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Abstract
In this paper, we consider speaker identification for

the co-channel scenario in which speech mixture from
speakers is recorded by one microphone only. The goal
is to identify both of the speakers from their mixed sig-
nal. High recognition accuracies have already been
reported when an accurately estimated signal-to-signal
ratio (SSR) is available. In this paper, we approach the
problem without estimating SSR. We show that a simple
method based on fusion of adapted Gaussian mixture
models and Kullback-Leibler divergence calculated be-
tween models, achieves an accuracy of 97% and 93%
when the two target speakers enlisted as three and two
most probable speakers, respectively.

1 Introduction
Speaker identification(SID) is the task of recogniz-

ing one’s identity based on observed speech signal [1].
Typical speaker identification systems consist of short-
term spectral feature extractor (front-end) and a pattern
matching module (back-end). In traditional SID, the ba-
sic assumption is that only one target speaker exists in
the given signal whereas inco-channelSID, the task
is to identify two target speakers in one given mixture.
Distinct from the so-calledsummed channelspeaker
recognition task [2], where only one speaker is talking
most of the time, in the co-channel SID problem, both
speakers talk simultaneously. Research on co-channel
speaker identification has been done for more than one
decade [3], yet the problem remains largely unsolved.

Most of the currentsingle-channel speech separation
(SCSS) systems use a model-based SID module, known
asIroquois [4] to identify the speakers in a mixed sig-
nal. The goal of an SCSS system is to estimate the
unknown speaker signals according to their observed
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mixture. Interaction of the SID and speech separation
modules can be managed in a closed loop to increase
the overall performance [5]. Recognition accuracy as
high as 98% has been reported forIroquoisin [6] which
makes it as a first choice to be included in SCSS sys-
tems [7]. The database in [6] is provided for speech
separation challenge and consists of 2 seconds of small
vocabulary speech for 34 speakers. In theIroquoissys-
tem, a short list of the most likely speakers are produced
based on the frames of the mixed signal that are domi-
nated by one speaker. This short-list is then passed to a
max-based EM algorithmto find the signal-to-signal ra-
tio (SSR) and two speakers identity with an exhaustive
search on codebooks created for speech synthesis [4].

The SSR estimation inIroquois system is based on
finding the most likely combination of speakers code-
books to produce the current speech frame, where in
text-independent case gets more challenging compared
to the database in [6]. Compared to the levels of
{−9,−6,−3, 0, 3, 6} dB SSRs considered by theIro-
quoissystem, SSR can be continuous and time-varying
over a recording in realistic conditions, making the SSR
estimation even more difficult. Furthermore, in real-
time applications of SCSS and in forensic applications it
is necessary to have afastandaccuratesystem to iden-
tify the underlying sources in mixed signal without SSR
estimation required.

To this end, in this paper, we propose an SSR-
independent SID module for co-channel speech. More
specifically, we examine different frame-level likeli-
hood scores and model level distances to solve the prob-
lem and propose a combination of the most success-
ful ones to compare the accuracy with repect toIro-
quois. Since the proposed system is SSR-independent
and tuned on 8 kHz speech, it is believed that it could be
an alternative approach for the SID in SCSS and useful
for telephony data found, for instance, in forensic appli-
cations.



2 Speaker recognition approach

We use two main approaches for speaker recogni-
tion: frame-level log-likelihood calculation for a given
mixed signal against a speaker GMM and between-
models distance of a GMM model trained on mixed sig-
nal to speaker GMMs.

2.1 Frame-level likelihood scores

From the frame-level likelihood estimation origi-
nally defined for theIroquoissystem in [4, 8] and which
aims at determining the frames where only one speaker
exists, we derive three different scores defined at the end
of this section. A maximum likelihood (ML) trained
GMM has been used in [4]; however, maximuma pos-
teriori (MAP) derived GMMs [9] are more accurate in
speaker verification and we follow this latter approach.
Let λ denote speaker GMM. The likelihood function is
defined as,

ℓ(x) = p(x|λ) =

M
∑

m=1

wmpm(x). (1)

The density is a weighted linear combination of
M unimodal Gaussian densitiespm(x), where
pm(x) ∼ N (x;µm,Σm) and the mixture weights
wm further satisfy the constraints

∑M

m=1
wm = 1

andwm ≥ 0. Speaker-dependent GMMs are adapted
from universal background model (UBM) [9]. The
UBM is a GMM trained on a pool of feature vectors
extracted from as many speakers as possible to serve
asa priori information for feature distribution. GMM
means are the only parameters updated and weights and
covariances are copied directly from UBM to GMMs.

2.2 Model distance scores

We defineλig as the SSR-dependent model forith
speaker at SSR levelg. Another approach to measure
similarity of a speech segment with a speaker model
(λi) is to make a model from the test utterance with
MAP adaptation (λe) and calculate the distance be-
tweenλe and the speaker model. We use theKullback-
Leibler divergence(KLD) as a distance measure be-
tween the two probability distributions. Since this dis-
tance cannot be directly evaluated for GMMs, we use
the upper bound of KLD which has successfully been
applied to speaker verification [10]:

KLDi =
1

2

G
∑

g=1

M
∑

m=1

wm(µme − µmig)
T
Σ

−1

m

(µme − µmig).

(2)

HereG ranges in a set of SSR levels,µme is themth
mean vector inλe and µmig is themth mean vector
in λig, whereaswm andΣm are the weights and the
covariances of the UBM, respectively. An alternative
approach to measure the distortion between GMMs is
approximate cross entropy(ACE) [11]. As shown in
[11], assuming infinite number of test utterance feature
vectors, log-likelihood for a givenλi equals to negative
cross entropy betweenλe andλi. It can be approxi-
mated as follows:

ACEi =

G
∑

g=1

M
∑

m=1

wm max
n

[

logwn

−
1

2
(µme − µnig)

T
Σm

−1(µme − µnig)

−
1

2
log |Σn| −

D

2
(1 + log 2π +

1

Twm + r
)

]

,

(3)

whereT is the total number of frames for trainingλe,
D is features dimension andr is a relevance factor
that controls compromise between UBM statistics and
adaptation data in GMM adaptation [9]. The value
r =0 corresponds to barely standing on adaptation data.

2.3 Proposed method

In this work, we train the UBM (λUBM ) using
digitally mixed speech signals at different SSR levels
formed by different speakers. Moreover, we train each
target speakeri, the set of gain-dependent modelsλig

that are adapted from the UBM based onith speaker
speech files corrupted by other speakers signal at SSR
level g. Using SSR-based speaker models, the system
captures speaker-dependent information when it is con-
taminated by other speakers data. This is similar to
the idea of having an SSR-based bias in GMM parame-
ters in [4], however, it has the major difference that we
build separate GMMs for each SSR level based on the
UBM. It enables the system to function independent of
the SSR level.

For a feature vector extracted from a speech segment
at time instancet, and denoted byxt, frame level score
for speakeri is defined as,

sit =
1

G

G
∑

g=1

log[p(xt|λig)] − log[p(xt|λUBM )], (4)

We average over all SSR levels to be independent of
the underlying SSR in the given signal and normalize
all speakers scores at time instancet with the corre-
sponding UBM score. To emphasize dominant speaker
score in a frame, the score in (4) is further normalized
by s′it = sit/σt, whereσt is standard deviation of all



Figure 1. Proposed SID module is a combination
of frame level likelihood score and model level
distance:FUS = 0.54NWF + 0.46KLD.

speakers scores for the framet. To sum up, we consider
five different scores for a speaker:

NWF: number of winning frames, where speaker
i is the most probable speaker in that frame,
NWF i =

∑

t ϕ(s′it) whereϕ(s′it) = 1 for
i = arg max

j

s′jt and 0 otherwise.

NCF: number of confident framesfor speakeri where
s′it is above thresholdα: NCFi =

∑

t ψ(s′it)
whereψ(s′it) = 1 for s′it > α and 0 otherwise.

LL: Log-likelihoodmean for whichs′it is above thresh-
old α: LLi = (1/NCFi)

∑

t ψ(s′it)s
′

it .
KLD: Kullback-Leibler divergencebetweenλe and a

set of modelsλig, computed using (2).
ACE: approximate cross entropybetweenλe and a set

of modelsλig, computed using (3).

As it is common in speaker recognition, to enable us-
ing benefits from different recognizers, we considered
the fusion of the scores. We used an approximate brute-
force search to find the optimal weights for score fu-
sion. It should be mentioned that we normalized (and
reverted for KLD) the range of scores from different
recognizers before fusion. A block diagram of proposed
system is presented in Fig. 1.

3 Experimental setup

We evaluate the proposed SID module using the
speech separation challengecorpus provided in [6].
The corpus is composed of 34 speakers (18 male, 16
female), with a total number of 34,000 utterances, each
following a command-like structure, and all having a
unique grammatical structure. Each sentence is formed
by different syntaxes of command, color, letter, number
and code, for instance ”bin white by A 3 please”. The
test data in the corpus is composed of 500 laboratory-
quality signals for each of the 34 target speakers, as well
as test set consisting of mixed signals at six signal-to-
signal ratio levels of{−9,−6,−3, 0, 3, 6} dB. For each
of these six test sets for two-talker signal, 600 utterances

are provided, from which 221 are for same talker (ST),
200 for same gender (SG), and 179 for different gender
(DG). The utterances were originally sampled at 25 kHz
with a duration of 2 second.

Since we are interested in telephone-quality speech
bandwidth, we downsample the signals from 25 kHz
to 8 kHz. We extract features from 30 msec frames
multiplied by a Hamming window. A 27-channel mel-
frequency filterbank is applied on discrete Fourier trans-
form (DFT) spectrum to extract 12-dimensional mel-
frequency cepstral coefficients (MFCCs), followed by
appending∆ and∆2 coefficients, and using an energy-
based voice activity detector (VAD) for extracting the
feature vectors. We digitally add the signals with an
average frame-level SSR to construct the UBM and the
target speakers GMMs. For each of 34 speakers, 50 ran-
dom files from each speaker were mixed at SSRs lev-
els{−9,−6,−3, 0, 3, 6} dB with 50 random files from
other speakers which gives us about 180 hour of speech
for training UBM. The number of Gaussians,M , is set
to 2048.

Speakers SSR-dependent GMMs,λig , trained by
mixing 100 random files from each speaker with 100
random files from other speakers yielding about 1.8
hours data for each SSR. Relevance factor was set to
16 for training speaker models,λig, where its value was
set to 0 in training test model,λe, because of availabil-
ity of only 2 seconds of data for adaptation. We set
the thresholdα to 1 in frame-level scores calculation.
The accuracies defined here are to identify both of the
speakers existing in mixed signal as the two most prob-
able speakers.

4 Experimental results
We first analyze the performance of speaker iden-

tification system using each of the 5 scores individu-
ally. The results shown in Table 1 indicate that NWF
and KLD have the best average performance compared
to the other methods. To the best of our knowledge,
SID accuracy forIroquois is not reported without SSR
estimation included. According to the system config-
uration we used, and since we use the MAP adapted
GMMs rather than the ML trained ones, we deem that
LL method accuracy could be a simulation ofIroquois
SID accuracy without SSR estimation. Surprisingly,
compared toLL score, our proposed method,NWF, is
more accurate. It is observed that, the number of frames
above the confidence level, NCF is more important than
their mean value,LL. On the other hand, the model
based approach,ACE, works equally well as the frame-
level method but it is more complex and has slightly
worse accuracy thanKLD.

Score fusion was then done by using two most suc-



Table 1. Speaker Identification accuracy for dif-
ferent systems (percentage of utterances with
both speakers in the 2-best list output). FUS
is proposed system composed of0.54NWF +
0.46KLD andIROstands for Iroquois

SSR (dB) -9 -6 -3 0 3 6 Ave
NWF 81 90 94 95 92 88 90
NCF 75 88 93 94 92 86 89
LL 74 84 90 91 87 82 85

KLD 79 89 92 93 91 87 88
ACE 79 87 92 92 89 84 87
FUS 92 93 96 97 93 87 93

IRO [4] 96 98 98 99 99 98 98

cessful methods:FUSi = 0.54NWFi + 0.46KLDi.
The fusion weights were optimized on development set
consisting of 300 mixed signals for each SSR level. We
found that, for the fusion system, in all of the experi-
ments, one of the speakers in the mixed signal isalways
identified. The accuracy of the proposed system (FUS)
for listing two target speakers in 3-best list is shown in
Table 2. This accuracy suggests to use proposed SID
module as a concise ”short-list” generator for the SSR
estimation inIroquois to reduce complexity. To under-
stand the system performance better, we look for com-
binations of speakers that are identified in any given
SSR. Surprisingly, in68% of cases both speakers are
correctly identified in the mixed signal at all SSR levels,
and in80% of experiments possibly only for one SSR
we cannot identify both speakers but one of them. From
the results, it is observed that mixed signals with differ-
ent genders (DG) are more problematic than the same
gender, which there are almost no significant difference
in identification accuracy between males and females.

5 Conclusion

A new method for speaker identification in co-
channel scenario was introduced based on the exist-
ing approaches in speaker verification and compared
the accuracy toIroquois approach. From the simula-
tion results conducted on speech separation challenge
database, we observed that the proposed simple SID
module performs well in listing two target speakers
as three most probable speakers without any require-
ment on the estimates of the SSR level. As a future
work, since we already got satisfactory results on 8 KHz
speech, we plan to examine the proposed algorithm on
telephony quality spontaneous speech and more realis-
tically when signals are not synthetically mixed.

Table 2. Speaker Identification accuracy for pro-
posedFUSsystem (percentage of utterances with
both speakers in the 3-best list output) ST, Same
Talker, SG, Same Gender and DG, Different Gen-
der).

SSR ST SG DG Ave
-9 dB 100 93 83 92
-6 dB 100 97 94 97
-3 dB 100 100 98 99
0 dB 100 98 99 99
3 dB 100 97 93 97
6 dB 100 94 91 95
Ave 100 97 93 97
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