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ABSTRACT 
 
The construction of kernel functions to handle sequences of 
speech feature vectors is crucial in using support vector 
machine (SVM) for speaker verification. Previous studies 
have reported the idea of representing speech signals as 
sequences of discrete acoustic or phonotactic events. This 
paper introduces a class of SVM kernels derived based on 
the expected likelihood measure between the probability 
distributions of discrete event sequences. We investigate 
and compare the effectiveness of three expected likelihood 
kernels using the universal background model (UBM) as 
the discrete event detector. Experiments conducted on the 
NIST 2006 speaker verification task indicate that the 
proposed kernel outperforms the popular rank-normalized 
kernel. 

1. INTRODUCTION 

Speaker verification [1] is the task of verifying the identity 
of persons using their voices. Recent advances reported in 
[2, 3, 4, 5] have shown successful application of support 
vector machine (SVM) [6] for speaker modeling. 

The key issue in using SVM for classifying speech 
signals, which have a varying number of spectral vectors, is 
how to represent them in a suitable form as SVM can only 
use input of a fixed dimensionality. A common approach is 
to map the sequences explicitly into fixed-dimensional 
vectors known as supervectors. Classifying variable-length 
sequences is thereby translated into a simpler task of 
classifying the supervectors. For instance, in [3] speech 
vectors are mapped to a high-dimensional space via time-
averaged polynomial expansion. In [4], speech vectors are 
used to train a Gaussian mixture model (GMM) via the 
adaptation of a so-called universal background model 
(UBM). The supervector is then formed by concatenating 
the mean vectors of the adapted GMM. In [7], the 
maximum likelihood linear regression (MLLR) transform is 
used to form the supervectors comprising of the transform 
coefficients. It should be mentioned that the term 
supervector was originally used in [4, 8] to refer to the 
GMM supervector. Here, we use similar term in a broader 
sense referring to any fixed-dimensional vector that 

represents a whole speech sequence as a single point in the 
vector space, having a much higher dimensionality than the 
original input space. 

This paper advocates the use of discrete events and their 
probabilities to construct supervectors. Discrete events 
arise naturally in modeling many types of data, for 
example, letters, words, and DNA sequences. Speech 
signals can also be represented as sequences of discrete 
symbols. For instance, high-level features extraction (e.g., 
idiolect, phonotactic, prosody) usually produces discrete 
symbols. The idea of using such discrete representation as 
features for SVM has been examined previously in [5, 9, 
10, 11]. Their results showed that the greatest difficulty lies 
at the construction of kernel function (i.e., inner product 
function) which should give a proper similarity measure 
between two event sequences. In this paper, we solve this 
problem by first model the distribution of the discrete 
events as probability mass function (PMF). SVM kernel is 
then derived based on the expected likelihood measure 
between PMFs. We report three discrete expected 
likelihood kernels, analyze and compare their efficacy on 
the NIST 2006 speaker recognition tasks. To the best of our 
knowledge, the idea of expected likelihood kernel was first 
reported in [12] for continuous distribution. Here, we 
extend the idea for discrete distribution and investigate its 
relevance to speaker recognition.    

2. SUPERVECTOR OF DISCRETE PROBABILITIES  

We first review the general concept of discrete events and 
the estimation of discrete probabilities. We then apply this 
framework for constructing supervector from the discrete 
probabilities of some acoustic events. 

2.1. Discrete events and the estimation of discrete 
probabilities 

Let some discrete events { }, 1,2, ,iS e i M= = …  have M 
possible outcomes, and let iω  be the probability of 
observing the ith event ie . Given a sequence of speech 
feature vectors, { }1 2, , , T= x x x…X , our goal is to 
estimate the probabilities { 1 2, ,ω ωΩ = }, Mω…  of the 
events observed in the speech signal. These discrete events 
could correspond to abstract linguistic units such as 
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phonemes, syllables, words, or subsequences of n symbols 
(i.e., n-grams). In its simplest form, a discrete event could 
also correspond to a Gaussian density in the acoustic space 
as we shall see in Section 2.2. 

Using the maximum a posteriori (MAP) criterion [13], 
the discrete probabilities can be estimated as 
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above equation ( )in X  denotes the number of occurrences 
of the events ie  in X , and ( )g Ω  is the prior density for 
the parameters Ω. Taking the prior as a Dirichlet density 
[13], the MAP estimate { }1 2, , , Mω ω ωΩ =� � � �…  can be easily 
solved via the method of Lagrange multiplier, as follows 
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The MAP estimate is simply the sum of the observed 
statistics in  and the so-called hyperparameters iν . The 
denominator ensures that the probabilities iω�  always sum 
to one. 

2.2. UBM as soft quantizer 

The universal background model, or UBM, is a Gaussian 
mixture model (GMM) trained by pooling together the 
speech feature vectors from a number of different speakers. 
The UBM, denoted by Θ , is characterized by the density 
function, 
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Θ =∑x x μ ΣN , (3) 

where Θ { }, , , 1,2, ,i i i i Mλ= =μ Σ …  denotes the 
parameters of the M Gaussians: the mixture weights ( iλ ), 
the mean vectors ( iμ ) and the covariance matrices ( iΣ ). 

The UBM represents a speaker-independent distribution 
in the acoustic space, where similar acoustic features are 
grouped together and represented with Gaussian densities. 
Let each of the Gaussian densities represent a discrete 
event ie . Given a speech segment X , the number of 
occurrences of event ie  is computed by accumulating the 
posterior probabilities 
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for the whole utterance, as follows 
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where T is the number of speech frames. The UBM 
quantizes the input vectors into discrete symbols; each 

corresponds to a Gaussian density. Since the Gaussian 
densities can be overlapped, rather than partitioned, soft 
membership can be computed based on the Bayes rule as 
given in (4). 

Finally, using the occupancy count in (5), the MAP 
estimate Ω�  can be obtained by substituting the results into 
(2) with the parameters iν  set to 

 1i iMν τ λ− = ⋅ ⋅ , (6) 

where iλ  are the weights of the UBM and the controlled 
parameter τ  has to be greater or equal to 0. This is known 
as the τ-initialization method in [13]. Feasible values for τ  
range from 0 to 1, which we have found effective for this 
application. For 0τ = , the MAP estimate reduces to the 
maximum likelihood (ML) estimate. 

2.3. Constructing supervector 

The set of discrete events { }1 2, , , MS e e e= …  and their 
estimated probabilities Ω� { 1 2, ,ω ω= � � }, Mω�…  can be 
conveniently represented in functional form as ( )|P h Ω� , 
where ( )|i iP h e ω= Ω =� �  and the variable h S∈  represents 
any possible event in the set. The function ( )|P h Ω�  is 
known as the probability mass function (PMF). We can 
further express the PMF in vector form as 

 ( ) ( ) ( )[ ] [ ]T T
1 2 1 2, , , , , ,M MP e P e P e ω ω ω= =p � � �… … , (7) 

where the superscript T denotes transposition. The vector p 
has a fixed dimensionality, M, equivalent to the cardinality 
of the event set S. It represents the speech segment X  in 
terms of the distribution of discrete events observed in X . 
These attributes fulfill our requirement of supervector 
representation. In this paper, Ω�  is obtained from X  using 
(2), (4), (5), and (6). The dimensionality of the resulting 
supervector p is determined by the number of Gaussian 
densities in the UBM. 

3. DISCRETE EXPECTED LIKELIHOOD KERNEL 

For a kernel to be admissible for SVM, it has to be 
symmetric and represent an inner product in the feature 
space [6]. In this section, we introduce and compare three 
different expected likelihood measures and show how to 
use them for constructing SVM kernel. 

3.1. Expected likelihood 

Consider two PMFs parameterized by aΩ�  and bΩ�  
corresponding to speech signals aX  and bX , respectively. 
We are interested in finding a symmetric measure that 
defines the similarity between the PMFs. A natural measure 
that satisfies the symmetric property is the expected value 
of the first PMF with respect to the second one: 

 ( ){ } ( ) ( ) ( ){ }| | | |b a a b a b
h S

E P h P h P h E P h
∈

Ω = Ω Ω = Ω∑� � � � . (8) 

Note that the expectation operation over a discrete 
distribution is the summation of ( )| aP h Ω�  by using 
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( )| bP h Ω�  as a weighting function. Since the probability 
( ) ( )| |i a aP h e h= Ω = Ω� �L  is also known as the likelihood 

of the model aΩ� , (8) is referred to as the expected 
likelihood (EL). By using the notations ( )|i aP h e= Ω�  

,i aω= �  and ( )|i bP h e= Ω� ,i bω= �  in (8), we arrive at the 
following EL kernel 
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which is simply the inner product between two 
supervectors of discrete probabilities. 

3.2. Expected likelihood ratio 

The EL kernel in (9) may be suboptimum as rare acoustic 
events might be outweighed by those with higher 
probabilities (which tend to dominate the inner product). A 
normalization term based on the prior weights of the UBM 
Λ = { }1 2, , , Mλ λ λ…  can be included, in which case we 
arrive at the expected likelihood ratio (ELR): 
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Substituting ( ) ,|i a i aP h e ω= Ω =� � , ( )|i bP h e= Ω� ,i bω= �  and 
( )|i iP h e λ= Λ =  into (10), we arrive at the following ELR 

kernel 
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The scaling factor 1 iλ  allows rare acoustic events to be 
emphasized while suppressing those with high 
probabilities. The kernel function can also be written in 
vector notation as follows 
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T
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could be seen as the normalized version of the supervector 
p . Similar normalization method was introduced in [14] 
for the use of n-gram probabilities in spoken language 
recognition application and was referred to as the term-
frequency log-likelihood ratio (TFLLR) scaling. Here, we 
derive and interpret the same normalization method from 
the expected likelihood perspective. 

3.3. Expected square-root likelihood ratio 

In the ELR kernel, the likelihood ratio is taken with respect 
to the UBM. Considering that the likelihood ratio is now 
computed between the two PMFs to be compared, we 
arrive at 
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Notice that a square-root operator is used so that the 
resulting measure will be symmetric. Substituting 
( ) ,|i a i aP h e ω= Ω =� �  and ( ) ,|i b i bP h e ω= Ω =� �  in (14), we 

obtain the following expected square-root likelihood ratio 
(ESLR) kernel: 
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where 

 ( )ESLR

T
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Comparing (15) to (9), the only difference is the square-
root operator. Numerically, the square-root operator has an 
effect in applying higher gain to rare events; the gain 
reduces gradually for higher probabilities. The ESLR 
kernel is also simpler compared to the ELR kernel, which 
normalizes individual dimension with a constant scaling 
factor instead of warping. It is worth mentioning that the 
statistical measure in (14) is commonly referred to as the 
Bhattacharyya coefficient in the literature [15]. Here, we 
interpret the same statistical measure from expected 
likelihood perspective. 

4. USING THE EXPECTED LIKELIHOOD KERNELS 
WITH SVM 

We deliberately write the kernel functions in (9), (12) and 
(15) in terms of aX  and bX  so that the kernel function 
represents (i) a mapping from X  to Ω�  and (ii) a similarity 
measure between two sequences. Using this notation, the 
discriminant function of the SVM [6] can be expressed as, 

  ( ) ( )
1

,
L

l l l
l

f y bα κ
=

= +∑X X X , (17) 

where ( ),lκ X X  is any of the three kernels above,  b  is 
the bias parameter, L  is the number of support vectors, and 

lα  are the weights assigned to the lth support vector with 
its label given by { }1, 1ly ∈ − + .  

Since a supervector represents a speech utterance as a 
single point in the vector space, it becomes possible to 
remove the unwanted variability, due to different handsets, 
channels and phonetic content, from the supervector by 
linear projection. Let E be an M-by-N matrix representing 
the unwanted subspace that causes the variability.  
Nuisance attribute projection (NAP) [16] removes the 
unwanted variability from a supervector via a projection to 
the subspace complementary to E, as follows 
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 ( )TI′ = −p EE p . (18) 

NAP assumes that the variability is confined in a relatively 
low dimensional subspace such that N ا M. The columns 
of E are the eigenvectors of the within-speaker covariance 
matrix estimated from a development dataset with large 
number of speakers, each having several training sessions. 

In (18), the supervector p  depends on the kernel 
function (EL, ELR, or ESLR) used. SVM modeling is then 
performed using the supervectors ′p  that have been 
compensated for session variability. The SVM discriminant 
function can be expressed in terms of the compensated 
supervector as follows 

  ( ) ( )T

1

L

l l l
l

f y bα
=

′ ′ ′= +∑p p p .  (19) 

5. EXPERIMENTAL RESULTS 

The experiments were carried out on the NIST speaker 
recognition evaluation (SRE) 2006 corpus [17]. The core 
test consists of 3612 genuine and 47836 imposter trials. 
There are 810 target speakers each enrolled with one side 
of a 5 minutes conversation. Our development data were 
drawn from the NIST SRE 2004 and SRE 2005. All speech 
samples are first pre-processed to remove silence and 
converted into sequences of 36-dimensional MFCCs with 
deltas and double deltas. RASTA and utterance-level mean 
and variance normalization were performed. NAP and test 
normalization (T-norm) were applied to compensate for 
session variability at the model and score levels, 
respectively. The NAP projection matrix has a rank of 40 
and was derived from NIST SRE 2004 data, while the T-
norm cohorts were selected from NIST SRE 2005 data. 

The UBM used in the experiments contains M = 16384 
mixtures. The parameter τ  in the discrete probabilities 
estimation is set to 0.01. Due to a relatively large number of 
mixtures, Gaussian selection technique [18] is used for 
speeding up likelihood evaluation. Here, the hash model 
size is set to 512 while the length of the shortlists is 2048. 
This leads to approximately six times faster computation. 
We also tie the Gaussian components such that they share 

the same global covariance matrix to further simplify the 
computation of the posterior probabilities. 

We compare the performance of the proposed kernels 
(EL, ELR, and ESLR) and include the rank normalization 
[10] in comparison as well. The scaling factor 1 iλ  in 
(13) and the square-root operator in (16) impose a feature 
normalization step on the supervectors. Proper feature 
normalization is desirable as SVMs are not invariant to 
scaling in the feature space. To this end, rank normalization 
was proposed in [10] for high-level feature having similar 
count-based characteristic. Rank normalization replaces 
each dimension of the supervector by its rank in a 
background data, which is more complicated than any of 
the EL kernels.  

Table 1 shows the performance in terms of equal error 
rates (EERs) and minimum detection cost function 
(MinDCF), while Fig. 1 shows the detection error trade-off 
(DET) curve. It is evident that the ESLR and ELR kernels 
perform better than the EL kernel, which indicates that 
kernel normalization is important. Comparing the ESLR 
and ELR kernels, on the other hand, shows that the square-
root operator is more robust than the inverse probability 
weighting in the ERL kernel, where nuisance features may 
be unintentionally amplified. The ESLR kernel performs 
consistently better than rank normalization in terms of EER 
and MinDCF showing the efficiency of our approach. 

Table 1 also shows the performance of the GMM mean 
supervector (GSV) [4]. For the GSV system, the UBM 
consists of 512 mixtures leading to supervectors of 
dimensionality 18432. Recall that the supervector of 
discrete probabilities has a comparable dimensionality of 

16384M = . The datasets used for UBM training, SVM 

Table 1: EER and MinDCF on the core test of NIST SRE 2006 
for the EL [eq. (9)], ELR [eq. (12)], ESLR [eq. (15)], rank 
normalization [10], and GMM supervector (GSV) [4]. 

System EER (%) MinDCF  
(×100) 

EL 6.81 3.31 
ELR 6.59 3.30 

ESLR 5.11 2.52 

Rank Normalization 5.51 2.61 
GSV 4.85 2.33 
ESLR + GSV 4.50 2.22 
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Figure 1: Detection error tradeoff (DET) curves of individual 
systems and fusion evaluated on the NIST SRE 2006 core 
task. The order of the system in the legend indicates the 
performance with the bottom (i.e., ESLR + GSV) being the 
best, which corresponds to the curve closest to the origin.   
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background data, NAP and t-norm are the same for all 
systems. The proposed ESLR kernel exhibits competitive 
performance compared to the GSV system, both having 
approximately the same dimensionality in the kernel space. 
We fused the two systems using equal weights. The fusion 
gives relative EER improvement of 7.2% over the best 
single system. Since the same datasets were used for system 
development, the fusion result shows the diversity in 
speaker modeling, suggesting that the two approaches 
capture complementary aspects (continuous vs. discrete) of 
speaker characteristics. 

6. CONCLUSION 

We have introduced a class of SVM kernels derived based 
on the expected likelihood measure between the 
distributions of discrete speech events. We demonstrate the 
usefulness of the expected likelihood kernels on the 
discrete speech events representation derived from the 
frame posterior probabilities of UBM. Experimental results 
show that the expected square-root likelihood ratio (ESLR) 
kernel performs better than the rank-normalized kernel 
using the same feature on the 2006 NIST speaker 
verification task. The expected likelihood kernel gives 
equally good accuracy compared to, and fuses with, the 
state-of-the-art GMM mean supervector approach. 

It is worth emphasizing that, even though the current 
work uses a UBM quantizer to construct supervectors, this 
is not necessarily the case; the proposed method can be 
used with other types of front-end quantizer. In particular, 
we expect the method to be readily applicable for spoken 
language recognition, and applications beyond speech 
technology that operate on discrete symbols, such as 
natural language processing (NLP) and bioinformatics. 
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