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Abstract

I-vector based recognition is a well-established technique in state-of-the-art
speaker and language recognition but its use in dialect and accent classifica-
tion has received less attention. In this work, we extensively experiment with
the spectral feature based i-vector system on Finnish foreign accent recogni-
tion task. Parameters of the system are initially tuned with the CallFriend
corpus. Then the optimized system is applied to the Finnish national for-
eign language certificate (FSD) corpus. The availability of suitable Finnish
language corpora to estimate the hyper-parameters is necessarily limited in
comparison to major languages such as English. In addition, it is not im-
mediately clear which factors affect the foreign accent detection performance
most. To this end, we assess the effect of three different components of the
foreign accent recognition: 1) recognition system parameters, 2) data used
for estimating hyper-parameters and 3) language aspects. We find out that
training the hyper-parameters from non-matched dataset yields poor detec-
tion error rates in comparison to training from application-specific dataset.
We also observed that, the mother tongue of speakers with higher proficiency
in Finnish are more difficult to detect than of those speakers with lower pro-
ficiency. Analysis on age factor suggests that mother tongue detection in
older speaker groups is easier than in younger speaker groups. This suggests
that mother tongue traits might be more preserved in older speakers when
speaking the second language in comparison to younger speakers.
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1. Introduction

Foreign spoken accents are caused by the influence of one’s first language
on the second language (Flege et al., 2003). For example, an English-Finnish
bilingual speaker may have an English accent in his/her spoken Finnish be-
cause of learning Finnish later in life. Non-native speakers induce variations
in different word pronunciation and grammatical structures into the second
language (Grosjean, 2010). Interestingly, these variations are not random
across speakers of a given language, because the original mother tongue is the
source of these variations (Witteman, 2013). Nevertheless, between-speaker
differences, gender, age and anatomical differences in vocal tract generate
within-language variation (Witteman, 2013). These variations are nuisance
factors that adversely affect detection of the mother tongue.

Foreign accent recognition is a topic of great interest in the areas of intel-
ligence and security including immigration and border control sites. It may
help officials to detect travelers with a fake passport by recognizing the im-
migrant’s actual country and region of spoken foreign accent (GAO, 2007).
It has also a wide range of commercial applications including services based
on user-agent voice commands and targeted advertisement.

Similar to spoken language recognition (Li et al., 2013), various tech-
niques including phonotactic (Kumpf and King, 1997; Wu et al., 2010) and
acoustic approaches (Bahari et al., 2013; Scharenborg et al., 2012; Behravan
et al., 2013) have been proposed to solve the foreign accent detection task.
The former uses phonemes and phone distributions to discriminate differ-
ent accents; in practice, it uses multiple phone recognizer outputs followed
by language modeling (Zissman, 1996). The acoustic approach in turn uses
information taken directly from the spectral characteristics of the audio sig-
nals in the form of mel-frequency cepstral coefficient (MFCC) or shifted delta
cepstra (SDC) features derived from MFCCs (Kohler and Kennedy, 2002).
The spectral features are then modelled by a ”bag-of-frames” approach such
as universal background model (UBM) with adaptation (Torres-Carrasquillo
et al., 2004) and joint factor analysis (JFA) (Kenny, 2005). For an excellent
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recent review of the current trends and computational aspects involved in
general language recognition tasks including foreign accent recognition, we
point the interested reader to (Li et al., 2013).

Among the acoustic systems, total variability model or i-vector approach
originally used for speaker recognition (Dehak et al., 2011a), has been suc-
cessfully applied to language recognition tasks (González et al., 2011; Dehak
et al., 2011b). It consists of mapping speaker and channel variabilities to
a low-dimensional space called total variability space. To compensate inter-
session effects, this technique is usually combined with linear discriminant
analysis (LDA) (Fukunaga, 1990) and within-class covariance normalization
(WCCN) (Kanagasundaram et al., 2011).

The i-vector approach has received less attention in dialect and accent
recognition systems. Caused by more subtle linguistic variations, dialect
and accent recognition are generally more difficult than language recognition
(Chen et al., 2010). Thus, it is not obvious how well i-vectors will perform
on these tasks. However, more fundamentally, the i-vector system has many
data-driven components for which training data needs to be selected. It
would be tempting to train some of the hyper-parameters on a completely
different out-of-set-data (even different language), and leave only the final
parts — training and testing a certain dialect or accent — to the trainable
parts. This is also motivated by the fact that there is a lack of linguistic
resources available for languages like Finnish, comparing to English for which
corpora from NIST1 and LDC2 exist.

The i-vector based dialect and accent recognition has previously been ad-
dressed in (DeMarco and Cox, 2012) and (Bahari et al., 2013). (DeMarco
and Cox, 2012) addressed a British dialect classification task with fourteen
dialects, resulting in 68 % overall classification rate while (Bahari et al.,
2013) compared three accent modeling approaches in classifying English ut-
terances produced by speakers of seven different native languages. The accu-
racy of the i-vector system was found comparable as compared to the other
two existing methods. These studies indicate that the i-vector approach is
promising for dialect and foreign accent recognition tasks. However, it can
be partly attributed to availability of massive development corpora includ-
ing thousands of hours of spoken English utterances to train all the system

1http://www.itl.nist.gov/iad/mig/tests/spk/
2http://www.ldc.upenn.edu/
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hyper-parameters. The present study presents a case when such resources
are not available.

Comparing with the prior studies including our own preliminary analysis
(Behravan et al., 2013), the new contribution of this study is a detailed
account into factors affecting the i-vector based foreign accent detection. We
study this from three different perspectives: parameters, development data,
and language aspects. Firstly, we study how the various i-vector extractor
parameters, such as the UBM size and i-vector dimensionality, affect accent
detection accuracy. This classifier optimization step is carried out using
the speech data from the CallFriend corpus (Canavan and Zipperle, 1996).
As a minor methodological novelty, we study applicability of heteroscedastic
linear discriminant analysis (HLDA) for supervised dimensionality reduction
of i-vectors. Secondly, we study data-related questions on our accented
Finnish language corpus. We explore how the choices of the development
data for UBM, i-vector extractor and HLDA matrices affect accuracy; we
study whether these could be trained using a different language (English). if
the answer turn out positive, the i-vector approach would be easy to adopt to
other languages without recourse to the computationally demanding steps of
UBM and i-vector extractor training. Finally, we study language aspects.
This includes three analyses: ranking of the original accents in terms of
their detection difficulty, study of confusion patterns across different accents
and finally, relating recognition accuracy with four affecting factors such as
Finnish language proficiency, age of entry, level of education and where the
second language is spoken.

Our hypothesis for the Finnish language proficiency is that recognition
accuracy would be adversely affected by proficiency in Finnish. In other
words, we expect higher accent detection errors for speakers who speak flu-
ent Finnish. For the age of entry factor, we expect that the younger a
speaker enters a foreign country, the higher the probability of fluency in the
second language. Thus, we hypothesize that it is more difficult to detect
the speaker’s mother tongue in younger age groups than in older ones. This
hypothesis is reasonable also because older people tend to keep their mother
tongue traits more often than younger people (Munoz, 2010). Regarding
the education factor, we hypothesize that mother tongue detection is more
difficult in higher educated speakers than in lower educated ones. Finally,
We also hypothesize that mother tongue detection is more difficult for the
person who consistently use their second languages for social interaction as
compared to the speakers who do not use their second language in regular
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basis for social interaction.
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Figure 1: The block diagram of the method used in this work.

2. System Components

Figure 1 shows the block diagram of the method used in this work. The i-
vector system consists of two main part: front-end and back-end. The former
consists of cepstral feature extraction and UBM training, whereas the latter
includes sufficient statistics computation, training of the T-matrix, i-vector
extraction, dimensionality reduction and scoring.

2.1. i-Vector System

I-vector modeling (Dehak et al., 2011a) is inspired by the success of
joint factor analysis (JFA) (Kenny et al., 2008) in speaker verification. In
JFA, speaker and channel effects are independently modeled using eigenvoice
(speaker subspace) and eigenchannel (channel subspace) models:

M = m + Vy + Ux, (1)
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where M is the speaker supervector, m is a speaker and channel indepen-
dent supervector created by concatenating the centers of UBM and low-rank
matrices V and U represent, respectively, linear subspaces for speaker and
channel variability in the original mean supervector space. The latent vari-
ables x and y are assumed to be independent of each other and have a
standard normal distributions, i.e. x ∼ N (0, I) and y ∼ N (0, I). (Dehak
et al., 2011a) found that these subspaces are not completely independent,
therefore a combined total variability modeling was introduced.

In the i-vector approach, the GMM supervector (M) of each accent ut-
terance is decomposed as (Dehak et al., 2011a),

M = m + Tw, (2)

where m is again the UBM supervector, T is a low-rank rectangular matrix,
representing between-utterance variability in the supervector space, and w
is the i-vector, a standard normally distributed latent variable drawn from
N (0, I). The T matrix is trained using a similar technique which is used
trainV in JFA, except that each training utterance of a speaker model is
treated as belonging to different speakers. Therefore, in contrast to JFA,
the T matrix training does not need speaker or dialect labels. To this end,
i-vector approach is an unsupervised learning method. The i-vector w is
estimated from its posterior distribution conditioned on the Baum-Welch
statistics extracted from the utterance using the UBM (Dehak et al., 2011a).

The i-vector extraction can be seen as a mapping from a high-dimensional
GMM supervector space to a low-dimensional i-vector that preserves most of
the variability. In this work, we use 1000-dimensional that are further length
normalized and whitened (Garcia-Romero and Espy-Wilson, 2011).

Cosine scoring is commonly used for measuring similarity of two i-vectors
(Dehak et al., 2011a). The cosine score t of the test i-vector, wtest, and
the i-vectors of target accent a, wa

target, is defined as their inner product
〈wtest,w

a
target〉 and computed as follows:

t =
ŵT

test ŵa
target

‖ŵtest‖ ‖ŵa
target‖

, (3)

where ŵtest is,
ŵtest = ATwtest, (4)

and A is the HLDA projection matrix (Loog and Duin, 2004) to be detailed
below in section 2.2. Further, ŵa

target is the average i-vector over all the
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training utterances in accent a, i.e.

ŵa
target =

1

Na

Na∑
i=1

ŵa
i , (5)

where Na is the number of training utterances in accent a and ŵa
i is the

projected i-vector of training utterance i from accent a, computed the same
way as (4).

Obtaining the scores {ta, a = 1, . . . , L} for a particular test utterance
compared with all the L target accent models of accent a, those scores are
further post-processed as (Brümmer and van Leeuwen, 2006):

t′(a) = log
exp(ta)

1
L−1

∑
k 6=a exp(tk)

, (6)

where t′(a) is the detection log-likelihood ratio or final score used in the
detection task.

2.2. Reducing the i-Vector Dimensionality

As the extracted i-vectors contain both intra- and between-accent varia-
tions, the aim of dimensionality reduction is to project the i-vectors onto a
space where between-accent variability is maximized and intra-accent vari-
ability is minimized. Traditionally, LDA is used to perform dimensionality
reduction where, for R-class classification problem, the maximum projected
dimension is R− 1.

As (Loog and Duin, 2004) argue, these R−1 dimensions do not necessarily
contain all the discriminant information for the classification task. Moreover,
LDA separates only the class means and it does not take into account the
discriminatory information in the class covariances. In recent years, an ex-
tension of LDA, heteroscedastic linear discriminant analysis (HLDA), has
gained popularity in speech research community. HLDA, unlike LDA, deals
with discriminant information presented both in the means and covariance
matrices of classes (Loog and Duin, 2004).

HLDA was originally introduced in (Kumar, 1997) for auditory feature
extraction, and later applied to speaker (Burget et al., 2007) and language
(Rouvier et al., 2010) recognition with the purpose of reducing dimensional-
ity of GMM supervectors and acoustic features, respectively. In this work,
we also use it to reduce the dimensionality of extracted i-vectors. For com-
pleteness, we briefly summarize the HLDA technique below.
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In the HLDA technique, the i-vectors of dimension n are projected into
first p < n rows, dj=1...p, of n × n HLDA transformation matrix denoted by
A. The matrix A is estimated by an efficient row-by-row iteration method
(Gales, 1999), whereby each row is iteratively estimated as,

d̂k = ckG
k−1

√
N

ckG
k−1cT

k

. (7)

Here, ck is the kth row vector of the co-factor matrix C = |A|A−1 for the
current estimate of A and

Gk =


∑J

j=1
Nj

dkΣ̂
(j)

dT
k

Σ̂
(j)

k ≤ p

N
dkΣ̂dT

k

Σ̂ k > p,
(8)

where Σ̂ and Σ̂
(j)

are estimates of the class-independent covariance matrix
and the covariance matrix of the jth model, Nj is the number of training ut-
terances of the jth model and N is the total number of training utterances. To
avoid near-to-singular covariance matrices in HLDA training process, prin-
cipal component analysis (PCA) is first applied (Loog and Duin, 2004; Rao
and Mak, 2012) and the PCA-projected features are used as the inputs to
HLDA. The dimension of PCA is selected in such a manner that most of the
principal components are retained and within-models scatter matrix becomes
non-singular (Loog and Duin, 2004).

2.3. Within-Class Covariance Normalization

To compensate for unwanted intra-class variations in the total variability
space, within-class covariance normalization (WCCN) (Hatch et al., 2006)
is applied to the extracted i-vectors. To this end, a within-class covariance
matrix, Λ, is first computed using,

Λ =
1

L

L∑
a=1

1

Na

Na∑
i=1

(wa
i −wa)(w

a
i −wa)

T, (9)

where wa is the mean i-vector for each accent a, L is the number of target
accents and Na is the number of training utterances for the accent a. The
inverse of Λ is then used to normalize the direction of the projected i-vectors
in the cosine kernel. This is equivalent to projecting the i-vector subspace
by the matrix B obtained by Cholesky decomposition of Λ−1 = BBT.
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3. Experimental Setup

3.1. Corpus

We use Finnish national foreign language certificate (FSD) corpus (Uni-
versity of Jyväskylä, 2000) to perform foreign accent classification task. The
corpus consists of official language proficiency tests for foreigners interested
in Finnish language proficiency certificate for the purpose of applying for a
job or citizenship. All the data has been recorded by language experts. Gen-
erally, the test is intended for evaluating test-takers’ proficiency in listening
comprehension, reading comprehension, speaking, and writing. This test can
be taken at basic, intermediate and advanced levels. The test-takers choose
the proficiency level at which they wish to participate. The difference be-
tween the levels is the extent and variety of expression required. At the basic
level, it is important that test-takers convey their message in a basic form,
while in the intermediate level, richer expression is required. More effective
and natural expressions should be presented in the advanced level. However,
communication purposes, i.e. functions and questions, are more or less the
same at all levels. Table 1 shows the grading scale at each level of the tests
in this corpus3.

Table 1: Grades within different levels in the FSD corpus.

Levels Grades

Basic 0 1 2
Intermediate 3 4

Advanced 5 6

For our purposes, we selected Finnish responses corresponding to 18 for-
eign accents. Unfortunately, as the number of utterances in some accents was
not large enough, a limited number of eight accents — Russian, Albanian,
Arabic, English, Estonian, Kurdish, Spanish, and Turkish — with enough
data were chosen for the experiments. However, the unused accents were
utilized in training the hyper-parameters of the i-vector system, the UBM
and the T-matrix.

3The FSD corpus is available by request from http://yki-korpus.jyu.fi/. Filelists
used in this study are available by request from the first author.
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To perform the recognition task, each accent set is randomly partitioned
into a training and a test subset. To avoid speaker and session bias, the
same speaker was not placed into the test and train subsets. The test sub-
set corresponds to (approximately) 40% of the utterances, while the training
set corresponds to the remaining 60%. The original audio files, stored in
MPEG-2 Audio Layer III (mp3) compressed format, were decompressed, re-
sampled to 8 kHz and partitioned into 30-second chunks. Table 2 shows the
distribution of train and test files in each target accent.

Table 2: Train and test files distributions in each target accent in the FSD corpus.

Accent No. of train files No. of test files No. of speakers
Spanish 47 25 15

Albanian 56 29 19
Kurdish 61 32 21
Turkish 66 34 22
English 70 36 23

Estonian 122 62 38
Arabic 128 66 42
Russian 556 211 235

Total 1149 495 415

The NIST SRE 20044 corpus was chosen as the out-of-set-data for hyper-
parameter training. For our purposes, 1000 gender-balanced utterances were
randomly selected from this corpus to train the UBM and T-matrix. We
note that this is an American English corpus of telephone-quality speech.

Unlike UBM and T-matrix, training the HLDA projection matrix requires
labeled data. Since accent labels are not represented in the NIST corpus, we
use the CallFriend corpus (Canavan and Zipperle, 1996) to train HLDA. This
corpus is a collection of unscripted conversations of 12 languages recorded
over telephone lines. It includes two dialects for each target language avail-
able. All utterances are organized into training, development and evaluation
subsets. For our purposes, we selected all the training utterances from di-
alects of English, Mandarin and Spanish languages and partitioned them into
30-second chunks, resulting in approximately 4000 splits per each subset. All
audio files have 8 kHz sampling rate.

4http://catalog.ldc.upenn.edu/LDC2006S44

10

http://catalog.ldc.upenn.edu/LDC2006S44


3.2. Front-end Configuration

The front-end consists of concatenation of MFCC and SDC coefficients
(Kohler and Kennedy, 2002). To this end, speech signals framed with 20ms
Hamming window with 50% overlap are filtered by 27 mel-scale filters over
0-4000 Hz frequency range. RASTA filtering (Hermansky and Morgan, 1994)
is applied to log-filterbank energies. Seven first cepstral coefficients (c0-c6)
are computed using discrete cosine transform. The cepstral coefficients are
further processed using utterance-level cepstral mean and variance normaliza-
tion (CMVN) and vocal tract length normalization (VTLN) (Lee and Rose,
1996), and converted into 49-dimensional shifted delta cepstra (SDC) feature
vectors with 7-1-3-7 configuration parameters (Kohler and Kennedy, 2002).
These four parameters correspond to, respectively, the number of cepstral co-
efficients, time delay for delta computation, time shift between consecutive
blocks, and number of blocks for delta coefficient concatenation. Removing
non-speech frames, the 7 first MFCC coefficients (including c0) are further
concatenated to SDCs to obtain 56-dimensional feature vectors.

In a preliminary experiment on our evaluation corpus FSD (Behravan,
2012), the combined feature set is shown to give a relative decrease in EER
of more than 30% as compared to the only SDC feature based technique.

3.3. Objective Evaluation Metrics

System performance is reported in terms of both average equal error rate
(EERavg) and average detection cost (Cavg) (Li et al., 2013). EER indicates
the operating point on detection error trade-off (DET) curve (Martin et al.,
1997) at which false alarm and miss rates are equal. EER per target accent is
computed in a manner that other accents serve as non-target trials. Average
equal error rate (EERavg) is computed by taking the average over all the L
target accent EERs.

Cavg, in turn, is defined as follows (Li et al., 2013),

Cavg =
1

L

L∑
a=1

CDET(La), (10)

where CDET(La) is the detection cost for subset of test segments trials for
which the target accent is La:

CDET(La) = CmissPtarPmiss(La) + Cfa(1− Ptar)
1

L− 1

∑
m 6=a

Pfa(La, Lm). (11)
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Pmiss denotes the miss probability (or false rejection rate), i.e. a test
segment of accent La is rejected as not being in that accent. Pfa(La, Lm) is
the probability when a test segment of accent Lm is detected as accent La. It
is computed for each target/non-target accent pairs. Cmiss and Cfa are costs
of making errors and are set to 1. Ptar is the prior probability of a target
accent and is set to 0.5.

4. Results

We first optimize the i-vector parameters in the context of dialect and
accent recognition tasks. For this purpose, we utilize the CallFriend corpus.
The results are summarized in Table 3.

Table 3: The i-vector system’s optimum parameters as reported in (Behravan et al., 2013).

i-vector parameters Search range and optima

UBM size 256, 512, 1024, 2048, 4096

i-vector dimensionality 200, 400, 600, 800, 1000

HLDA dimensionality 50, 100, 150, 180, 220, 300, 350, 400

In Figure 2, we show EER as a function of HLDA output dimension.
We find that the optimal dimension of the HLDA projected i-vectors is 180
and too aggressive reduction in dimension decreases accuracy. We also find
that accuracy improves with the increase of i-vector dimensionality as Table
4 shows. Furthermore, our results showed that the UBM with smaller size
outperforms larger UBM as Table 5 shows. Based on these previous findings,
UBM size, i-vector size and output dimensionality are set to 512, 1000 and
180, respectively.

Table 4: Performance of the i-vector system in the CallFriend corpus for selected i-vector
dimensions (EER in %, form). UBM has 1024 Gaussians as reported in (Behravan et al.,
2013).

i-vector dim. English Mandarin Spanish

200 23.20 20.49 20.87
400 22.60 19.11 20.21
600 21.30 18.45 19.63
800 19.83 16.31 18.63
1000 18.01 14.91 16.01
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Figure 2: Equal error rates at different dimensions of the HLDA projected i-vectors in the
CallFriend corpus as reported in (Behravan et al., 2013).

Table 5: Performance of the i-vector system in the CallFriend corpus for five selected UBM
sizes (EER in %, form). i-vectors are of dimension 600 as reported in (Behravan et al.,
2013).

UBM size English Mandarin Spanish

256 21.12 17.93 19.00
512 21.61 17.91 19.15
1024 21.30 18.45 19.63
2048 23.81 21.15 22.01
4096 23.89 21.57 22.66

4.1. Effect of Development Data on i-Vector Hyper-parameters Estimation

Table 6 shows the results on the FSD corpus when the hyper-parameters
are trained from different datasets. Here, WCCN and score normalization are
not applied. By considering the first row with matched language as a base-
line (13.37% EERavg), we observe the impact of each of the hyper-parameter
training configurations as follows:

• Effect of HLDA (row 1 vs row 2): EERavg increases to 18.28% (relative
increase of 37%)

13



• Effect of T-matrix (row 1 vs 3): EERavg increases to 20.98% (relative
increase of 57%)

• Effect of UBM (row 1 vs 4): EERavg increases to 23.85% (relative
increase of 78%)

• Effect of UBM and T-matrix (row 1 vs 5): EERavg increases to 26.76%
(relative increase of 101%)

Table 6: EERavg and Cavg×100 performance for effect of changing datasets in training the
i-vector hyper-parameters. (WCCN and score normalization turned off.)

 

UBM     T_matrix    HLDA 

Database used for training       %     ×100        % 
FSD          FSD          FSD 13.37 7.04 33.65 
FSD          FSD          CallFriend 18.28 7.49 38.29 
FSD          NIST         FSD 20.98 7.83 40.30 
NIST        FSD           FSD 23.85 8.15 42.91 
NIST        NIST         FSD 26.76 8.41 44.67 

In the light of these findings, it seems clear that the ‘early’ system hyper-
parameters (UBM and T-matrix) have a much larger role and they should
be trained from as closely matched data as possible; we see that when all
the hyper-parameters are trained from the FSD corpus, the highest accuracy
is achieved. The most severe degradation (101%) is attributed to the joint
effect of UBM and T-matrix and the least severe (37%) to HLDA, T-matrix
(57%) and UBM (78%) falling in between. It is instructive to recall the order
of computations: sufficient statistics from UBM→ i-vector extractor training
→ HLDA training. Since all the remaining steps depend on the “bottleneck”
components, i.e. UBM and T-matrix, it is not surprising that they have the
largest relative effect.

The generally large degradation relative to the baseline set-up with matched
data is reasonably explained by the large differences between type of data
of evaluation corpus (FSD) and hyper-parameter estimation corpora (NIST
SRE and CallFriend). FSD consists of Finnish language data recorded with
close-talking microphones in a classroom environment. Even though speech
is very clear, background babble noise from the other students is evident in
all the recordings. This is contrast to the NIST SRE and CallFriend corpora
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where most of the speech files are recorded over telephone line and babble
noise is less common.

The results of Table 6 were computed with WCCN and score normaliza-
tion turned off. Let us now turn our attention to these additional system
components. Firstly, Table 7 shows the effect of score normalization when all
the hyper-parameters are trained from the FSD corpus (i.e., row 1 of Table 6).
EERavg decreases from 13.37% to 13.01%, which indicates a slightly increased
recognition accuracy when the scores are normalized in the backend.

Table 7: Effect of score normalization on the recognition performance. (HLDA and WCCN
turned on and off, respectively.)

Score normalization EERavg% Cavg×100 Iderror%

No 13.37 7.04 33.65
Yes 13.01 6.94 32.85

Secondly, Table 8 shows the joint effect of WCCN and HLDA on the
recognition performance when all the hyper-parameters are trained from the
FSD corpus (i.e., row 1 of Table 6). In addition to that, score normalization
is also applied. EERavg decreases from 17.10% to 12.60% when both HLDA
and WCCN are applied. The worst case is when HLDA is turned off and
WCCN is turned on. This is because turning off HLDA leads to inaccurate
estimation of covariance matrix in higher dimensional i-vector space.

Table 8: The joint effect of WCCN and HLDA on the recognition accuracy. (Score nor-
malization turned on.)

HLDA WCCN EERavg% Cavg×100 Iderror%

No No 17.70 7.04 39.58
Yes No 13.01 6.94 32.85
No Yes 19.00 7.31 41.55
Yes Yes 12.60 6.85 30.85

4.2. Comparing i-Vector and GMM-UBM Systems

In order to have a baseline comparison between the i-vector approach
and the classical accent recognition systems, we used conventional GMM-
UBM system with MAP adaptation similar to the work presented in (Torres-
Carrasquillo et al., 2004). GMM-UBM system is simpler and computation-
ally more efficient in comparison to the i-vector systems. Map adaptation
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consists of single iteration for adapting the UBM to each dialect model us-
ing SDC+MFCC features. It requires updating only centers of UBM. The
testing is a fast scoring process described in (Reynolds et al., 2000) to score
the input utterance to each adapted foreign accent models by selecting top
five Gaussians per speech frame.

Table 9 shows the result of GMM-UBM system with four different UBM
sizes. Increasing the number of Gaussians results in higher recognition accu-
racy. Table 10 further compares the best recognition accuracies achieved by
both recognizers. In the i-vector system, the best recognition accuracy, i.e.
EERavg of 12.60%, is achieved with all the hyper-parameters trained from
the FSD corpus and HLDA, WCCN and score normalization being turned
on. On the other hand, the best GMM-UBM recognition accuracy, EERavg

of 17.00%, is achieved with UBM order 2048 when score normalization is
applied. The results indicate that the i-vector system outperforms the con-
ventional GMM-UBM system with 25% relative improvements in terms of
EERavg at the cost of higher computational time and additional develop-
ment data.

Table 9: Recognition performance of GMM-UBM system with different UBM sizes.

UBM size EERavg% Cavg×100

256 19.94 11.02
512 19.03 10.56
1024 18.20 10.12
2048 17.00 9.46

Table 10: Comparison between the best recognition accuracy in the GMM-UBM and
i-vector system. (Score normalization turned on for the both cases.)

Recognition system EERavg% Cavg×100 Iderror%

GMM-UBM 17.00 9.46 43.65
i-vector 12.60 6.85 30.85

4.3. Detection Performance per Target Language

In the previous section, we analysed the overall average recognition accu-
racy. Now, here we focus on performance for each individual foreign accent.
In order to compensate the lack of sufficient development data in reporting
these results, we used the previously unused accents in the FSD corpus to
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train UBM, T-matrix and HLDA. These unused accents are Chinese, Dari,
Finnish, French, Italian, Somali, Swedish and Misc5 corresponding to 210
speakers and 1110 utterances in total. Further, to increase the number of
test trials in the classification stage, we report the results using a leave-one-
speaker-out (LOSO) protocol. As demonstrated in the pseudo code below,
for every accent, each speaker’s utterances are held out one at a time and
the remaining utterances are used in modeling the ŵtarget as in Eq. (5). The
held-out utterances are used as the evaluation utterances.

Algorithm Leave-one-speaker-out (LOSO)

Let A = {a1, a2, . . . , aL} be the set of L target accents
Let S(ai) be the set of speakers in target accent ai
ŵa

target defines the i-vectors of target accent a after HLDA and WCCN.
for ai ∈ A do

for sj ∈ S(ai) {Held-out test speaker} do
Let S

′
= S(ai)− sj {Remove the speaker being tested}

Form ŵa
target using the i-vectors in set S

′
, Eq. (5)

Compute cosine scores 〈wsj
test,w

a
target〉 {w

sj
test are the test i-vectors of

speaker sj}
end for

end for
Normalize scores per each target accent, Eq. (6)

Table 11 shows the language wise results. The results suggest that certain
languages which do not belong to the same sub-family as Finnish are easier
to detect. Turkish achieves the highest recognition accuracy, whereas En-
glish shows highest error rate. The recognition accuracy is consistent among
Albanian, Arabic, Kurdish and Russian languages. Cavg is bigger than the
results already given in Table 10. Note that in Table 11, the unused accents
are used to train UBM, T-matrix and HLDA. This induces mismatch be-
tween model training data and the hyper-parameter training data. Which is
not the case in Table 10.

Figure 3 further exemplifies the distribution of scores for three selected
languages of varying detection difficulties. The histograms are plotted with
the same number of bins, 50. For visualization purposes, the width of bins

5refers to those utterances in which the spoken foreign accent is not clear.
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Table 11: Per language results in terms of EER% and CDET×100 for the i-vector system.

Accents EER% CDET×100

Turkish 11.90 6.35
Spanish 16.49 6.92

Albanian 18.76 7.00
Arabic 18.98 7.17

Kurdish 19.37 7.19
Russian 19.68 7.21
Estonian 20.05 7.52
English 23.60 8.00

in the non-target score histogram was set smaller than in the target score
histogram. The score distribution explains the differences between EERs.
For example, in case of Turkish as the easiest and English as the most difficult
detected accent, the overlap between the target and the non-target scores is
higher in the latter.

Here, the problem is treated as foreign accent identification task. Ta-
ble 12 displays the confusion matrix corresponding to Table 11. In all the
cases, majority of the detected cases corresponds to the correct class (i.e.,
the entries in the diagonal). Taking Turkish as the language with the high-
est recognition accuracy, out of the 11 misclassified Turkish test segments, 7
were misclassified as Arabic. This might be because Turkey is bordered by
two Arabic countries, Syria and Iraq, and Turkish shares common features
with Arabic. Regarding Spanish, out of the 27 misclassified test segments, 9
were detected as Arabic. It is possibly due to the major influence of Arabic
on Spanish. In particular, numerous words of Arabic origin are adopted in
the Spanish language.

To analyze further reasons why some languages are harder to detect, we
first compute the average target language score on a speaker-by-speaker basis.
To measure the degree of speaker variation, we show the standard deviation
of these average scores in Table 13, along with the corresponding EER and
CDET values. The results indicate that languages with more diverse speaker
populations, having speaker-dependent biases in the detection scores, are
more difficult to handle. It does not yet explain why certain languages, such
as Russian, have a larger degree of speaker variation, but suggests that there
will be space for further research in speaker normalization techniques.
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(a) Turkish

(b) Russian

(c) English

Figure 3: Distribution of scores for Turkish, Russian and English accents.
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Table 12: Confusion matrix of the results corresponding to Table 11.

 

 

 

Predicted label 
Turk. Span. Alba. Arab. Kurd. Russ. Esto. Engl. 

T
ru

e 
la

b
el

 

Turk. 50 0 1 7 0 1 0 2 
Span. 1 58 1 11 2 3 7 2 
Alba. 1 0 61 9 1 5 11 1 
Arab. 4 2 14 110 7 7 12 4 
Kurd. 5 1 1 5 50 6 3 6 
Russ. 51 21 51 26 2 369 13 28 
Esto. 5 5 7 15 1 6 117 15 
Engl. 7 3 3 6 3 7 9 59 

 

 

Table 13: The standard deviation of the average target language score on a speaker-by-
speaker basis along with the corresponding EER and CDET results.

Accents Standard deviation EER% CDET×100

Turkish 0.1205 11.90 6.35
Spanish 0.1369 16.49 6.92

Albanian 0.1380 18.76 7.00
Arabic 0.1505 18.98 7.17

Kurdish 0.1392 19.37 7.19
Russian 0.1402 19.68 7.21
Estonian 0.1621 20.05 7.52
English 0.1667 23.60 8.00

4.4. Factors Affect Foreign Accent Detection

We are interested to find out what factors affect the foreign accent recog-
nition accuracies. The rich metadata available in the FSD corpus includes
language proficiency, speaker’s age, education and the place where the sec-
ond language is spoken. In the following analysis, we used the whole set of
scores from the LOSO experiment and grouped them to different categories
according to each metadata variable at a time.

Language Proficiency

To find out the impact of language proficiency, we take the sum of spoken
and written Finnish grades in the FSD corpus as a proxy of the speaker’s
Finnish language proficiency. The objective was to find out how speakers’
language proficiency and their detected foreign accent are related. Figure
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4 shows Cavg for each grade group. As hypothesized, the lowest Cavg is
attributed to speakers with the lower grade (5) and the highest accuracy to
speakers with the higher grade (8). This indicates that detecting the foreign
accents from speakers with higher proficiency in Finnish is considerably more
difficult than speakers with lower proficiency.

In addition, we looked at language proficiency across different target lan-
guages. We study the average language proficiency grade across the speakers
in different languages (Table 14). For the three most difficult languages to de-
tect, Russian, Estonian and English, the average language proficiency grades
are higher than the rest of languages, supporting the preceding analysis.

5 (164) 6 (799) 7 (165) 8 (136)0

2

4

6

8

Grade (# utterances)

C
av

g
*

10
0

Figure 4: Cavg×100 for different grade groups in the language proficiency measurement.

Table 14: The average language proficiency grade across the speakers in different languages
along with the corresponding EER and CDET results.

Accents Grade EER% CDET×100

Turkish 6.09 11.90 6.35
Spanish 6.20 16.49 6.92

Albanian 5.78 18.76 7.00
Arabic 5.73 18.98 7.17

Kurdish 5.71 19.37 7.19
Russian 6.30 19.68 7.21
Estonian 7.02 20.05 7.52
English 6.34 23.60 8.00
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Age of entry

Age is one of the most important effective factors in learning a second
language (Krishna, 2008). The common notion is that younger adults learn
the second language more easily than older adults. (Larsen-Freeman, 1986)
argues that during the period of time between birth and the age when a
children enters puberty, learning a second language is quick and efficient. In
the second language acquisition process, one of the affecting factors relates
to the experience of immigrants, such as the age of entry and the length
of residence (Krishna, 2008). We analyse the relationship between the age
of entry and the foreign accent recognition results. To analyse the effect of
age to foreign accent detection, we categorized the detection scores into six
age groups with 10 years age interval (Figure 5). Our hypothesis was that
mother tongue detection is easier in older people than younger ones. The
results support this hypothesis. Cavg decreases from 5.30 (a relative decrease
of 16%) to 4.45 from the age group [11-20] to [61-70]. This indicates that
the mother tongue detection in older age groups could be easier than in the
younger age groups.

[11-20] [21-30] [31-40] [41-50] [51-60] [61-70]
0

1

2

3

4

5

6

Age group

C
av

g
*

10
0

Figure 5: Cavg ×100 for different age groups. Age refers to age of entry to foreign country.
Number of utterances for the age group [11-20], [21,30], ..., [61-70] is 46, 342, 535, 239,
100, 12, respectively.

Level of Education

According to Gardner’s socio-educational model (Gardner, 2010), intrin-
sic motivation to learn a second language is strongly correlated to educational
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achievements. The objective was to find out how speakers’ level of education
and their detected foreign accent might be related. To analyse the effect of
education, we categorized the detection scores into different levels of edu-
cation groups. We hypothesized that people with higher level of education
speak the second language more fluently than lower educated people. As a
consequence, mother tongue detection for higher educated people is relatively
difficult. But the results in Figure 6 in fact show the opposite; the highest
Cavg belongs to elementary school and the lowest to university education.
However, Cavg is somewhat similar for the high school, vocational school,
and polytechnic level of education.

Elementary (164) High school (176) Vocational (255) Polytechnic (183) University (454)
0
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g
*
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0

0

Figure 6: Cavg ×100 for different level of education groups.

Where the Second Language is Spoken

Finally, we were also interested to observe whether the place or situation,
where the second language is spoken, affects foreign accent detection or not.
To this end, we categorized the scores into four groups based on the level of
social interaction: home, hobbies, study and work. We hypothesized that the
places with more social interactions between people, the mother tongue traits
will be less in the second spoken language, therefore making it more difficult
to detect the mother tongue. Figure 7 shows the Cavg for different places
where the second language is spoken. The results indicate no considerable
sensitivity to the situation where the second language is spoken.
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Figure 7: Cavg×100 for different places where the second language is spoken.

5. Conclusion

In this work, we studied how the various i-vector extractor parameters,
data set selections and the speaker’s language proficiency affects foreign
accent detection accuracy. Regarding parameters, highest accuracy was
achieved using UBMs with 512 Gaussians, i-vector dimensionality of 1000
and HLDA dimensionality of 180. These are similar to those reported in
general speaker and language recognition literature, except for the higher-
than-usual i-vector dimensionality of 1000.

Regarding data, we found that the choice of the UBM training data is
the most critical part, followed by T-matrix and HLDA. This is understand-
able since the earlier system components affect the quality of the remaining
steps. In all cases, the error rates increased unacceptably high for mismatched
sets of hyper-parameter training. Thus, our answer to the question whether
hyper-parameters could be reasonably trained from mismatched language
and channel is negative. The practical implication of this is that the i-vector
approach, even though producing reasonable accuracy, requires careful data
selection for hyper-parameter training — and this is not always feasible.

Applying within-class covariance normalization followed by score normal-
ization technique further increased the i-vector system performance by 6%
relative improvements in terms of Cavg. We also showed that the i-vector
system outperforms the conventional GMM-UBM system by 28% relative
decrease in terms of Cavg.
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In our view, the most interesting contribution of this work is the analysis
of language aspects. The results, broken down by the accents, clearly
suggested that certain languages which do not belong to the same sub-family
as Finnish are easier to detect. Turkish was the easiest (CDET of 6.35) while
for instance Estonian, a language similar to Finnish, yielded CDET of 7.52.
The most difficult language was English with CDET of 8.00. In general,
confusion matrix revealed that phonetically similar languages are more often
confused.

Our analysis on affecting factors suggested that language proficiency and
age of entry affect detection performance. Specifically, accents produced by
fluent speakers of Finnish are more difficult to detect. Speaker group with
the lowest language grade 5 yielded Cavg of 4.75 while the group with grade
8 yielded Cavg of 6.76. Analysis of the age of entry, in turn, indicated that
mother tongue detection in older speakers is easier than younger speakers.
The age group [61-70] years yielded Cavg of 4.45 while the group with age
interval [11-20] years old yielded Cavg of 5.31.

After optimizing all the parameters, the overall EERavg and Cavg were
12.60% and 6.85, respectively. These are roughly an order of magnitude
higher compared to state-of-the-art text-independent speaker recognition with
i-vectors. This reflects the general difficulty of the foreign accent detec-
tion task, leaving a lot of space for future work on new feature extraction
and modeling strategies. While these values are unacceptably high for se-
curity applications, the observed correlation between language proficiency
and recognition scores suggests potential applications for automatic spoken
language proficiency grading.
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