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Abstract—Support vector machines (SVMs), and kernel 

classifiers in general, rely on the kernel functions to measure the 
pairwise similarity between inputs. This paper advocates the use 
of discrete representation of speech signals in terms of the 
probabilities of discrete events as feature for speaker verification 
and proposes the use of Bhattacharyya coefficient as the 
similarity measure for this type of inputs to SVM. We analyze the 
effectiveness of the Bhattacharyya measure from the perspective 
of feature normalization and distribution warping in the SVM 
feature space.  Experiments conducted on the NIST 2006 speaker 
verification task indicate that the Bhattacharyya measure 
outperforms the Fisher kernel, term frequency log-likelihood 
ratio (TFLLR) scaling, and rank normalization reported earlier 
in literature. Moreover, the Bhattacharyya measure is computed 
using a data-independent square-root operation instead of data-
driven normalization, which simplifies the implementation. The 
effectiveness of the Bhattacharyya measure becomes more 
apparent when channel compensation is applied at the model and 
score levels. The performance of the proposed method is close to 
that of the popular GMM supervector with a small margin. 
 

Index Terms— Bhattacharyya coefficient, speaker verification, 
support vector machine, supervector. 

I. INTRODUCTION 
PEAKER verification is the task of verifying the identity of 
a person using his/her voice [1]. The verification process 

typically consists of extracting a sequence of short-term 
spectral vectors from the given speech signal, matching the 
sequence of vectors against the claimed speaker’s model, and 
finally comparing the matched score against a verification 
threshold. Recent advances reported in [1-8] show an 
emerging trend in using support vector machines (SVMs) for 
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speaker modeling. One reason for the popularity of SVM is its 
good generalization performance.  

The key issue in using SVM for classifying speech signals, 
which have a varying number of spectral vectors, is how to 
represent them in a suitable form as SVM can only use input 
of a fixed dimensionality. A common approach is to map the 
sequences explicitly into fixed-dimensional vectors known as 
supervectors. Classifying variable-length speech sequences is 
thereby translated into a simpler task of classifying the 
supervectors. For instance, in [3] speech vectors are mapped 
to a high-dimensional space via time-averaged polynomial 
expansion. In [4], speech vectors are used to train a Gaussian 
mixture model (GMM) via the adaptation of a so-called 
universal background model (UBM). The supervector is then 
formed by concatenating the mean vectors of the adapted 
GMM. In [5], supervectors are formed by stacking the 
likelihood scores with respect to a cohort of anchor models on 
a per-utterance basis. In [6], the maximum likelihood linear 
regression (MLLR) transform is used to form the supervectors 
comprising of the transform coefficients. It should be 
mentioned that the term “supervector” was originally used in 
[4, 9] to refer to the GMM supervector. Here, we use similar 
term in a broader sense referring to any fixed-dimensional 
vector that represents a speech sequence as a single point in 
the vector space, having a much higher dimensionality than 
the original input space. 

This paper advocates the use of discrete events (or symbols) 
and their probabilities to construct supervectors. Discrete 
events arise naturally in modeling many types of data, for 
example, letters, words, and DNA sequences. Speech signals 
can also be represented as sequences of discrete symbols by 
using a quantizer. Notably, high-level feature extraction (e.g., 
idiolect, phonotactic, prosody) usually produces discrete 
symbols. For instance, in [10] speech signals are converted 
into sequences of phone symbols and then represented in 
terms of phone n-gram probabilities. Discrete probabilities are 
also useful in modeling prosodic feature sequences [11]. In [7, 
8], we investigated the use of discrete acoustic events derived 
using the UBM. In this paper, we show that various discrete 
representations mentioned above can be summarized under the 
maximum a posteriori (MAP) parameter estimation 
framework [12]. Since they can be unified within similar 
framework, an SVM kernel designed for one discrete 
representation would be useful for the others. Another 
practical virtue of discrete representation is that the estimation 
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of discrete distribution is simple and any arbitrarily shaped 
distribution is possible since it is non-parametric.   

Another challenge concerning the use of supervectors with 
SVM is feature normalization – the process where the 
elements of a feature vector are scaled or warped prior to 
SVM modeling. Feature normalization in the SVM kernel 
space is closely related to the similarity measure of 
supervectors. In this study, since the supervectors represent 
the probability distributions of discrete events, we propose 
using Bhattacharyya coefficient [13] as the similarity measure. 
The Bhattacharyya measure is symmetric as opposed to other 
probabilistic measures such as Kullback-Leibler (KL) 
divergence [14], which is non-symmetric and has to be 
simplified and approximated substantially to arrive at a 
symmetric kernel. While the Bhattacharyya measure is 
simpler, data-independent and more effective, we will also 
show how it is related to and different from the Fisher kernel 
[2], term frequency log-likelihood ratio (TFLLR) [10], and 
rank normalization [15] proposed earlier for similar form of 
supervectors. 

The remainder of this paper is organized as follows. We 
introduce the MAP framework for the estimation of discrete 
probabilities in Section II. Using the UBM as a soft quantizer, 
we describe the process of constructing supervectors using 
discrete probabilities and show its relevance to the Fisher 
kernel in Section III. We analyze the Bhattacharyya measure 
from feature normalization perspective in Section IV. The 
performance evaluation is reported in Section V. Finally, 
Section VI concludes the paper. 

II. ESTIMATION OF DISCRETE PROBABILITIES 
Let some discrete events { }, 1,2, ,iS e i M= = …  have M 

possible outcomes, and let iω  be the probability of observing 
the ith event ie , i.e., ( )i iP eω = . Given a speech segment 

{ }1 2, , , T= x x x…X , our goal is to estimate the probabilities 
{ 1 2, ,ω ωΩ = }, Mω…  of observing individual events in X . 

Using the maximum a posteriori (MAP) estimation criterion 
[12], the solution is given by the mode of the posterior 
distribution, as follows 

 ( ) ( ){ }arg max log |P g
Ω

Ω = Ω Ω� X , (1)  

where ( )g Ω  is the prior distribution of the parameters Ω. Let 

 ( ) : ~ 1i t it en =∑ xX  (2) 

denote the number of occurrences of the event ie  in X , 
where the notation ~t iex  denotes that the vector tx , for 

1,2, ,t T= … , is encoded as the event ie . The MAP estimate 
can be expressed as 
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Since the likelihood function ( )|P ΩX  follows a multinomial 
distribution, the prior density can be assumed as a Dirichlet 
distribution (i.e., a conjugate prior for the parameters of the 
multinomial distribution) [12], as follows 

 ( ) 1

1

i

M

c i
i

g K νω −

=

Ω = ∏ , (4) 

where iν  are the set of positive parameters for the Dirichlet 
distribution and cK  is a normalization factor. Using (4) in (3), 
the MAP estimate can then be solved, subject to the 
constraints 

1
1M
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ω

=
=∑  and 0iω ≥ , using the method of 

Lagrange multipliers, to give 
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The MAP estimate of discrete probabilities in (5) is given 
by the sum of the observed statistics in  and the parameters iν  
of the prior distribution. For a flat prior, whereby 1 0iν − = , 
(5) reduces to the popular maximum likelihood (ML) estimate: 

 ( )i
i

n
T

ω =� X , 1,2, ,i M= … , (6) 

since ( )
1

M
ii

n T
=

=∑ X . ML estimate is used when we have 
higher belief in the observed statistics than the prior 
information.  

We assume in (5) that a rule of correspondence has been 
defined between the speech feature vectors and the set of 
events such that ( )in X  for 1,2, ,i M= …  represent the counts 
of observing those events in X . In (2), speech feature vectors 
are quantized as discrete events or symbols on a frame-by-
frame basis. These events may correspond to the codewords of 
a vector quantization (VQ) codebook [14] or the Gaussian 
densities in a UBM as shown in the next section. The discrete 
events may also correspond to abstract linguistic units such as 
phonemes, syllables, words, or subsequences of n symbols 
(i.e., n-grams). For instance, in spoken language recognition 
[16] and speaker recognition utilizing high-level features [10, 
11], the events represent n-grams of phones, words or some 
prosodic features. In these methods, phone recognizers or 
prosodic feature extractors are used to discover the events set 
from the speech signals. 

III. CONSTRUCTING SUPERVECTOR USING DISCRETE 
PROBABILITIES 

A. UBM as Soft Quantizer 
A universal background model, or UBM, is a GMM trained 

to represent a speaker-independent distribution [17]. In this 
regard, the UBM is usually trained, using the expectation 
maximization (EM) algorithm [14], from tens or hundreds of 
hours of speech data gathered from a large number of 
speakers. 

A UBM, denoted by Θ , with M mixture components is 
characterized by the following probability density function: 



Accepted for IEEE T-ASL 3

 ( ) ( )
1

| | ,
M

i i i
i

p λ
=

Θ =∑x x μ ΣN , (7) 

where iλ  is the mixture weight, iμ  is the mean vector, and 
iΣ  is the covariance matrix of the ith Gaussian component. 

The mixture weights satisfy the constraint 
1

1M
ii

λ
=

=∑  and the 
covariance matrices are assumed to be diagonal in this paper. 
Let each of the Gaussian densities represent a discrete event 

ie . Given a speech segment X , the number of occurrences of 
event ie  is computed by accumulating the posterior 
probabilities 

 ( ) ( )
( )1

| ,| ,
| ,

i t i i
t M

j t j jj

P i λ
λ

=

Θ =
∑

x μ Σx
x μ Σ

N

N
 (8) 

evaluated for the ith Gaussian component for the whole 
utterance, as follows 

 ( ) ( )
1

| ,
T

i t
t

n P i
=

= Θ∑ xX . (9) 

The UBM quantizes the input vectors into discrete symbols, 
much similar to the VQ codebook except that the codewords 
are now modeled as Gaussian densities. Since the Gaussian 
densities can be overlapped, rather than partitioned, soft 
membership can be computed based on the Bayes rule as 
given in (8). The UBM Θ  together with (9) thereby define the 
set of discrete events, S, and the rule of correspondence 
between the feature vectors and the events.  

Finally, to obtain the MAP estimate, the parameters iν  in 
(5) are set to 

 1i iMν τ λ− = ⋅ ⋅ , (10) 

where iλ  are the weights of the UBM and the controlled 
parameter τ has to be greater or equal to 0. This is known as 
the τ-initialization method in [12]. Feasible values for τ range 
from 0 to 1, which we have found effective for this 
application.  Equation (10) controls the broadness of the prior 
density ( )g Ω  in (4) with the parameter τ. When τ is large, the 
prior density is sharply peaked around the UBM weights iλ , 
in which case the resulting MAP estimate approaches iλ . 
Conversely, if τ is small the MAP estimate approaches the ML 
estimate. In particular, the MAP estimate in (5) reduces to the 
ML estimate in (6) for 0τ = . 

B. Constructing Supervector 
The discrete probabilities Ω� { 1 2, ,ω ω= � � }, Mω�…  can be 

conveniently represented in functional form as ( )P h , where 
the variable h  represents any event in S such that 

( )i iP h e ω= = �  for h S∈ . That is, the function ( )P h  is the 
probability mass function (PMF) [14]. We can express the 
PMF in vector form as 

 ( ) ( ) ( )[ ] [ ]T T
1 2 1 2, , , , , ,M MP e P e P e ω ω ω= =p � � �… … , (11) 

where the superscript T denotes transposition. The vector p 
has a fixed dimensionality, M, equivalent to the cardinality of 
the event set S. It represents the speech segment X  in terms 
of the distribution of discrete events observed in X . These 

attributes fulfill our requirement of supervector representation. 
For the case of UBM, the relation between Ω�  and X  is given 
by (5) and (9), and the dimensionality of the supervector is 
determined by the number of Gaussian densities in the UBM. 

C. Fisher Information 
The concept of mapping sequences into supervectors is 

commonly interpreted as a sequence (or dynamic) kernel. The 
earliest example of sequence kernel can be traced back to [18] 
in which the Fisher kernel was proposed. The Fisher kernel 
maps a sequence into a supervector by taking the derivatives 
of the log-likelihood function with respect to the parameters 
of the model. Let the model be the UBM as defined in (7). 
Taking the derivative of the log-likelihood function with 
respect to the weights iλ , for 1,2, ,i M= … , and normalizing 
by the duration T , we obtain 
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We deliberately write (12) in terms of ( )| ,tP i Θx , as defined 
in (8), to establish the connection to our earlier discussion. 
Using (9) in (12) and normalizing by the respective Fisher 
information [18] we arrive at 

 ( )i
i

i

n TF
I

′= X , (13) 

where the constant iλ  has been absorbed as part of the Fisher 
information definition as ( ){ }2

i i iI E Fλ= , where iF  is as 
defined in (12).  

Notice that ( )in TX  gives the ML estimate as shown in (6)
. Hence, Fisher mapping essentially boils down to the ML 
estimate of discrete distribution, with additional normalization 
factors depending on the Fisher information. The supervector 
[cf. (11)] is now given by 

 
T

1 2
FISHER

1 2

, , , M

MI I I
ω ω ω⎡ ⎤′ = ⎢ ⎥

⎣ ⎦
p

� � �
… . (14)  

In practice, the Fisher information iI , 1,2, ,i M= … , are 
estimated by replacing the expectation with sample average 
computed from a large background corpus. The Fisher 
information normalizes individual dimensions of the 
supervector to the same scale corresponding to the mean-
square value of the discrete probabilities estimated from the 
background samples. By so doing, all dimensions are treated 
equally in the mean-square sense when used as inputs to 
SVM. 

Recall that the Fisher mapping in (12) was obtained by 
taking the derivative of the log-likelihood function with 
respect to the weights of the UBM. In addition to the weights, 
taking the derivative with respect to the mean vectors and 
covariance matrices, as originally proposed in [18], increases 
the dimensionality of the supervector. These additional 
dimensions are not considered in this paper as they do not 
correspond to any discrete probability interpretation, which is 
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the focus of the paper. A full account of using this form of 
supervector for speaker verification can be found in [2]. 

IV. THE BHATTACHARYYA MEASURE 
The Bhattacharyya coefficient [13] is commonly used in 

statistics to measure the similarity of two probability 
distributions. It is computed by integrating the square root of 
the product of the two distributions. For discrete distributions, 
the Bhattacharyya coefficient is given by 

 ( ) ( )a b
h S

P h P hρ
∈

=∑ , (15)  

where S is the set of discrete events. The coefficient ρ  lies 
between zero and unity, where 1ρ =  indicates that the two 
distributions are fully overlapped, while 0ρ =  occurs for the 
case of non-overlapping distributions.  

Using ( ) ,a i i aP h e ω= = �  and ( )b iP h e= ,i bω= �  in (15), the 
Bhattacharyya measure can be written in vector form as 

 T
, ,

1

M

i a i b a b
i

ρ ω ω
=

′ ′= =∑ p p� � , (16) 

where the supervector is now given by 

 
T

BHAT 1 2, , , Mω ω ω′ ⎡ ⎤= ⎣ ⎦p � � �… . (17) 

Clearly, the Bhattacharyya measure is symmetric and it 
represents an inner product in the supervector space. Hence, it 
can be used as a legitimate kernel function [19] in SVM.  

From feature normalization perspective, the square-root 
operator has an effect in normalizing the contribution of 
individual dimensions to the inner product. As shown by the 
solid curve in Fig. 1, higher gain is applied to rare events, i.e., 
those events with lower probabilities. The gain reduces 
gradually (so as the slope of the curve) when the input 
approaches unity. By so doing, the situation where rare events 
are outweighed by those with higher probabilities is avoided. 
The square-root operator could also be interpreted as a 
warping function, where the horizontal axis is shrunk for 
inputs close the zero and stretched for inputs close to unity, as 
depicted Fig. 1. This is different from the normalization 
scheme in the Fisher kernel, where constant scaling is applied 
to individual dimension based on the Fisher information 
estimated from a background corpus. 

A. Term Frequency Log-Likelihood Ratio (TFLLR) 
Term frequency log-likelihood ratio (TFLLR) was 

introduced in [10] for the scaling of n-gram probabilities. 
Since each n-gram can be regarded as a discrete event ie , the 
n-gram probabilities can be expressed as PMF and supervector 
as given in (11). In this regard, the event set S consists of all 
unique n-grams. The TFLLR scales individual dimensions of 
the supervector (i.e., the n-gram probabilities) in proportion to 
the square root of the inverse n-gram probabilities computed 
from a large background corpus. Denoting the background 
probabilities as iλ , the supervector is now given by 

 
T

1 2
TFLLR

1 2

, , , M

M

ω ω ω
λ λ λ

⎡ ⎤′ = ⎢ ⎥
⎣ ⎦

p
� � �

… . (18) 

For discrete probabilities derived from the UBM quantizer, 
the background probabilities iλ  correspond directly to the 
weights of the UBM since the weights are estimated from a 
large background corpus. 

The TFLLR de-emphasizes frequent events and emphasizes 
rare events. This is similar in spirit with the Bhattacharyya 
measure, except that individual dimension is subjected to 
constant scaling instead of warping. Hence, TFLLR scaling 
falls into the same category as the Fisher kernel from the 
perspective of feature normalization in the supervector space. 

B. Rank Normalization 
In [15], rank normalization was proposed for normalizing 

the supervectors of n-gram probabilities. Elements of the 
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Fig. 1.  The horizontal axis is warped according to a square-root function.  
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Fig. 2.  Warping functions produced by rank normalizing individual 
dimension of the supervector for (a) male and (b) female populations. The 
solid curves were obtained by ensemble averaging the warping functions 
across all dimensions, where the size of UBM was set to M = 1000 in the 
experiment.    
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supervector are processed separately where a warping 
function is used for mapping each dimension to a uniform 
distribution over the interval from zero to unity.  The warping 
function is non-parametric and is derived from the concept of 
cumulative density function (CDF) matching, similar to that 
used in histogram equalization (HEQ) [20] and feature 
warping [21]. Since the CDF of the targeted uniform 
distribution is linear (and monotonically increasing) in the 
interval [0, 1], CDF matching amounts to a procedure where 
each element of the supervector is replaced by its rank in a 
background corpus. Denoting the rank of iω�  as ir , the 
supervector is now given by 

 
T

1 2
rank , , , Mr r r

R R R
⎡ ⎤′ = ⎢ ⎥⎣ ⎦

p … , (19)  

where R is the number of reference samples in the background 
data. Let iB  be the set of R values for the ith dimension. The 
rank ir  of iω�  is given by the number of elements in the 
background set iB  whose values are smaller than iω� :       

 { }:i i ir b B b ω= ∈ < � , (20) 

where ⋅  denotes the cardinality of a set and iB R= .  
In Section II, we assume that the probability estimates Ω�  

follow a Dirichlet distribution. This assumption implies that 
each element iω� , when treated independently, follows a beta 
distribution [22], which is warped to a uniform distribution via 
rank normalization. The normalization stretches the high-
density areas of the feature space and shrinks it in areas of low 
density. The warping functions are shown in Fig. 2 for 
individual dimensions and their ensemble average.  

Comparing Fig. 2 to Fig. 1, it can be seen that the warping 
function closely resembles the square-root curve in the sense 
that the input axis is shrunk for values closer to the origin and 
stretched at the other end. However, there is an important 
difference regarding computational complexity. Since rank 
normalization is non-parametric, the background sets iB  have 
to be stored and therefore computation of (20) is far more 
expensive than the square-root operation. Recall that the 
Bhattacharyya coefficient has a dynamic range bounded 
between zero and unity. This is unachievable with rank 
normalization, where the inner product of the supervectors in 
(19) generally results in unpredictable dynamic range. Similar 
problem happens for the Fisher kernel and TFLLR scaling. 
This has profound impact on the performance of the SVM, as 
shown in the next section. 

V. EXPERIMENTS AND RESULTS 

A. Experimental Setup 
The experiments were carried out on the NIST 2006 

speaker recognition evaluation (SRE) task [23]. The core task 
consists of 810 target speakers, each enrolled with one side of 
a five-minute conversation, which roughly contains two 
minutes of speech. There are 3616 genuine and 47452 
imposter trials, where test utterances are scored against target 
speakers of the same gender. All speech utterances were first 

pre-processed to remove silence and converted into sequences 
of 36-dimensional feature vectors, each consisting of 12 Mel 
frequency cepstral coefficients (MFCCs) appended with deltas 
and double deltas. Relative spectral (RASTA) filtering [24] 
and utterance-level mean and variance normalization were 
performed. We use two well-known metrics in evaluating the 
performance of the speaker verification systems – equal error 
rate (EER) and the minimum detection cost function 
(MinDCF) [23]. The EER corresponds to the decision that 
gives equal false acceptance rate (FAR) and false rejection 
rate (FRR). The MinDCF is defined as the minimum value of 
the function 0.1×FRR + 0.99×FAR. 

The speaker verification system was designed to be gender-
dependent1. Two gender-dependent UBMs were trained using 
data drawn from the NIST 2004 dataset. The same dataset was 
used to form the background data for SVM training. The 
commonly available libSVM toolkit [25] was used for this 
purpose. HTK toolkit [26] was used for training the UBMs. 

B. ML vs. MAP Estimation 
This section investigates the difference between ML and 

MAP estimation and the influence of the parameter τ on the 
system performance. We increased the value of τ in (10) from 
0 to 1.0 with a step size of 0.1. Recall that setting 0τ =  leads 
to the ML estimate in (6). Similar procedure was repeated for 
various sizes of UBM from 128 to 4096. In all the 
 

1 Gender information is provided and there is no cross-gender trial in NIST 
SREs. Gender-dependent systems have shown better result than gender-
independent systems in past evaluations. 
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Fig. 3.  Performance comparison between ML and MAP in terms of EER. (a) 
The value of τ was increased from 0 to 1.0 with a step size of 0.1 for UBM 
with various sizes. Letting τ = 0 leads to the ML estimation. The curves for τ
= 0.7 and τ = 0.8, which are farther apart from the ML curve, are highlighted 
in red. (b) The EER was evaluated as a function of τ with value increases 
from 0.1 to 100. Significant degradation in EER can be observed for τ greater 
than 10. 
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experiments Bhattacharyya measure was used for normalizing 
the supervectors and t-norm [27] was performed at the score 
level (see Section V.D for more details about t-norm). The 
results are presented in Fig. 3(a). It can be seen that, for 

0.1,0.2, ,1.0τ = … , MAP estimation gives lower EER as 
compared to the ML estimation of discrete probabilities. This 
observation is consistent across different UBM sizes. The 
empirical results in Fig. 3(a) also show that the optimum value 
of τ varies for different UBM size M. For instance, the 
optimum τ for M = 2048 is 0.8, but the value changes to 0.7 
for larger UBM with M = 4096. To further investigate the 
influence of τ on MAP estimation, we gradually increased the 
value from 0.1 to 100. Fig. 3(b) shows the EER as a function 
of τ. Notice that we took the ensemble average over different 
UBM sizes in order to smooth out the empirical noise from 
individual curves. It can be observed that EER increases 
drastically for τ greater than 10. Larger value of τ pushes the 
MAP estimate toward the prior weights. This weakens the 
effect of the observed statistics, which contain speaker 
characteristics. In particular, using a very large τ in (10) and 
(5) would cause the MAP estimation to give the prior weights 
as the probabilities estimate, and thus losing all speaker-
related information. In general, the parameter τ has to be 
optimized empirically for a given set of data conditions 
(duration, signal-to-noise ratio, etc.). 

The size of the UBM (i.e., the cardinality of the discrete 
event set) has a great impact on the performance as shown in 
Fig. 3(a). It can be seen that the EER reduces as the size of the 
UBM increases. Similar trend can be observed for the ML and 
MAP with different values of τ. These results motivate us to 
use larger UBM, and therefore larger event set, for discrete 
probabilities modeling in the next and subsequent sections. 

C. Computational Speed Up: Gaussian Selection 
For a large UBM (large as compared to the dimensionality 

of the feature vectors) an input vector will be close only to a 
few Gaussian components. We can therefore compute the 
probabilities of a small subset of components located in the 
vicinity of the input vector; the remaining components are 
assumed to have zero probability. Gaussian selection 
technique [28] as described below can then be used to speed 
up the probability computation in (8). 

 A smaller GMM, referred to as the hash model [28], is 
trained with the same training data as the UBM. Mahalanobis 
distance is then computed for each pair of Gaussian 
components of the UBM and the hash model. Since the 

Gaussian components may have different covariance matrices, 
their average is used in computing the Mahalanobis distance. 
A shortlist is then generated for each component of the hash 
model. The shortlist contains indices of those components of 
the UBM having the closest distance to a particular 
component of the hash model. For a given input vector, we 
first determine the top scoring component in the hash model. 
The probabilities of the components in the shortlist of the top-
scoring component are then computed.  

Let H be the size of the hash model and Q be the length of 
the shortlists. Gaussian selection results in M/(H + Q) times 
faster computation, where M is the order of the UBM. Table I 
shows the average accuracy of the Gaussian selection 
technique for different sizes of UBM. We evaluate the 
accuracy by comparing the probability estimates obtained with 
and without Gaussian selection in terms of the Bhattacharyya 
measure (16) averaged over 100 random samples, which were 
selected from our development data. Formally, 

 , ,
1 1

1 ˆAverage accuracy
K M

i k i k
k iK

ω ω
= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑ � , (21) 

where { }1, 2, ,, , ,k k M kω ω ω� � �…  and { }1, 2, ,ˆ ˆ ˆ, ,k k M kω ω ω…  are the 
probability estimates obtained with and without Gaussian 
selection for the kth utterance, respectively, and 100K =  is 
the number of utterances. We fixed the ratio M/H to be 32, 
and Q = 4H, which results in 6.4 times faster computation. 
Also, we used 1 0ν − =  in the experiment to mitigate the 
influence of prior on the result. Considerably high accuracy 
( )99%≈  is achieved with Gaussian selection technique for all 
cases listed in Table I. 

D. Nuisance Attribute Projection and SVM Training 
Since a supervector represents a speech utterance as a 

single point in the vector space, it becomes possible to remove 
unwanted variability, due to different handsets, channels and 
phonetic content, from the supervector by linear projection. 
Let E be an M-by-N matrix representing the unwanted 
subspace that causes the variability. Nuisance attribute 
projection (NAP) [29] removes the unwanted variability from 
a supervector via a projection to the subspace complementary 
to E, as follows 

 ( )T′′ ′= −p I EE p . (22) 

NAP assumes that the variability is confined in a relatively 
low dimensional subspace such that N ≪ M. The columns of E 
are the eigenvectors of the within-speaker covariance matrix 

TABLE I 
ACCURACY 100%ρ ×  OF GAUSSIAN SELECTION TECHNIQUE AVERAGED 

OVER 100 SAMPLES FOR DIFFERENT SIZES OF UBM AND HASH MODEL. THE 
COMPUTATION SPEED-UP IS FIXED AT ×6.4 FOR ALL COMBINATIONS. 

Size of the 
UBM, M 

Size of the hash 
model, H 

Average accuracy (×100%) 

Female Male 
1024 32 98.59 98.19 
2048 64 99.19 99.13 
4096 128 99.48 99.46 
8192 256 99.62 99.58 

16384 512 99.68 99.68 
 

TABLE II 
COMPARISON OF EER AND MINDCF FOR SUPERVECTORS WITH AND 
WITHOUT CHANNEL COMPENSATION AND SCORE NORMALIZATION. 

Supervector % EER MinDCF (×100) 
Raw, p  8.57 3.90 
+ NAP 7.05 3.31 
+ NAP + t-norm 6.60 3.15 
Bhattacharyya, BHAT′p  7.25 3.42 
+ NAP 5.53 2.73 
+ NAP + t-norm 4.98 2.46 

 



Accepted for IEEE T-ASL 7

estimated from a development dataset with a large number of 
speakers, each having several training sessions. 

In (22), ′p  denotes the supervectors that have been 
normalized with any of the methods mentioned listed in 
Sections III and IV. SVM modeling is then performed in the 
supervector space that has been properly scaled or warped and 
compensated for session variability. The discriminant function 
of an SVM [19] can be expressed in terms of the supervector 
as follows 

  ( ) ( )T

1

L

l l l
l

f yα β
=

′′ ′′ ′′= +∑p p p ,  (23) 

where L  is the number of support vectors, lα  are the weights 
assigned to the lth support vector with its label given by 

{ }1, 1ly ∈ − +  and β  is the bias parameter. 
Table II shows the results with and without feature 

normalization, channel compensation and score normalization. 
Notably, 15.40% relative improvement in EER and 12.31% 
relative improvement in MinDCF are obtained by applying the 
Bhattacharyya measure on the raw discrete probabilities. 
Further improvement (24.55% in EER and 21.90% in 
MinDCF) is obtained with NAP and t-norm which 
compensate for session variability at the model and score 
levels, respectively. Feature normalization is essential for 
effective SVM modeling. The reason is that SVMs are not 
invariant to linear transformations, i.e., any form of scaling 
would cause some of the dimensions to dominate the overall 
decision. 

For the experiments in Table II, the UBM has a model size 
of 16384M = , while the hash model for Gaussian selection 
has model size of 512. For the MAP estimation, the parameter 
τ  in (10) is set to 0.1. For the NAP, the projection matrix has 
a rank of 60 and was derived from NIST 2004 and 2005 SRE 
datasets. For the score normalization [27], t-norm cohorts 
were selected from NIST 2005 SRE dataset. We use the same 
configuration for subsequent experiments. The overall process 
from supervector construction to SVM training is summarized 
and illustrated in Fig. 4. Also included in the figure are 
references to equations used at each stage. 

E. Comparison of Normalization Methods 
We compare the performance of the Bhattacharyya 

measure, Fisher kernel, TFLLR scaling and rank 
normalization using the same configuration as mentioned 

above in Table III (see the upper panel). Fig. 5 shows the 
detection error trade-off (DET) curves. It can be seen that the 
Fisher kernel and TFLLR scaling perform better than just 
using the raw discrete probabilities, which indicates that 
kernel normalization is important. Comparing these results to 
the Bhattacharyya measure, on the other hand, shows that the 
square-root operator is more appropriate than constant scaling 
in the Fisher kernel and TFLLR scaling. The Bhattacharyya 
measure performs consistently better than the rank 
normalization in terms of EER and MinDCF. The 
effectiveness of the rank normalization depends on the extent 
the supervectors matches the background distribution. 

It is also possible to use bigram (i.e., subsequences of two 
Gaussian indexes) probabilities to construct supervectors and 
to compare the performance of various normalization 
methods. For a UBM of size M ′ , bigram probability 
modeling leads to a set of M M M′ ′= ×  discrete events. Let 

128M ′ =  be the size of the UBM, the supervector of bigram 
probabilities will have a dimensionality of 16384M = . The 
lower panel of Table III shows the performance of bigram 
supervector using different normalization methods. We used 
exactly the same training data and parameter settings for all 
the experiments in Table III. It can be seen that the bigram 
supervector gives poorer accuracy compared with the unigram 
supervector. This is likely due to the fact that we have 
significantly reduced the size of the UBM to 128M ′ =  so that 
the resulting bigram supervector has the same dimensionality 
as the unigram supervector. For most low-level acoustic 

Event
Extraction and 

Count Accumulation

SVM
Training
[Eq. (23)]

Nuisance Attribute 
Projection (NAP)

[Eq. (22)]

MAP estimation
[Eq. (1), (5)] 

UBM [Eq. (7), (8), (9)], 
phone recognizer, 
prosodic feature 
extractor, etc.

( )in X
X

BHAT′p

NAP matrix, E
Discrete probabilities are 
estimated [Eq. (5), (10)] 
and stacked to form a 
supervector [Eq. (11)]

p BHAT′′p

Background 
corpus

Background 
corpus

Bhattacharyya 
measure
[Eq. (17)]

Speaker 
model

Number of occurrences 
of discrete events

Speech utterance Raw supervector Normalized supervector Normalized and compensated 
supervector

 

Fig. 4.  The speech utterance, X, is mapped to a supervector of discrete probabilities p, normalized in accordance with the Bhattacharya measure, and 
channel compensated prior to SVM modeling. Similar mapping operation is performed on the training utterance of the target speaker, all the utterances 
in the background corpus (as indicated by the dotted lines), and test utterances (not shown in the figure). 

 

TABLE III 
COMPARISON OF EER AND MINDCF FOR DIFFERENT NORMALIZATION 

METHODS AND SUPERVECTORS. NAP AND T-NORM WERE APPLIED USING 
EXACTLY THE SAME DATASET. 

Unigram supervector % EER MinDCF (×100) 
Raw 6.60 3.15 
Fisher kernel 6.47 3.11 
TFLLR scaling 6.25 3.07 
Rank normalization 5.23 2.63 
Bhattacharyya measure 4.98 2.46 
Bigram supervector % EER MinDCF (×100) 
Raw 15.49 5.96 
Fisher kernel - - 
TFLLR scaling 13.66 5.85 
Rank normalization 13.77 5.68 
Bhattacharyya measure 11.99 4.80 
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quantizers, e.g., UBM and VQ codebook, the event set that 
contains only the unigrams can be made sufficiently large. 
This is different from high-level events, e.g., phones [10] and 
prosodic features [11], which usually rely on bigram or 
trigram to form a larger event set. 

It is worth noting that bigram supervector gives better result 
when the same UBM is used for deriving the unigram 
supervector. This can be seen from Fig. 3(a), where the EER 
is around 14.5% for unigram supervector with M = 128, 
compared to 11.99% of EER (in the last row of Table III) for 
bigram supervector with M = 128×128. Clearly, bigram 
probabilities are useful but not as effective as simply 
increasing the UBM size to obtain unigram supervector 
having the same dimensionality. 

Regarding the normalization of the bigram supervectors, 
our conclusion is clear – Bhattacharyya measure performs 
consistently better than other normalization methods for both 
unigram and bigram supervectors. A McNemar’s statistical 
test [14, 30] was conducted to see if the EER and MinDCF of 
the Bhattacharyya measure are significantly better than other 
normalization methods. The p-values obtained were all less 
than 0.05, which means that the improvements are significant 
with a confidence level of 95%. Notice that we do not provide 
results for Fisher kernel in the lower panel of Table III as the 
kernel is not readily applicable to bigram probabilities. 

F. Comparison and Fusion of Supervectors 
Finally, we evaluate the performance of the supervector of 

discrete probabilities (with the Bhattacharyya measure) in 
comparison with the GLDS kernel [3] and GMM supervector 
[4]. For the GLDS kernel, we used all monomials up to the 
third order. The resulting supervectors have a dimensionality 
of 9139. For the GMM supervector, the UBM consists of 512 
mixtures leading to supervectors of dimensionality 18432.  
Recall that the supervector of discrete probabilities has a 
comparable dimensionality of 16384M = . The datasets used 

for UBM training, SVM background data, NAP and t-norm 
are the same for all systems. 

Table IV shows the EER and MinDCF. Fig. 6 shows the 
DET curves. The Bhattacharyya system exhibits competitive 
performance compared to the other two systems, with the 
GMM supervector being the best. We fused the Bhattacharyya 
system with the other two at the score level using equal 
weights summation. The fusion with the GLDS gives relative 
improvement of 15.06% in EER and 8.13% in MinDCF over 
the best single system. Some improvement can also be 
observed for the fusion with the GMM supervector, which 
amounts to 5.35% and 0.95% relative reduction in EER and 
MinDCF, respectively, over the best single system. A 
McNemar statistical test [14, 30] was conducted to see if the 

TABLE IV 
COMPARISON OF EER AND MINDCF FOR DIFFERENT SUPERVECTORS. NAP 

AND T-NORM WERE APPLIED USING EXACTLY THE SAME DATASET. THE 
FUSION RESULTS WERE OBTAINED VIA LINEAR COMBINATION WITH EQUAL 

WEIGHTS AT THE SCORE LEVEL.  

Supervector % EER MinDCF  (×100) 
Bhattacharyya (proposed) 4.98 2.46 
GLDS 5.39 2.67 
GMM supervector 4.30 2.10 
Bhattacharyya + GLDS  4.23 2.26 
Bhattacharyya + GMM 
supervector 4.07 2.08 

 
TABLE V 

-valuesp  OF MCNEMAR’S TESTS ON THE DIFFERENCES IN THE PERFORMANCE 
OF THE FUSION COMPARED TO THE SINGLE BEST SYSTEM FOR OPERATING 

POINTS AT EER AND MINDCF. A -valuep  LESS THAN 0.05 MEANS THAT WE 
ARE OBSERVING A SIGNIFICANT DIFFERENCE IN THE PERFORMANCE AT A 

CONFIDENCE LEVEL OF 95%. 

 The best single system 
Operating point: EER MinDCF 
Bhattacharyya + GLDS  162.2 10−×   21.5 10−×
Bhattacharyya + GMM  
supervector

41.8 10−×   16.8 10−×  
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Fig. 6.  DET curves showing a comparison of the performance of the GLDS 
kernel, GMM supervector, and the fusion with the proposed Bhattacharyya 
system. 
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Fig. 5.  DET curves showing a comparison of various normalization methods
(or kernels) on the supervector of discrete probabilities. 
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differences in EER and MinDCF are significant. The p-values 
are shown in Table V. Clearly, the improvement in EER is 
significant at a confidence level of 95% for both fusions since 
the p-values are less than 0.05. The improvement in MinDCF 
for the first fusion is also significant with 95% confidence, 
which, however does not hold for the second fusion.  

The fusion of Bhattacharyya and GMM supervector is less 
successful because the same datasets were used for UBM 
training, SVM background data, NAP and t-norm. This was 
purposely done so as to have controlled comparisons. We 
would like to emphasize that, even though we use the UBM as 
the quantizer in this paper, the occurrence counts of the 
discrete events could come from a phone recognizer, a 
prosodic feature extractor or a speech recognition system as 
shown in Fig. 4. We anticipate that, had we chosen such a 
completely different front-end, we would likely observe 
higher fusion gain. This is a point for future research.   

VI. CONCLUSIONS 
Speech signals can be represented in terms of the 

probability distribution of acoustic, idiolect, phonotactic or 
some high-level discrete events. Formulated under the 
maximum a posteriori (MAP) estimation framework, we have 
demonstrated the usefulness of modeling speech signals as 
discrete distributions for SVM-based speaker verification. We 
further proposed and analyzed the use of Bhattacharyya 
coefficient as the similarity measure between supervectors 
constructed from the discrete probabilities. From the 
perspective of feature normalization in the supervector space, 
the Bhattacharyya measure warps the distribution of each 
dimension with a square-root function, a much simpler and 
data-independent operation, yet leading to higher accuracy 
compared to the Fisher kernel, TFLLR scaling, and rank 
normalization. Experiments conducted on the NIST 2006 SRE 
showed that relative reduction in EER was 15.40 % with the 
Bhattacharyya measure and 24.55 % when used in 
conjunction with NAP and t-norm. These results suggest that 
the Bhattacharyya measure is a strong candidate for measuring 
the similarity between discrete distributions with SVM 
classifier. The proposed method gives comparable 
performance to the state-of-the-art GMM supervector 
approach. Their fusion gave 5.35% relative improvement in 
EER, even though the improvement in MinDCF was marginal. 

It is worth emphasizing that, even though the current work 
uses a UBM quantizer to construct supervectors, this is not 
necessarily the case; the proposed method can be used with 
other types of front-end quantizer. In future, it would be 
interesting to compare how much we would benefit by using 
the proposed method with a different front-end quantizer such 
as a phone recognizer or a prosodic feature extractor. We also 
expect the method to be readily applicable for spoken 
language recognition, and applications beyond speech 
technology that operate on discrete symbols, such as natural 
language processing (NLP) and bioinformatics. 
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