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Abstract

Long-termF0 modeling for text-independent speaker recogni-
tion is considered using both parametric and nonparametric ap-
proaches. In the parametric case, mean, variance, skewness, and
kurtosis are computed and the parameter vectors are compared
using weighted Euclidean distance. In the nonparametric case,
F0 distribution is represented by a histogram, and Kullback-
Leibler distance is used in addition to the Euclidean distance.
F0 models are combined with a spectral classifier based on
MFCC coefficients, and the results on a subset of the NIST
1999 corpus indicate thatF0 provides useful additional infor-
mation, especially for improving verification accuracy in noisy
and mismatched training/matching conditions.

1. Introduction
Speech fundamental frequency, or F0, is defined as the rate of
vibration of the vocal folds during voiced speech sounds [9].
The F0 value depends both on the mass and size of the vocal
folds, as well as their stiffness and stress [21]. Females and
children have smaller vocal folds than adult males, and conse-
quently, theirF0 is higher in general. One of the main advan-
tages ofF0 compared to other speech parameters is that it can
be reliably extracted from noisy speech [6, 13, 10]. Even if the
first partial is missing (e.g. telephone bandwidth), theF0 can
be still detected according to the upper harmonic structure [8].

Temporal variation ofF0, or the pitch contour, plays an
important role in signaling emotion and attitude. Pitch contour
is also known to be a useful speaker cue, and it was applied
in text-dependent speaker recognition already in the 1970’s [3].
Local dynamics and piecewise linear modeling of pitch contour
has been studied in [13, 20, 1]. One problem with the pitch
movements is that they are easy to imitate according to some
studies [2].

The long-termF0 statistics, on the other hand, are more
closely related to the physical properties of the larynx. Espe-
cially meanF0 has been studied [14, 16, 6], and it is used in
forensics [18, 4]. In [6], variance, skew and kurtosis were also
used. SometimesF0 is replaced bylog(F0) [19, 7, 20], which
has some perceptual motivations. In [19] it is shown thatlog F0

follows normal distribution under some general assumptions.
In this study, we compare and combine parametric and non-

parametric approaches to long-termF0 modeling, and combine
the F0 models with spectral classifier based on MFCC coeffi-
cients. We study the complementariness ofF0 with the spectral
features on clean and noisy conditions in both the identification
and verification tasks.

2. Long-Term F0 Modeling
The input forF0 modeling is the observation sequenceX =
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consider bothparametricandnonparametricmodels, as well as
their combination.

2.1. Parametric Model

For the parametric model, we compute the mean (µ), variance
(σ2), skewness (γ1) and kurtosis (γ2). They are estimated as
follows [18]:
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Mean value characterizes the averageF0, and reflects the “most
typical” F0 value [14, 16, 6]. Variance measures dispersion
around the mean value, and is related to the range ofF0 val-
ues. Skewness measures the asymmetry of theF0 distribution
(to left or right), and kurtosis is a measure of “peakedness” of a
distribution. Kurtosis also measuresnongaussianityof the dis-
tribution.

In the training phase, the parameter vector(µ, σ2, γ1, γ2)
is stored. In the matching phase, the same parameter vector is
computed from the test sample, and weighted Euclidean dis-
tance is used as the dissimilarity measure of the two distribu-
tions.

2.2. Nonparametric Model

For the nonparametric model, we estimate the density func-
tion of F0 using a histogram. In the training phase, we store
the rawF0 values. In the matching phase, data from the ref-
erence and test samples is pooled together, and histogram bin
positions are determined by dividing the data range intoM
bins. Using theM common bins, the reference and test den-
sities pr(m), pt(m), m = 1, 2, . . . , M are obtained. In the
matching phase, both the Euclidean distance and theKullback-
Leibler distance are used for measuring the dissimilarity of the
histograms. The Kullback-Leibler distance, orrelative entropy,
is computed as [5]

KL(pr, pt) =

MX
m=1

pr(m)
�
log pr(m)− log pt(m)

�
.

KL distance is nonnegative and zero for identical distribution,
but asymmetric sinceKL(pr, pt) 6= KL(pt, pr) in general. We
use the symmetric form1

2
[KL(pr, pt)+KL(pt, pr)] as the dis-

similarity measure.



Figure 1: Creating multiparametric speaker profile.

2.3. Combining Different Models

Although computed from the same data, parametric
and nonparametric models are based on different as-
sumptions, and they can provide complementary in-
formation. We consider the following six models:

F0-param : F0, parametric
F0-Eucl : F0, nonparametric, Eucl. dist.
F0-KL : F0, nonparametric, KL dist.
log F0-param : log F0, parametric
log F0-Eucl : log F0, nonparametric, Eucl. dist.
log F0-KL : log F0, nonparametric, KL dist.

The models are considered both individually and in com-
bination. The combination is formed by weighted sum of
normalized distances [11]. In addition toF0, we add a spectral
classifier based on vector quantization modeling (VQ) of
mel-frequency cepstral coefficients (MFCC) [12]. The creation
of the speaker profile is summarized in Fig. 1.

3. Experiments

3.1. Speech Material

For the experiments, male subset from the one speaker detection
task training files of the NIST 1999 SRE corpus [15] is used.
The dataset consists of 230 speakers, and the material is con-
versational speech collected over the telephone network. The
original speech samples are sampled at 8 kHz with 8-bitµ-law
resolution. For each speaker, there are “a” and “b” files, which
are from two different recording sessions. The “a” files are used
as the training samples and “b” files as the test samples. The
length of both samples is about 1 minute. The autocorrelation
algorithm of the Praat software [17] is used forF0 detection.

The 230 speakers are divided into two disjoint sets, the first
50 speakers (in alphabetical order on the filenames) are used as
the tuning set for optimizing the number of histogram bins and
the combination weights of the classifier pool. Closed-set iden-
tification error rate is used as the objective function in tuning.
The optimized parameters are then fixed and the performance is
evaluated on the remaining 180 speakers. The number of his-
tograms bins were set as follows:F0-Eucl = 27;F0-KL = 17;
log F0-Eucl = 15;log F0-KL = 65. These were kept fixed for all
conditions, but the classifier weights were optimized for noisy
and mismatched conditions separately.

3.2. Results

First, we study the individualF0 models and their combina-
tion for both clean and noisy conditions. The “clean” condition
refers to the original NIST samples. The noisy condition refers
to additive factory noise1 of 10 dB signal-to-noise ratio. Closed
set identification error rates and equal error rates (EER) are re-
ported in Table 1, and the receiver operating curve (ROC) is
shown in Fig. 2.

In general, the error rates are high, which is expected. In the
identification task, the differences between the methods are rel-
atively small. However, in the verification task, the nonparamet-
ric methods clearly outperform the parametric approach. The
Kullback-Leibler distance forlog F0 gives the best results in
most cases, and it is also robust against noise. A possible rea-
son for the success oflog F0-KL is that the number of free pa-
rameters is larger than for other models, and the distributions
can be better discriminated. Fusing all sixF0 models reduces
error rates slightly in the verification task, and the combined six
F0 models are used for the rest of the experiments.

Table 1: Error rates (%) forF0 models.
Identif. error EER

Model Clean Noise Clean Noise
F0-param 92.8 93.3 38.3 41.1
F0-Eucl 95.0 96.1 28.3 28.7
F0-KL 93.9 93.3 26.7 28.4
log F0-param 93.9 95.0 41.1 42.5
log F0-Eucl 93.9 96.7 28.3 28.7
log F0-KL 89.4 89.4 27.5 27.8
Fusing all six 88.9 90.6 27.3 27.2

Next, we study the potential ofF0 as a complementary fea-
ture to the MFCC features. Table 2 shows the correlation coef-
ficients between theF0 distances and the MFCC distances. The
correlations are close to zero in all cases, suggesting that the
features can provide truly complementary information.

1Noise data was obtained fromhttp://spib.rice.edu/
spib/select noise.html
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Figure 3: ROC curves ofF0, MFCC and their combination in different conditions.
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Figure 2: ROC curves for differentF0 models.

Table 2: Correlations betweenF0 and MFCC distances.
MFCC

F0-param -0.124
F0-Eucl -0.030
F0-KL -0.016
log F0-param -0.118
log F0-Eucl -0.034
log F0-KL -0.013

The recognition results are summarized in Table 3 for both
matched and mismatched conditions, and the ROC plots are
shown in Fig. 3. It can be observed that the accuracy of
the MFCC classifier degrades dramatically in noisy and mis-
matched cases, whereasF0 is practically unaffected. In the mis-
match cases,F0 verification outperforms MFCC verification.

Fusing MFCC andF0 yields surprisingly high relative im-
provements, given that the accuracy ofF0 is rather poor. This
is probably due to the uncorrelatedness of the features. For in-
stance, in the noise-noise case, the genuine acceptance rate is
increased from 50 % to 80 % at FAR = 5 % by addingF0. In

Table 3: Error rates forF0, MFCC and their fusion.
Train Match F0 MFCC Fusion

Identification error rate

Matched clean clean 88.9 23.9 22.8
noise noise 90.6 34.4 28.3

Mismatched noise clean 90.0 77.2 67.8
clean noise 88.9 91.7 86.1
Verification error rate (EER)

Matched clean clean 27.3 14.3 12.2
noise noise 27.2 21.7 13.9

Mismatched noise clean 27.2 32.9 19.4
clean noise 26.4 38.9 38.8

the noise-clean case, the identification error rate is reduced from
77.2 % to 67.8 %. In the clean-noise case, the fusion is not suc-
cessful in verification, although it improves identification. A
possible reason for this is that the combination weights were
optimized for the identification task, and are not guaranteed to
improve verification accuracy.

3.3. Samples Misclassified by MFCC but Correctly byF0

There are a few speakers that were misclassified by MFCC but
correctly byF0, and the speaker labels of these cases are listed
in Table 4. For comparative purposes, we showlog F0 distrib-
utions along with the long-term average spectra (LTAS) for two
speakers in Fig. 4. LTAS shows mismatches in both intensities
and spectral shapes, but thelog F0 distributions are very close
to each other. This observation supports the independence of
spectral andF0 features.

4. Conclusions
Parametric and nonparametric models for long-termF0 distri-
bution were studied as an additional cue in text-independent
speaker recognition. The results on telephone quality corpus
of male speakers indicated that the nonparametric approach is
more accurate in general. We recommend to use the nonpara-



Table 4: Speakers misclassified by MFCC but correctly byF0.
Train Match Speaker labels

Matched clean clean 4242, 4402, 4633
4785, 4949, 4996

noise noise 4270, 4402, 4487
4543

Mismatched noise clean 4270, 4391, 4402
4996, 4999

clean noise 4237, 4241, 4270
4391, 4402, 4487
4531, 4535, 4610
4621, 4841, 4914
4949, 4999

Figure 4: Long term average spectra (left) andF0 histograms
(right) for two speakers.

metric approach as it does not make assumptions about theF0

distribution. Finding the correct histogram size is one problem
in the nonparametric approach, and automatic determination of
the histogram size would be an interesting future direction.

It was found out thatF0 is robust against additive noise
and mismatch, whereas the accuracy of MFCC features is eas-
ily affected by these factors. When used alone,F0 is rather
poor feature (EER 27-42 %). However, when combined with
spectral feature, it leads to significant reductions in error rates,
especially in the verification task.

5. References
[1] A.G. Adami, R. Mihaescu, D.A. Reynolds, and J.J. God-

frey. Modeling prosodic dynamics for speaker recogni-
tion. In Proc. Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP 2003), pages 788–791, Hong Kong,
2003.

[2] G. Ashour and I. Gath. Characterization of speech during
imitation. InProc. 6th European Conf. on Speech Commu-
nication and Technology (Eurospeech 1999), pages 1187–
1190, Budapest, Hungary, 1999.

[3] B. Atal. Automatic speaker recognition based on pitch
contours. Journal of the Acoustic Society of America,
52(6):1687–1697, 1972.

[4] A. Butcher. Forensic phonetics: Issues in speaker identifi-
cation evidence. InInaugural Int. Conf. of the Institute of
Forensic Studies, Prato, Italy, 2002.

[5] J. Campbell. Speaker recognition: a tutorial.Proc. of the
IEEE, 85(9):1437–1462, 1997.

[6] M.J. Carey, E.S. Parris, H. Lloyd-Thomas, and S. Ben-
nett. Robust prosodic features for speaker identification.
In Proc. Int. Conf. on Spoken Language Processing (IC-
SLP 1996), pages 1800–1803, Philadelphia, Pennsylvania,
USA, 1996.

[7] Y. Cheng and H.C. Leung. Speaker verification using fun-
damental frequency. InProc. Int. Conf. on Spoken Lan-
guage Processing (ICSLP 1998), pages Paper 0228 on the
CD–ROM, 1996.

[8] D. Gerhard. Pitch extraction and fundamental frequency:
History and current techniques. Technical Report TR-CS
2003-06, University of Regina, Canada, November 2003.

[9] W. Hess.Pitch Determination of Speech Signals. Springer-
Verlag, Heidelberg, 1983.

[10] K. Iwano, T. Asami, and S. Furui. Noise-robust speaker
verification usingf0 features. InProc. Int. Conf. on Spo-
ken Language Processing (ICSLP 2004), volume 2, pages
1417–1420, 2004.

[11] T. Kinnunen, V. Hautam̈aki, and P. Fr̈anti. On the fu-
sion of dissimilarity- based classifiers for speaker identi-
fication. InProc. 8th European Conf. on Speech Commu-
nication and Technology (Eurospeech 2003), pages 2641–
2644, Geneva, Switzerland, 2003.

[12] T. Kinnunen, E. Karpov, and P. Fränti. Real-time speaker
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