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ABSTRACT

Domain mismatch occurs when data from application-specific target
domain is related to, but cannot be viewed as iid samples from the
source domain used for training speaker models. Another problem
occurs when several training datasets are available but their domains
differ. In this case training on simply merged subsets can lead to
suboptimal performance. Existing approaches to cope with these
problems employ generative modeling and consist of several sepa-
rate stages such as training and adaptation. In this work we explore a
discriminative approach which naturally incorporates both scenarios
in a principled way. To this end, we develop a method that can learn
across multiple domains by extending discriminative probabilistic
linear discriminant analysis (PLDA) according to multi-task learn-
ing paradigm. Our results on the recent JHU Domain Adaptation
Challenge (DAC) dataset demonstrate that the proposed multi-task
PLDA decreases equal error rate (EER) of the PLDA without domain
compensation by more than 35% relative and performs comparable
to another competitive domain compensation technique.
Index Terms: multi-task learning, discriminative training, proba-
bilistic linear discriminant analysis, speaker recognition

1. INTRODUCTION

For more than a decade, speaker recognition researchers have en-
joyed the availability of large quantities of speech data provided by
the National Institute of Standards and Technologies through their
speaker recognition evaluations (NIST SREs). The NIST SRE data
contains carefully annotated speaker labels along with the audio
files and other metadata, enabling accurate training of system hy-
perparameters such as the universal background model (UBM) [1],
i-vector extractor [2] and the probabilistic linear discriminant analy-
sis (PLDA) [3].

Unfortunately, problems arise in many real world scenarios
when the application domain data differs from the NIST SRE data.
In particular, it was found that PLDA model trained on part of
the Switchboard (SWB) corpus [4] experienced considerable perfor-
mance degradation when tested on data from NIST SRE 2010 [5].
This is an example of domain mismatch: distributions of testing and
training data are different [6]. It arises in cases when a lot of source
data is available but data from the target domain is scarce or expen-
sive to collect. This results in poor performance of models learned
on training data because they do not generalize well to the testing
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domain. To reduce the effect of domain mismatch, domain adapta-
tion [6] can be applied. It combines data from the source domain
with the limited amount of in-domain data to improve the predictive
performance in the target domain.

The domain mismatch problem was recently brought to the at-
tention of speaker recognition community [7]. Domain mismatch
has several causes, including mismatch in data collection caused by,
for instance, different speech acquisition methods and languages. [8]
illustrates that it leads to multi-modality in distribution of i-vectors.
It was found that domain mismatch severely affects training of the
PLDA parameters, while less impact on performance is due to data
mismatch in training the UBM or the i-vector extractor. This ob-
servation brought the focus of research to the back-end part of the
speaker verification system.

Accordingly, to address the problem of domain mismatch, three
different categories of approaches have been explored. The first ap-
proach, based on generative modeling [5],[9], assumes that small
number of labeled utterances from the target domain is available,
and is therefore termed supervised domain adaptation. The experi-
ments in [5] indicate that, even for just 10 speakers sampled from in-
domain data, the methods filled up 45% relative performance gap be-
tween matched and mismatched training for the experimental setup
of the Domain Adaptation Challenge [7].

The second approach assumes that unlabeled data from the tar-
get domain is available, that is, with missing speaker labels. This un-
supervised domain adaptation is more appealing since human-based
labeling is time consuming and expensive. It also enables the use of
potentially much larger in-domain datasets. A straightforward way
to utilize large unlabeled datasets is to apply clustering to obtain ap-
proximate pseudo speaker labels. The authors of [10], [11] explored
various clustering algorithms and found that even imperfect cluster-
ing can provide recognition accuracy close to that obtained with or-
acle speaker labels. Assuming the clustering step is separated from
the domain adaptation step, we can apply the same methods as in
supervised domain adaptation: first we obtain the pseudo speaker la-
bels, then apply a suitable supervised adaptation method. Otherwise,
the possible solution is to employ Bayesian approaches or treating
PLDA parameters as random variables and transfering information
from source data encoded in posterior distributions to infer the miss-
ing speaker labels on target data [12].

The above studies assumed that large amount of labeled out-
of-domain data is available. At the same time, lack or absence of
in-domain data does not allow retraining all models on this data.
Sometimes, however, despite the large amounts, training data can
consist of several subsets, each from a different domain. Accord-
ingly, the third approach assumes that there is no data from the tar-
get domain but relies solely on partitioning the heterogeneous out-
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of-domain data into a number of subsets with slightly different dis-
tributional properties. Heterogeneity of the training data allows es-
timating between-dataset variability and compensating for it so as
to improve robustness against unseen conditions, i.e. the new do-
main. Techniques belonging to this third category include, for in-
stance, source normalization (SN) [13] and inter-dataset variability
compensation (IDVC) [14].

To cope with the aforementioned problems, we consider the goal
of learning a classifier for speaker verification when multiple training
datasets (from non-target domains, and possibly also from the tar-
get domain) are available, assuming a distribution mismatch across
these sets. To this end, we propose a new training method for the
PLDA model that takes advantage from so-called multi-task learning
(MTL) [15]. In general, MTL aims at improving generalization per-
formance by joint learning over several related learning problems or
tasks. Specifically, inspired by [16], we extend discriminative train-
ing strategy for PLDA [17], [18] to cope with multiple domains. In
our case, the tasks differ only by data sampled from different do-
mains. Then, we aim at training a model that is more robust to
domain mismatch archieved by using multiple source datasets and
parameter sharing.

2. DISCRIMINATIVE MULTI-TASK PLDA

2.1. Multi-Task Learning

The MTL framework [15] considers the problem of joint learning
over several learning tasks to improve generalization. To this end,
all the learning tasks usually share the same feature space and their
marginal distributions are assumed to be different, but not too much,
which results in a set of related learning problems. Such parallel
learning enables sharing of information across the tasks which can
be beneficial for all the tasks and can lead to enhanced predictive
performance. If the task is the same across all the domains, as in
our case, MTL is similar to domain adaptation [6]. However, MTL
aims at improving performance across all the tasks, while domain
adaptation, introducing asymmetry, aims at improving performance
only for a single target domain.

The MTL models differ in their assumptions made about relat-
edness of tasks. The simplest idea is parameter sharing across the
tasks. It can be particularly useful when each task has limited data,
as the tied parameters can be estimated more accurately. In practice,
one can consider a set of task-specific classifiers trained with certain
constraints on their parameters. These constraints can be set, for in-
stance, by placing a hierarchical Bayesian prior on the parameters
[19] or by regularizing the empirical risk [16].

2.2. I-Vector Based Speaker Verification

In the past few years, the i-vector approach [2] has become the
de facto standard in speaker verification. It provides a convenient
way to represent variable-length feature vector sequences as a low-
dimensional vector with the help of Gaussian mixture model (GMM)
and factor analysis techniques. In particular, the model states that,

µ = µ0 + Tx,

where µ is mean supervector of GMM that corresponds to one ut-
terance, µ0 is the global mean and T is a low-rank rectangular ma-
trix whose columns span the so-called total variability space and x
is a low-dimensional random vector which has a standard Gaussian
prior distribution. The maximum a posteriori (MAP) estimate of x
is known as an i-vector.

The parameters of the i-vector extractor are trained in an unsu-
pervised fashion on a large corpus attempting to capture all possible
variations in the training data. The problem of speaker verification
then reduces to comparing whether a given pair of i-vectors (one for
enrolment and the other one for test) originates from same or differ-
ent speakers. To this end, the PLDA model, has turned out as one of
the most robust techniques [20]. The simplified PLDA (SPLDA) [21]
models a collection of n-dimensional i-vectors {xi1,xi2, ...,xiJ}
for speaker i as follows:

xij = m+ V yi + eij ,

where m is the speaker-independent dataset mean, yi is a standard
normal-distributed latent identity variable that represents a particular
speaker, eij is a residual term distributed as N (0,Σ) and V is a
rectangular speaker subspace matrix. If rank(V ) = n, SPLDA is
equivalent to the 2-covariance model (2-cov) [22].

Given a trial (pair of i-vectors), the speaker verification score s is
computed as the log-likelihood ratio (LLR) between two hypotheses:
same speaker (Hs) and different speaker (Hd):

s(x1,x2) = log
p(x1,x2|Hs)

p(x1,x2|Hd)
. (1)

For the PLDA model, this expression has a closed form solution. In
particular, it can be shown [17, 18] that it is a quadratic form that can
be written as a dot product of the vector of weights and a function of
i-vector pairs, thereby resulting in a linear classifier of the form:

s(x1,x2) = x>1 Px2 + x>2 Px1+

x>1 Qx1 + x>2 Qx2 + c>(x1 + x2) + d
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where vec(·) is the column stacking operator while P ,Q, c and
d can be expressed in terms of the PLDA parameters m,V and
Σ. That is, s(x1,x2) can be written as linear classification rule
in the space of vectors f(x1,x2) representing trials. This form al-
lows direct learning of the decision function without need to explic-
itly model data distribution. The weight vector w can be trained
similar to standard logistic regression or support vector machine
(SVM), leading to discriminative PLDA [17]. There are many pos-
sible choices of loss functions [23], including both convex and non-
convex ones. In our study we focus only on the hinge loss (aka stan-
dard SVM objective) resulting in the model referred to as pairwise
SVM (PSVM) [18]. We adopt PSVM to the case of multiple train-
ing datasets but other variants of discriminative PLDA could also be
extended in the same way.

2.3. Multi-task Support Vector Machines

We assume a training set of T subsets that share the same feature
space but represent different domains i.e. their distributions differ.
Accordingly, the data available for training is,

D = {(X1,Y 1), (X2,Y 2), ..., (XT ,Y T )}

where Xt is a matrix of the feature vectors and Y t the correspond-
ing class labels with xit ∈ Rn, yit ∈ {−1, 1} for i running over
the t-th subset. We follow the multi-task learning extension of SVM
introduced in [16]. In this approach, all the tasks share the same set
of labels to be predicted by T classifiers, one for each task. That is,



the prediction function is allowed to change from task to task. Relat-
edness of tasks is expressed by assuming that the parameters of the
t-th classifier is decomposed as

wt = w0 + vt, (3)

Intuitively, for similar tasks, all the task-specific models wt should
be close to each other. In terms of (3), wt should not deviate much
from the shared ”average” model w0, i.e. vt are ”small”. Other-
wise, for weakly related tasks, we expectw0 to be ”small”. In other
words, w0 carries common information across the tasks while wt

adapts to a particular task. The authors of [16] formulated a con-
vex optimization problem including task-coupling constraint speci-
fied through regularization. The goal is to estimate all vt and w0

jointly by minimizing the following cost:

min
w0,{vt}

{
λ0‖w0‖2 +

∑
t

λt‖vt‖2

+
∑
t

∑
i

max(0, 1− yitx>it(w0 + vt))
}
, (4)

where yit ∈ Y t is the label of i-th training vector xit ∈ Xt from
subset t. The latter term in the sum is the empirical risk evaluated
on all subsets which is just the sum of the hinge loss functions. In
fact, we have sum of T objective functions of the conventional SVM
learning problem [24] with parameters decomposed in a specific way
(3). The regularization parameters, λt, determine the tradeoff be-
tween closeness of each task-specific model to the mean parameter
vector and optimality of these models.

For an alternative formulation, let us define a feature map and
new parameter vector as follows :
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where 0 ∈ Rn is the zero vector. Here Φ maps the original in-
put vector x to the n(T + 1)-dimensional space by augmenting it
with zeros and its own copy placed at the (t + 1)-th position. Then
the problem 4 can be equivalently re-written in standard (single-task
SVM) form:

min
θ

{
θ>Hθ +

∑
j

max(0, 1− yjθ>Φ(xj))
}
,

where H = diag([λ0λ1 . . . λT ]> ⊗ 1) is a diagonal matrix and
1 ∈ Rn is the vector of ones. Here ⊗ denotes Kronecker product.
Looking at form of the feature map Φ, one can see a parallel with
the domain adaptation method proposed in [25].

When λ0 →∞, the problem (4) reduces to T separate problems
as there is no coupling between the tasks. In the other extreme case,
λt → ∞, optimization results in a single classifier because all the
task-specific parameters are forced to be the same. Thus, it is im-
portant to decide what is the appropriate balance between learning
shared and individual parameters.

2.4. Proposed Method: Multi-Task PSVM

Noting that the similarity score (1) can be written in the form of (2),
it is straightforward to define multi-task formulation of the PSVM
just by replacing feature vectors x in (4) by f(x1,x2) from (2). For
each subset we have the same pairwise classification problem: for
each pair of i-vectors we must decide whether their speaker identities

match or differ. For T = 1, this reduces to the single-task pairwise
SVM optimization problem [18].

It should be noted that there is a difference between the standard
multi-task SVM [16] and the multi-task PSVM (mtPSVM) proposed
here. Since the input to PSVM is a pair of vectors, it may happen
that they originate from different domains. In our formulation, we
assume that there is no cross-domain trials and no overlap in speaker
labels across subsets (tasks). At the same time it would be reasonable
to expect that having sessions of the same speaker in different do-
mains can considerably improve recognition performance because it
allows more accurate estimation of how within-speaker distribution
changes across domains. However, due to the pairwise formulation,
the proposed model would require special extension to handle this
case.

Once training is completed,w0 can be used to construct a classi-
fier for unseen conditions, as the shared parameters capture domain-
independent data structure, thereby making classification more ro-
bust under domain mismatch. We can obtain even better perfor-
mance if some amount of labeled data from the target domain is
available. If one of the training datasets, say the i-th one, is drawn
from the target domain, then using wi = w0 + vi as the final clas-
sifier can help lowering error rates through the use of task-specific
parameters. We adopt this strategy for supervised domain adapta-
tion.

Choosing among large-scale SVM solvers, we selected general
framework of bundle methods for risk minimization (BMRM) [26]
to solve the optimization problem (4). In particular, we use opti-
mized cutting plane algorithm (OCAS) described in [27], which is
a special case of BMRM customized for SVM problems. BMRM
is an iterative procedure which requires only sub-gradients and loss
function to be computed. Despite the fact that the training set consist
of all possible pairs of i-vectors, efficient computation of scores and
sub-gradient of the objective function is possible [18]. Therefore, no
explicit expansion of all trials is necessary. For multi-task PSVM,
subgradients of the empirical risk in (4) can be computed as follows:

∇vt =
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∑
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where Gt is the square matrix of derivatives of the hinge loss func-
tion with respect to the scores of all possible pairs in subset t,
Xt = [x1tx2t · · · xmt] is the matrix of m stacked i-vectors of
dimension n belonging to this subset. Finally, 1nm and 1m denote,
respectively, matrix and vector of ones of size (n×m) and (m× 1)
and ◦ stands for element-wise matrix product.

3. EXPERIMENTS

We follow JHU 2013 Domain Adaptation Challenge (DAC) experi-
mental setup detailed in [7]. As out-of-domain it defines the Switch-
board (SWB) set consisting of 36,470 utterances. The in-domain set
includes data from SRE 04, 05, 06, and 08 (telephone calls) – in
total, 3,114 speakers (male and female) and 33,039 utterances.

We evaluate the proposed method under two multi-domain
learning scenarios: (1) when only out-of-domain data is available
i.e. domain robust training and (2) when there is some amount of
labeled in-domain data i.e. supervised domain adaptation. We eval-
uate performance using male, female and pooled trials from SRE10



telephone data. In total, this evaluation protocol consists of 7,169
target and 408,950 non-target trials.

All the training and test utterances are represented as 600-
dimensional i-vectors, obtained using gender-independent UBM and
i-vector extractor trained on SWB [5]. Following the commonly
used preprocessing steps, we center the i-vectors using mean com-
puted on development data, then apply whitening transform or
within-class covariance normalization (WCCN) [28] and length-
normalization (LN) [21]. We use equal error rate (EER) and min-
imum detection cost function (minDCF) [29] with probability of tar-
get trial set to 10−3 to measure speaker verification system perfor-
mance: minDCF = min(PM + 999PFA), where PM and PFA,
respectively, are the miss and the false alarm probabilities at some
operating point and the minimum is computed over the all operating
points.

We used the open-source MATLAB1 implementation of the
SPLDA and 2-covariance models [30].

3.1. Domain Robust Training

In this scenario, the goal is to capture dataset-independent structure
in data by generalizing across domains. In particular, we train PSVM
so that it would be robust to unseen domains. Following [14], we di-
vide SWB data into 6 gender-independent subsets according to the
provided LDC labels. As the final classifier, we use the shared pa-
rametersw0 as detailed in Section 2.4.

Table 1 reports the results for three techniques: the proposed
mtPSVM method, the IDVC method from [14] and the SPLDA.
IDVC was applied to all the hyperparameters of a 2-cov model.
Subspace dimension for mean was equal to 5. Results for SPLDA
demonstrate the baseline performance without domain mismatch
compensation (in this case, whitening instead of WCCN showed bet-
ter results). The best result for IDVC, shown in Table 1, was obtained
using subspace dimensions of 60 for the within-class and 0 for the
between-class covariance matrices.

Table 1. Results for domain robustness (EER, % and minDCF). For
mtPSVM the best results among different configurations are shown.

Model All Male Female
EER DCF EER DCF EER DCF

SPLDA 6.88 0.679 5.98 0.624 7.95 0.713
IDVC 3.08 0.493 2.48 0.355 3.10 0.505
mtPSVM 4.18 0.644 2.79 0.545 3.12 0.551

Discriminative approach increases domain robustness of the
PLDA classifier substantially but performs worse than IDVC. This
probably follows from the fact that IDVC aims at directly compen-
sating for cross-domain variability, but the proposed approach en-
codes this goal through much weaker assumptions – form of param-
eter decomposition (3), which does not necessarily lead to the most
robust modelw0.

3.2. Supervised Domain Adaptation

In the supervised domain adaptation setting, we transfer the knowl-
edge obtained on multiple source domains to a new target do-
main. This is done by including the available in-domain data as
one of the tasks and using the corresponding task-specific param-
eters w0 + vin−domain at test time. In this experiment, we com-
pare the performance of ”domain-independent” model w0 and the
model fitted to a target domain wSRE. Additionally, we compare

1Source code can be found at https://sites.google.com/
site/fastplda/

the proposed approach to IDVC [14] and parameter interpolation
of 2-cov models. For IDVC, in-domain data were included as one
of the subsets to find the subspace with the largest domain vari-
ability. After removing this subspace, full SWB was used to train
the 2-cov model for final evaluation. Another method (2-cov inter-
polation) consists of training two 2-cov models on in-domain and
out-of-domain data, and interpolating their parameters with a weight
depending on amount of in-domain data, similar to [5].

It is important noting, that both whitening and WCCN trans-
forms were trained on SWB data. This is in contrast with [5], where
SRE data has been used to estimate these transforms. We also found
that applying the combination of LN and WCCN twice is helpful for
mtPSVM.

Table 2 shows the speaker verification system performance for
different amounts of in-domain speakers. Interestingly, for small
amount of in-domain data, w0 still performs better than wSRE. We
hypothesize that the large number of model parameters leads to over-
fitting the target task for small amount of adaptation data. The results
also indicate that small sizes of in-domain subset for IDVC can de-
crease its performance because of inaccurate parameter estimation.
It should be added that for 1000 in-domain speakers mtPSVM per-
forms better than the 2-cov model trained on the full SRE dataset,
which achieves an EER of 2.58%

To set the regularization parameters, one can use heuristic rule
from [18] to set the λt for each subset separately, then λ0 can be
set to be a few times (2-5) less than their average. We found that
this strategy leads to satisfactory accuracy, close to the one that uses
the values of λ tuned over evaluation set. We leave the problem of
finding better values for these regularizers as future work.

Table 2. Results (EER,%) for supervised domain adaptation with
different amounts of in-domain (SRE) data (pooled genders).

Number of in-domain speakers
Model 0 10 100 500 1000
w0 4.18 4.26 4.12 3.34 2.77

w0 + vSRE — 4.33 4.14 3.08 2.41
2-cov interp 7.02 4.70 3.64 3.14 2.91

IDVC 3.08 3.67 3.28 2.69 2.59

4. CONCLUSION

We adopted discriminative multi-task learning formulation to the
PLDA model for the problem of speaker verification in the pres-
ence of domain mismatch. Our results indicate that the new method
leads to substantial improvement over the case of no domain robust
training/adaptation, similar to the findings reported for conventional
PLDA in [5, 14]. Moreover, as the number of in-domain speakers in-
crease, mtPSVM accuracy improves as expected. Unfortunately, the
proposed method requires a large number of in-domain utterances
to be effective. The primary reason, as we suspect, is the high di-
mensionality of PSVM model which calls either for a larger out-of-
domain dataset or different regularization strategies such as low-rank
or orthogonal solutions. Another potential extension is to reformu-
late the current model for simultaneous learning of domain-specific
classifiers and a domain-invariant subspace.

We provide an open-source package, containing the codes for
training mtPSVM model2.

2http://cs.uef.fi/˜sholok/mtPSVM.tar.gz
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http://cs.uef.fi/~sholok/mtPSVM.tar.gz
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