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Abstract 
Support vector machine (SVM) equipped with sequence 
kernel has been proven to be a powerful technique for speaker 
verification. A number of sequence kernels have been 
recently proposed, each being motivated from different 
perspectives with diverse mathematical derivations. 
Analytical comparison of kernels becomes difficult. To 
facilitate such comparisons, we propose a generic structure 
showing how different levels of cues conveyed by speech 
utterances, ranging from low-level acoustic features to high-
level speaker cues, are being characterized within a sequence 
kernel. We then identify the similarities and differences 
between the popular generalized linear discriminant sequence 
(GLDS) and GMM supervector kernels, as well as our own 
probabilistic sequence kernel (PSK). Furthermore, we 
enhance the PSK in terms of accuracy and computational 
complexity.  The enhanced PSK gives competitive accuracy 
with the other two kernels. Fusing all the three kernels yields 
an EER of 4.83% on the 2006 NIST SRE core test. 
Index Terms: speaker verification, characteristic vector, 
support vector machine, sequence kernel 

1. Introduction 
Modern speaker verification systems consist of two main 
components: feature extraction and speaker modeling. At the 
feature-extraction front-end, speech utterances are usually 
parameterized as short-term cepstral features. For speaker 
modeling, the classical approaches of Gaussian mixture 
modeling (GMM) [1, 2] and vector quantization (VQ) [3] are 
commonly used. In these generative approaches the training 
feature vectors are assumed to be drawn from a speaker-
specific probability distribution and the training process 
consists of estimating the parameters of the underlying 
density function. To this end, maximum a posteriori (MAP) 
adaptation of a so-called universal background model (UBM) 
is commonly used [2]. 

Recent advances in speaker verification [4, 5, 6] have 
largely relied on the discriminative learning mechanism of 
support vector machines (SVMs) [7] for boosting 
classification accuracy. Rather than modeling within-class 
distributions of the target and background speakers, SVM 
aims at modeling the decision boundary between them. To 
this end, one practical issue is to represent variable-length 
speech utterances into suitable form for SVMs. A common 
approach is to transform speech utterances explicitly into 
fixed- and high-dimensional vectors via a so-called sequence 
kernel or dynamic kernel [4, 5, 6]. SVM classifiers then 
operate on these expanded vectors to make classification 
decision. 

A number of sequence kernels have been proposed by 
different authors. The kernels differ in their feature expansion 

mechanism (basis function selection), feature transformations 
and normalizations, and in other kernel-specific steps. For 
instance, the popular generalized linear discriminant 
sequence (GLDS) kernel [4] performs feature expansion with 
monomial bases, followed by averaging and variance 
normalization of the expanded vectors. Other kernels include 
GMM supervector kernel [5], probabilistic sequence kernel 
(PSK) [6, 8], Fisher kernel [9], MLLR supervector kernel 
[10], and incomplete Cholesky kernel [11] just to mention a 
few. Rank normalization [12] and within-class covariance 
normalization [13] are examples of kernel normalizations. 

The abovementioned sequence kernels were motivated 
and derived from different perspectives in their own right. 
Due to the inherent differences of the kernels, an analytical 
comparison between their underlying mechanisms is always a 
difficult task. In this paper, our primary aim is to identify and 
compare the typical steps encapsulated within the sequence 
kernel SVMs. In particular, we show how the GLDS kernel 
[4] and GMM supervector kernel [5], as well as our own PSK 
kernel [6] can be reformulated such that they conform to a 
generic structure in characterizing speech utterances for text-
independent speaker verification. Having the kernels analyzed 
under a common platform makes it easier to identify their 
affinities and differences, and to discover the reasons why 
certain kernels perform better than others. 

In addition, we present some recent improvements to our 
PSK kernel [6]. We improve on the basis function selection, 
which brings along a fast computation technique in evaluating 
the kernel as well as better classification accuracy compared 
to our previous proposal. We also equip our kernel with the 
nuisance attribute projection (NAP) technique [14], which 
has been proven to be successful in dealing with channel 
variability. 

2. Characterizing Speech Utterances 
Speech utterances can be represented in various forms with 
different levels of compactness targeted for a specific 
application. Figure 1 illustrates the idea of characterizing 
speech utterances for text-independent speaker verification. 
At the first level, the acoustic speech signal is a measure of 
the changes in acoustic sound pressure level due to the 
movements of articulators (tongue, lips, etc.). At the next 
level of the structure are the cepstral feature vectors. They are 
usually computed either via mel-frequency filterbank, leading 
to mel-frequency cepstral coefficients (MFCCs), or via linear 
prediction, yielding the linear predictive cepstral coefficients 
(LPCCs) [15]. The cepstral feature vectors give a compact 
representation of the short-term spectra correlating with the 
changes in the vocal tract shape over time. 

The cepstral features convey both speaker-specific cues 
as well as linguistic information (the words). In speaker 
verification, our intention is to suppress other factors 
influencing the cepstral features, leaving only the speaker-



dependent component [1]. As shown in Fig. 1, we use a set of 
basis functions to analyze and summarize the speaker-specific 
cues into a compact vector ρ  dubbed as the characteristic 
vector of the speaker. Representing the utterances as fixed-
dimensional vectors rather than variable length vector 
sequences greatly simplifies the subsequent speaker modeling 
and matching tasks. 

 Let ( )jϕ x  for j = 1, 2,…, M, be the set of M basis 
functions. A sequence X = {x1,x2,…,xN} of N cepstral feature 
vectors of dimension D is converted into a characteristic 
vector ρ  via the following two operations: 
(i) Feature expansion 

 ( ) ( ) ( ) ( )[ ]1 2, , , T
Mϕ ϕ ϕ=x φ x x x x6 … , (1) 

(ii) Statistical analysis 

 ( ){ };f X= ∈ρ φ x x , (2) 

where the superscript T denotes matrix transposition and 
{}f ⋅  represents some functions of the expanded features 
( )φ x , such as the arithmetic mean. With these two 

operations, the number of feature coefficients is significantly 
reduced from the original N D×  coefficients of X down to 
the M coefficients of ρ , since N M�  for long utterance. 
The characteristic vector therefore gives a compact 
representation of the vocal characteristic of the speaker 
provided that the basis functions are properly defined. 

Furthermore, if the dimensionality of the characteristic 
vector can be made sufficiently high, i.e., M D� , the 
speaker verification problem would be more likely to be 
linearly separable one according to the Cover’s theorem on 
separability of patterns [16, pp. 257]. Linear classifiers like 
SVM can then be used for discriminating between speakers 
based on their characteristic vectors. Since the expansion (1) 
is explicit, we can also be sure that the Mercer’s condition [7] 
is automatically satisfied in the characteristic feature space 
and admissible for used with a linear-kernel SVM, as follows: 

 ( )
1

L
T

l l l
l

g tα β
=

= +∑ρ ρ ρ . (3) 

Here, { lρ }, l = 1, 2 ,…, L are the L support vectors, β  is the 
bias, and the term l ltα  indicates the weight of the lth support 
vector. As depicted in Fig. 1, we usually need to normalize 
the characteristic vectors prior to SVM training and 
classification. Feature normalization is crucial since SVM is 
not invariant to feature scaling [7].   

3. Basis Function Selection 
A number of sequence kernels can be shown to follow the 
generic structure of Fig. 1 with the major differences being 
the types of basis functions used. In the following, we show 
how the GLDS kernel [4] and GMM supervector kernel [5] 
can be rewritten to coincide with (1) and (2) so that their 
common attributes can be identified. 

3.1. GLDS Kernel 
In the GLDS kernel [4], the expansion (1) of a cepstral feature 
vector [ ]1 2, , , T

Dx x x=x …  is defined using the monomials of 
its elements. For instance, the feature expansion consisting of 
the monomials up to the second order is 
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The sequence X = {x1, x2,…,xN} is then represented as a 
characteristic vector by taking the arithmetic mean of the 
expansions: 

 ( )GLDS GLDS
1

XN ∈

= ∑
x

ρ φ x . (5) 

The averaging operation yields the estimates of the first- and 
second-order moments: { }iE x , { }i jE x x  for , 1,2, ,i j D= … , 
where E denotes the statistical expectation. The characteristic 
vector in (5) therefore captures the sample means and 
correlations (higher-order statistics are obtained for orders 
above two) of cepstral features. 

The characteristic vector GLDSρ  has dimensionality M = 
((D+k)!)/(D!k!), where k is the maximum order of the 
monomials. In practice, only monomials up to the third order 
have shown to be useful for speaker and language recognition 
purposes [4]. The dimensionality becomes unfeasible for k > 
3. The practical virtue of the monomial bases is their 
simplicity in terms of (i) computation, and (ii) no training is 
required unlike in [5, 6]. This is beneficial when there is a 
limited amount of data available for training. However, basis 
functions that exploit the underlying acoustic structure 
learned from a sufficient amount of training data would 
generally exhibit better performance, as we shall demonstrate 
experimentally in Section 5. 

3.2. GMM Supervector Kernel 
The GMM supervector [5] is formed by stacking the mean 
vectors of a GMM adapted from the UBM with the MAP 
criterion [2]. Denoting the number of Gaussians in the UBM 
by M, we define M vector-valued basis functions as 

 ( ) ( )|
j

j

p j
n

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

xφ x x  for 1,2, ,j M= … , (6) 

where 

 ( ) ( ) ( )
( ) ( )

1

||
|M

i

p j P jp j
p i P i

=

=
∑

xx
x

 (7) 

denotes the posterior probability of the jth Gaussian 
component ( ) ( )| ~ ; ,j jp jx x µ ΣN  of the UBM. The 
probabilistic count 

 ( )|j
X

n p j
∈

= ∑
x

x  (8) 

at the denominator in (6) is determined for the jth Gaussian 
component by evaluating the total occupancy for the 
sequence X into that component. Stacking together the M 
vector-valued bases ( )jφ x , we form the MD-dimensional 
expansion as 
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Figure 1: A generic structure for characterizing speech 
utterances for speaker verification. The representation 
improves into a more compact format when we move from 
the bottom to the top of the structure. 



 ( ) ( ) ( ) ( )SV 1 2, , , TT T T
M= ⎡ ⎤⎣ ⎦φ x φ x φ x φ x… . (9) 

Finally, the GMM supervector (i.e., the characteristic vector) 
is obtained by taking the sum of the expansions, followed by 
regularization with a priori information (i.e., the supervector 
µ  of the UBM), as follows: 

 ( ) ( )SV SV
X

I
∈

⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑
x

ρ Λ φ x Λ µ . (10) 

Here, Λ  is a diagonal matrix controlling the relative 
contributions of the a posteriori and a priori information. The 
characteristic vector SVρ  therefore captures the speaker 
information based on the positions of the Gaussian 
components adapted from the UBM. 

Equation (10) gives the MAP adaptation [2] of mean 
vectors in vector-matrix notation. The control parameters at 
the diagonal of Λ  are set according to the occupancy nj and 
the desired rate of adaptation [2]. Letting 1  denote a 1 D×  
vector of all ones, the control matrix is given by 

 [ ]{ }1 2diag , , , Mλ λ λ=Λ 1 1 1… , (11) 

where ( )j j jn n rλ = +  and r  is the relevance factor taken 
usually in the range 8 ~ 20, and {}diag ⋅  denotes the operation 
of transforming its vector argument into a diagonal matrix. 

4. Enhancing the Probabilistic Sequence 
Kernel (PSK) 

The basis functions of the PSK kernel [6] are defined based 
on an ensemble of Gaussian densities, ( )|p jx ~ 

( ); ,j jx µ ΣN  for 1,2, ,j M= … , which serves as a decoder 
in identifying the characteristic sound patterns representing 
speaker-specific cues. In particular, the expansion is given by 

 ( ) ( ) ( ) ( )[ ]PSK 1| , 2 | , , | Tp j p j p j M= = = =φ x x x x… , (12) 

where ( )|p j x  denotes the posterior probability of the jth 
Gaussian, as given by (7). Each element of the expansion 

( )PSKφ x  gives the probability of occurrence of the jth 
acoustic class evaluated for a given feature vector x . The 
average probabilistic count across the entire sequence X is 
given by 

 ( )PSK PSK
1

XN ∈

= ∑
x

ρ φ x . (13) 

The characteristic vector PSKρ  can therefore be interpreted as 
an M-bin histogram indicating the probabilities of occurrence 
of various acoustic sound classes observed in the given 
speech utterance X. 

The GMM supervector in (10) captures the speaker 
information based on the positions of Gaussian components, 
whereas the PSK expansion (12) hinges on the posterior 
probabilities of Gaussian components. These Gaussian 
components represent general vocal tract configurations in 
producing various speech sounds: the mean jµ  represents the 
average spectral shape of the jth acoustic classes, the 
covariance matrix jΣ  represents the variations of the average 
spectral shape, and the weight ( )P j  represents the 
probability of occurrence of the jth sound class. 

In our initial study [6], we established the Gaussian bases 
by aggregating the UBM and an adapted GMM into an 
ensemble of 2M Gaussians. Therefore, each target speaker has 
its own set of bases. The major drawback of this approach is 
high computational load when we scale up the system to 
include more target speakers; the expansion of a test utterance 
has to be performed repeatedly for each speaker using 
different set of bases. This is undesirable in practice, where 

we usually need to score multiple speaker’s models for a 
given test utterance. 

 In this paper, we use a common set of bases for all 
speakers instead of the speaker-dependent kernel used in [6]. 
This is achieved by aggregating the GMMs of K speakers 
selected from a background dataset. Each GMM contributes 
Q components, resulting in M = KQ Gaussian bases. We first 
train a root GMM with Q mixtures from the background data 
using the expectation-maximization (EM) algorithm [1]. We 
then train a GMM for all the speakers in the background 
using the root GMM as initial models. In our implementation, 
we use five iterations of EM in training the root GMM and 
another five iterations of EM for the background speakers. 
We then select a subset of K speakers that gives the largest 
scattering measure [17] from the background. The scattering 
measure is defined as the average distance between all pairs 
of GMMs in a subset. The more scattered the speakers, the 
resulting KQ Gaussian bases would therefore cover a richer 
set of acoustic sound classes. 

The background speakers’ GMMs are pooled together 
with equal weights to form an ensemble of M = KQ 
Gaussians. An identical set of bases can then be used for all 
target speakers. It should be mentioned that the purpose of the 
root GMM is to allow a fast computation procedure in 
evaluating the expansion (12). For an input vector, the root 
GMM is first used to determine the top S Gaussians with 
higher likelihoods (we found that S = 10 is sufficient for Q = 
256). Using this information, we evaluate only the top S 
Gaussians in each of the background GMMs, while the 
remaining Gaussians are assumed to have zero probabilities. 
We have successfully used similar techniques for spoken 
language recognition in [8].  

5. Experiments 
We evaluated the performance of the three characteristic 
vector representations described earlier for (i) GLDS kernel 
[4], (ii) GMM supervector [5], and (iii) probabilistic sequence 
kernel (PSK) [6]. The experiments were carried out on the 
2006 NIST SRE [18]. The core test consists of 3,612 genuine 
and 47,836 imposter trials. There are 810 target speakers each 
enrolled with one side of a 5 minutes conversation. Our 
background data includes over 3000 speech utterances of 2.5 
minutes duration from 310 speakers drawn from the 2004 
NIST SRE data. All speech samples are first pre-processed to 
remove silence and converted into sequences of 36-
dimensional MFCCs (with deltas and double deltas) and 
finally represented as characteristic vectors.  

For the GLDS kernel, we used all monomials up to third 
order. For the GMM supervector, the UBM consists of 512 
mixtures. For PSK, we formed the Gaussian bases by 
aggregating K = 72 GMMs selected from the background, 
each with Q = 256 mixtures. The characteristic vectors are 
normalized with different schemes before they can be used 
with SVM. We use variance normalization for GLDS kernel, 
Kullback-Leibler divergence normalization [5] for GMM 
supervector, and rank normalization [12] for PSK.  

The value K = 72 was selected for the PSK considering 
that there are 310 speakers in the background dataset, and by 
having Q = 256, the characteristic vectors representation for 
PSK has the same dimensionality (72×256 = 18,432) with the 
the GMM supervector (512×36 = 18,432). This demonstrates 
the flexibility of the PSK expansion in controlling the 
capacity of the SVM classifier. The capacity of the GLDS 
kernel, on the other hand, is hardly controllable since the 
dimensionality of the kernel grows exponentially with 
increased monomial order. Its performance (not shown in this 
paper) degrades when we increased the order beyond three. 



We investigated the performance of the PSK system with 
and without nuisance attribute projection (NAP) [14]. The 
NAP projection matrix has a rank of 40 and was derived from 
the 2004 NIST SRE data. The equal error rates (EERs) for all 
trials and for both genders are shown in Table 1 (Note that 
NIST SRE tasks do not include cross-gender trials). A relative 
EER improvement of 30% is obtained by introducing NAP 
into the PSK. Though the EERs are higher for female trials, 
the relative improvements introduced by NAP are almost 
similar for both genders.  

The performances of the three systems are shown in 
Table 2 in terms EER and minimum detection cost function 
(Min DCF) [18]. The detection error tradeoff (DET) curves 
are plotted in Fig. 2. The PSK and GMM supervector kernels 
systematically outperform the GLDS kernel. This observation 
confirms our claim that better characterization of speaker 
information is obtained by incorporating additional 
knowledge regarding the underlying acoustic structure into 
the bases as in the PSK and GMM supervector. Finally, we 
fused the three system using equal weights considering that 
their scores are approximately in the same range. The fused 
system gives relative EER improvement of 14% over the best 
system, suggesting that the different kernels capture 
complementary aspects of the same feature space. 

6. Conclusions 
We have shown a generic structure for characterizing speech 
utterances for speaker verification with two major elements: 
(i) cepstral feature extraction followed by (ii) speaker 
information extraction via basis functions. The effectiveness 
of the characterization depends on the ability of the basis 
functions in capturing speaker-specific information. Based on 
the proposed structure, we systematically analyzed the GLDS 
kernel and GMM supervector kernel, and revamped our 
previously proposed probabilistic sequence kernel (PSK) for 
improved accuracy and reduced computational complexity. 
Experiments on the 2006 NIST speaker detection task showed 
that the enhanced PSK exhibits good performance and it fuses 
nicely with the GLDS and GMM supervector. 
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Table 1. EER of the PSK system (with and without NAP) 
evaluated on the 2006 NIST SRE core test. 

EER (%) System 
Male Female All 

PSK 7.15 9.48 8.50 
PSK + NAP 4.76 6.31 5.95 

Table 2. EER and Min DCF of (i) GLDS kernel, (ii) GMM 
supervector, (iii) PSK, and their fusion evaluated on the 

2006 NIST SRE core test. 

System EER (%) Min DCF 
(×100) 

GLDS + NAP 6.38 3.18 
GMM supervector + NAP 5.62 2.68 
PSK + NAP 5.95 2.76 
Fuse all 4.83 2.53 
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Figure 2: Detection error tradeoff (DET) curves of the 
three speaker verification systems and their fusion 
evaluated on the 2006 NIST SRE core test. 
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