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ABSTRACT

We propose a method for computing joint acoustic-
modulation frequency feature for speaker recognition. This
feature describes the amplitude modulation spectrum of each
subband, and results in a single feature vector per utterance.
This vector is directly used as the speaker’s modulation fre-
quency template, excluding the need for a separate training
phase. The effects of analysis parameters and pattern match-
ing are studied using the NIST 2001 corpus. When fusing
the proposed feature with the baseline MFCC/GMM system,
EER is reduced from 18.2 % to 16.7 %.

1. INTRODUCTION

Speaking is a dynamic process, in which the airflow gen-
erated by the lungs is continuously modulated by the artic-
ulatory movements to produce the acoustic output. Rapid
articulatory movements are reflected in the short-term spec-
tral changes, which can be measured by the delta features
[1, 2]. The delta features are typically appended with the
corresponding static features into a long vector at the frame
level. The baseline acoustic recognizer in the state-of-the-
art text-independent speaker recognition systems is usually a
Gaussian mixture model trained on the cepstral vectors [3].

The delta features capture spectral dynamics within very
short time intervals (< 50 ms). However, it is widely ac-
cepted that linguistically and perceptually relevant modula-
tion frequencies of speech are concentrated on the frequency
range of 1-20 Hz [4, 5, 6], corresponding to time intervals 50-
1000 msec. These low frequency modulation components are
not captured by the conventional short-term spectral analy-
sis. As evidenced by many engineering studies, emphasizing
the spectral modulations in the range of 1-10 Hz increases
speech recognition robustness (e.g [7, 8]). For a recent survey
on modulation frequencies, see [6].

In [9], the relevance of different modulation frequencies
for speaker recognition was studied by temporally filtering
the mel-filter outputs and monitoring the effect to the error
rate by excluding certain modulation bands. It was found out

that in both matched and mismatched conditions, the modu-
lation frequencies between 1-4 Hz are most relevant, whereas
frequencies below 0.125 Hz and above 8 Hz are less relevant.

Unlike in [7, 8, 9], in which band-pass filtering of the
modulation spectrum plays an intermediate role in enhance-
ment of other features, we consider the modulation spectrum
as a speaker characterizing feature itself. In particular, we
propose a method for computing a joint frequency represen-
tation in which the amplitude modulation spectra of all fre-
quency subbands is included. Following terminology of [6],
we call the frequency variable of the original spectrogram the
acoustic frequency, and the frequency variable of the sec-
ond transformation along the subband amplitude envelopes
the modulation frequency. The joint spectral density is a ma-
trix serving as the speaker’s modulation frequency template,
and it can be visualized as a gray-scale image or a contour
plot (Figs. 1 and 2).

2. JOINT ACOUSTIC-MODULATION FREQUENCY

The computation of the joint acoustic-modulation frequency
spectrum is carried out in three phases (see Fig. 1). In the
first stage, spectrogram is computed using conventional short-
term Fourier analysis. This is followed by another short-
term Fourier analysis along the DFT output amplitude en-
velopes. Finally, these short-term modulation spectra are
time-averaged. The implementation details and motivation
for each step are given in the following subsections.

2.1. Time-Frequency Representation

The speech signal s(n) is analyzed in short overlapping
frames [10]. Each frame is preemphasized and multiplied
by a Hamming window before the DFT computation [11].
The modulus of each DFT bin is computed. We denote the
resulting time-frequency representation as S(n, ω), where n
denotes the discrete time variable (frame number) and ω de-
notes the discrete frequency variable (DFT bin).



Fig. 1. Computation of joint acoustic-modulation frequency representation.

Selection of the frame length and frame rate for the com-
putation S(n, ω) is crucial. A long frame implies increased
acoustic frequency resolution, with the cost of decreased time
resolution. Stated in another way, rapid spectral changes (i.e.
high modulation frequencies) cannot be detected with a long
window. By using a short window, the bandwidth of the mod-
ulation spectrum is increased. This bandwidth also depends
on the type of the window function. For the Hamming win-
dow, the theoretical bandwidth1 of the modulation spectrum
(B) is given by B = 2fs/L, where fs denotes the sampling
rate of the signal and L is the length of the window in samples
[12].

Given the knowledge that the window function length lim-
its the bandwidth of the modulation spectrum, we can deter-
mine the frame rate automatically. The frame rate fr of the
spectrogram S(n, ω) is the sampling rate of the modulation
spectrum. In order to avoid aliasing, sampling rate must be se-
lected higher than twice the bandwidth, i.e. fr > 2B. Thus,
when given the maximum modulation frequency of interest
ηmax (Hz), we set the frame rate to fr = d2ηmaxe, and use a
window of length L = d2fs/ηmaxe samples. For instance, for
ηmax = 20 Hz and fs = 8 kHz, we have fr = 40 frames/sec
and L = 800 samples (or 100 msec).

2.2. Joint Acoustic-Modulation Frequency

After obtaining the subband amplitude envelope S(n, ω), n =
0, 1, 2, . . . for a fixed ω = ωk, the mean of the amplitude
envelope is subtracted [4]. This removes the zero frequency or
DC component of the modulation spectrum which represents
static information.

For the mean-removed subband envelope, we perform
spectral analysis in overlapping Hamming-windowed frames.
The window length of this analysis (M ) specifies the mod-
ulation frequency resolution, and it is considered the other

1defined as the location of the first zero of the window function magnitude
response.

control parameter of the method in addition to the maximum
modulation frequency ηmax. In this study, we fix the analysis
frame shift of the modulation spectrum to (2/3)M . Figure 2
shows an example of the effect of control parameters to the
bandwidth and the resolution of the modulation spectrum.

In order to make the resulting modulation spectrum less
dependent on the text, the modulation spectra are time-
averaged, a method that was used to reduce within-speaker
variance already in the 1970s [13].
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Fig. 2. Effect of analysis parameters to modulation spectrum.



3. PATTERN MATCHING

Since the modulation frequency matrix has fixed dimensions,
we simply reshape it into a vector. Given the reference modu-
lation vector mr and the test utterance modulation vector mt,
we consider four simple similarity measures: Euclidean dis-
tance, correlation coefficient, cosine of the angle between the
vectors, and symmetric Kullback-Leibler distance. For the
Kullback-Leibler distance [14], the vector elements are di-
vided by the sum of all elements so that the vector represents
a probability mass function. Note that the Euclidean metric
depends on the absolute scale, whereas the other metrics are
scale-invariant, and thus expected to be more robust.

In speaker recognition, normalization of match scores rel-
ative to other models increases robustness [3, 15]. In this
study, we adopt the test normalization method (“Tnorm”)
[15], in which the unknown utterance X is first matched
against a set I of pseudoimpostor models. The mean µI(X)
and standard deviation σI(X) of the pseudoimpostor scores
are then obtained. Finally, the normalized score s′ is obtained
from the raw score s as s′ = (s− µI(X))/σI(X).

4. EXPERIMENTS

For the experiments, we use the cellular data of the one-
speaker detection task from the NIST 2001 corpus [16]. The
corpus is provided with a development set and an evaluation
set, which do not have speaker overlap. We use the male data
(38 speakers) of the development set for parameter tuning.
The whole development set (60 speakers) is used as the pseu-
doimpostor set for Tnorm. The evaluation set consists of 9350
male trials (850 genuine + 8500 impostor) and 13068 female
trials (1188 genuine + 11880 impostor). There is about 2 min-
utes of training data per speaker, and the length of the test
segments varies from a few seconds up to one minute.

4.1. Parameter Tuning

The parameters were varied as follows: ηmax ∈
{5,10,15,20,50,100} (Hz) ; L ∈ {0.3, 0.5, 1.0, 3.0, 5.0, 10.0}
(sec). For each parameter combination, the equal error rate
(EER) was computed on the tuning set. The best parameter
combinations and the corresponding EERs are given in Table
1. The average EER and standard deviations over the 36 pa-
rameter combinations are also given, and Fig. 3 shows the
complete error surface of the cosine measure as an example.

The Euclidean distance performs worse compared with
the other measures. This is not surprising because it is af-
fected by the scale of the spectrum, which is likely to vary.
The other three measures are comparable with each other.
More importantly, the best performances are obtained by pa-
rameters close to each other: bandwidth of 20 Hz and win-
dow size of 0.3-0.5 seconds. Based on these observations,
we fix the parameters for the evaluation set as (ηmax, L) =

(20Hz, 0.3sec). The dimension of the modulation frequency
vector with this setting is 3200.

4.2. Results on the Evaluation Set

The DET curves for the unnormalized and the Tnorm scores
are shown in Fig. 4. In all cases, normalization improves
accuracy. Similar to the tuning set, the Euclidean measure
performs the worst and the other methods are close to each
other in accuracy. The Tnormalized Kullback-Leibler dis-
tance gives the smallest error rate.
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Fig. 3. Error surface for the cosine measure.

Table 1. Results for the tuning set.
Eucl. KL dist. Corr. Cos.

Best
(ηmax, L) (50,0.5) (20,0.3) (20,0.3) (20,0.5)
EER (%) 36.9 20.6 18.9 20.9

Average
EER (%) 39.5±2.1 24.5±3.0 24.8±2.9 25.1±2.7
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Fig. 4. Comparison of the similarity measures.



4.3. Combining Cepstral and Modulation Features

Finally, we combine the modulation frequencies with con-
ventional MFCC features modeled with adapted GMM [3].
Twelve MFCC coefficients are appended with their delta and
double-delta features, followed by global mean subtraction
and variance normalization. A 256-component background
model is trained using all the speech files from the develop-
ment set of the NIST 2001 corpus. Target models are trained
by adapting the mean vectors from the background model us-
ing a relevance factor of 15 (see details in [3]). We use the
average log-likelihood ratio as the match score. The fast scor-
ing algorithm using top 10 mixture components as explained
in [3] is used.
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Fig. 5. Combination of modulation and cepstral features.

Based on the previous experiment, we consider only the
test normalized Kullback-Leibler distance for the combina-
tion with the GMM. The sign of the Kullback-Leibler distance
was flipped, followed by constant adding to make the two
scores compatible. After experimenting with the weighted
sum and product combination rules, the best combination rule
was found to be s = D0.2 × L0.8, where D denotes the
Kullback-Leibler similarity and L the average log likelihood
ratio. The resulting DET curve and equal error rates are given
in Fig. 5. The modulation features give a slight improvement
consistently over different decision thresholds.

The best result for the NIST 2001 benchmark test is less
than 10 % EER [17], which is significantly smaller compared
with our result (16.7 %). One explanation might be that, due
to time limitations, we restricted the GMM size to 256 com-
ponents - typically the GMM size is 512-2048. Thus, in or-
der to get closer to the state-of-the-art accuracy, the GMM
configuration should be first revised. Also, we expect further
improvements to the modulation spectrum by using discrimi-
native classification instead of simple time averaging.

5. CONCLUSIONS

In this study, we introduced a modulation frequency feature
for text-independent speaker recognition and reported prelim-
inary results on the NIST 2001 corpus. The best result (25.2
% EER) on the evaluation set was obtained by computing
the modulation spectrum over a 300 msec window and us-
ing a bandwidth to 20 Hz. A slight improvement was also
obtained when combining modulation spectrum with the con-
ventional static and dynamic cepstra. Our future plans include
exploring discriminative classification, as well as addressing
the question of data limitation - how much speech is needed
in order the modulation spectrum to saturate.
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