22 | 10.22
ASV?2 FAR(Z) | 10.62 | 9.13 | 14.22 | 13.12
FAR(K) | 59.63 | 55.39 | 45.19 | 46.10
FAR(U) - 50.77 - 50.58
FRR 534 | 738 | 745 | 7.21
Fused FAR(Z) | 534 | 6.24 | 7.45 | 6.26
FAR(K) | 60.76 | 59.15 | 34.99 | 31.68
FAR(U) - 39.76 - 34.03

ular note, the improvement is greatest for the unknown kdtac
thereby showing the benefit of a bank of diverse CMs for spoof-
ing detection.

5.2. Speaker verification performance

Performance for ASV1 and ASV2 systems is shown in Table 5.
Since the decision thresholds are computed on the develdpme
data with zero-effort impostors, the FRR is equal to the FAR(

in this case. The same thresholds are used on the evaluation
set where the FRR and FAR(Z) then differ. Both FAR(K) and
FAR(U) are considerably higher than the FAR(Z).

ASV1 outperforms ASV2; it is not uncommon for a basic
back-end approach to give better results in the case of dhert
ration ASV on clean data. This may also be due to the lack of
suitable development data as used in [7]. Even so, perfarenan
once again generally improves with score fusion, although i
provements are modest and not always consistent.

5.3. Integrated performance

Attention now turns to the integration of ASV and CMs. Result
for cascaded and parallel approaches are given in Tabled 6 an
Table 7, respectively. In both cases, the results are prexéor
ASV1 combined with CM5 (ASV1-CM5) and for fused ASV
and CMs (Fused-Fused). When subjected to spoofing, the per-
formance for integrated ASV and CMs is considerably better
than the performance of stand-alone ASV. For the integrated
systems, the FRR and FAR(Z) are almost the same as for the
stand-alone approach. However, FAR(K) and FAR(U) are re-
markably reduced. The FAR(U) is lower for the parallel inte-

Table 6:Performance for cascaded ASV and CM in terms of %
of FRR and FAR for the ASVspoof 2015 database. FAR(Z): FAR
for zero-effort impostor, FAR(K): FAR for spoofed knowraekt
impostor, FAR(U): FAR for spoofed unknown attack impostor.

Eval Male Female
Metric Dev | Eval | Dev | Eval
FRR 581 | 785 | 7.65| 7.79
FAR(Z) | 5.66 | 6.61 | 7.61 | 6.51
ASVI-CMS5 FAR(K) | 0.00 | 0.02 | 0.01 | 0.01
FAR(V) - 0.96 - 2.60
FRR 5.47 | 7.40 | 7.50 | 7.29
FAR(Z) | 5.33 | 6.24 | 7.44 | 6.26
Fused-Fuse
FAR(K) | 0.00 | 0.00 | 0.00 | 0.00
FAR(U) - 0.34 - 1.75

Table 7: Performance for parallel ASV and CM in terms of %
of FRR and FAR for the ASVspoof 2015 database. FAR(Z): FAR
for zero-effort impostor, FAR(K): FAR for spoofed knowraekt
impostor, FAR(U): FAR for spoofed unknown attack impostor.

Eval Male Female
Metric Dev Eval Dev Eval
FRR 20.83 | 27.69 | 18.95 | 20.65
FAR(Z) | 20.83 | 20.05 | 18.95 | 16.42
ASVL-CMS FAR(K) | 0.00 | 0.00 | 0.00 | 0.00
FAR(U) - 0.20 - 0.87
FRR 14.49 | 14.53 | 15.35 | 14.80
FAR(Z) | 14.49 | 18.65 | 15.35 | 14.73
Fused-Fuse
FAR(K) | 0.00 | 0.00 0.00 | 0.00
FAR(U) - 0.27 - 1.50

gration of ASV and CM systems, though the FRR and FAR(Z)
is considerably worse. Fusion is once again universallgfien
cial.

6. Conclusions

This paper reports the first comparative study of differentrz
termeasures and different approaches to their integratitm
automatic speaker verification using ASVsp@ofl5 database.
Countermeasure fusion is shown to offer the greatest patent
to detect spoofing attacks especially in the face of unknown
spoofing attacks — the only real scenario. The cascadedanteg
tion of ASV and CMs greatly reduces the FAR whereas the FRR
relatively unaffected. On the other hand, while perforneaimc

the absence of spoofing deteriorates, the parallel infegraf

ASV and CMs gives better performance when the ASV sys-
tem is subjected to spoofing attacks. The best performance in
all cases is delivered through fusion which also increases r
silience to unknown spoofing attacks. In future, investayat
can be made on speaker-dependent techniques to tackle spoof
ing attacks.
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