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Abstract—Vulnerabilities to presentation attacks can under-
mine confidence in automatic speaker verification (ASV) tech-
nology. While efforts to develop countermeasures, known as
presentation attack detection (PAD) systems, are now under way,
the majority of past work has been performed with high-quality
speech data. Many practical ASV applications are narrowband
and encompass various coding and other channel effects. PAD
performance is largely untested in such scenarios. This paper
reports an assessment of the impact of bandwidth and channel
variation on PAD performance. Assessments using two current
PAD solutions and two standard databases show that they
provoke significant degradations in performance. Encouragingly,
relative performance improvements of 98% can nonetheless be
achieved through feature optimisation. This performance gain is
achieved by optimising the spectro-temporal decomposition in the
feature extraction process to compensate for narrowband speech.
However, compensating for channel variation is considerably
more challenging.

Index Terms—presentation attack detection, speaker verifica-
tion, bandwidth and channel variation

I. INTRODUCTION

While automatic speaker verification (ASV) [1]–[3] offers

a convenient, reliable and cost-effective approach to person

authentication, vulnerabilities to presentation attacks [4], pre-

viously referred to as spoofing, can undermine confidence and

form a barrier to exploitation. By masquerading as enrolled

clients, fraudsters can mount attacks to gain unauthorised ac-

cess to systems or services protected by biometrics technology.

Presentation attacks in the context of ASV can be performed

with impersonation, speech synthesis, voice conversion and

replay [5]. While the study of impersonation has received at-

tention, e.g. [6], replay, speech synthesis and voice conversion

are assumed to pose the greatest threat [7]. Speech synthesis

and voice conversion presentation attacks combine suitable

training or adaptation data with sophisticated algorithms which

generate voice samples whose spectral characteristics resemble

those of a given target speaker. In contrast, replay spoofing

attacks require neither specialist expertise nor equipment and

can hence be mounted by the lay person with relative ease.

Replay attacks involve the re-presentation to an ASV system

of another person’s speech which is captured beforehand,

possibly surreptitiously, for instance during an access attempt.

The study of presentation attack detection (PAD) for ASV is

now an established area of research [7]. The first competitive

evaluation, namely the ASV spoofing and countermeasures

(ASVspoof) challenge [8], was held in 2015. It promoted

the development PAD solutions to protect ASV from voice

conversion and speech synthesis attacks.

Since the first ASVspoof 2015 evaluation, the community

has started to consider a number of more practical aspects of

PAD. Some recent work has explored the impact of additive

noise on reliability [9], [10] and the benefit of speech enhance-

ment and multi-condition training as a means of improving

robustness [9], [11].

Other likely influences on PAD performance, e.g. band-

width and channel variability, have received comparatively

little attention to date [12], [13]. Given the prevalence of

ASV technology in telephony applications were bandwidth

is typically low and where coding, packet loss and other

non-linear effects have potential to degrade performance,

these aspect require attention. However, the ASVspoof 2015

database contains high quality, high bandwidth recordings.

The RedDots Replayed database [14] which was generated

from the text-dependent ASV RedDots database [15], was

introduced recently to support the development PAD solutions

for replay presentation attacks. While exhibiting variation

in terms of recording devices and environmental conditions,

and hence representing a greater degree of practical, real-life

variability, it still contains wideband audio (16kHz).

The work reported in this paper has accordingly sought

to investigate the impact of bandwidth and channel varia-

tion on PAD reliability for ASV. The work was performed

with bandwidth-limited and coded versions of the ASVspoof

2015 and RedDots Replayed databases (covering 3 different

types of presentation attacks, namely speech synthesis, voice

conversion and replay), generated through band-pass filtering,

downsampling and coding. The work was performed with

two PAD solutions, namely linear frequency cepstral coeffi-

cients [16] and constant Q cepstral coefficients [17], [18], both

of which achieve competitive performance for the ASVspoof

2015 database with a relatively simple back-end classifier. It

is stressed that the objective of the work reported here is to

assess the impact on PAD reliability of bandwidth and channel

variation. While an issue of undoubtable importance, the work

is NOT concerned with generalisation.



II. PRESENTATION ATTACK DATABASES

The work reported in this paper was performed using two

publicly available databases.

A. ASVspoof 2015

The ASVspoof initiative [8] was the first community-led

effort to collect a common database to support research in

spoofing and countermeasures. The ASVspoof 2015 database

contains a mix of bona fide (genuine speech without attack)

and spoofed speech. All bona fide speech data is sampled at

16kHz and was recorded in a semi-anechoic chamber with a

solid floor [8]. Spoofed speech is generated with 10 different

speech synthesis and voice conversion algorithms. In order

to promote generalised PAD systems, only 5 of these were

used to generate training and development subsets whereas

an evaluation subset was generated with the full 10. In this

paper, the development set containing genuine and spoofed

speech using 5 different attacks is used. Table I shows database

statistics. Full details of the ASVspoof 2015 database and

example PAD results are available in [8].

TABLE I
STATISTICS OF THE ASVSPOOF 2015 DATABASE: NUMBER OF SPEAKERS

(M=MALE, F=FEMALE), AND NUMBER OF GENUINE AND SPOOFED

TRIALS.

Partition
#Speakers

#Genuine trials #Spoofed trials
(M / F)

Training 10 / 15 3750 12625

Development 15 / 20 3497 49875

B. RedDots Replayed

The RedDots Replayed database [14] was designed to

support the development of PAD solutions for replay attacks

in diverse recording and playback environments. RedDots

Replayed is based upon the re-recording of the original Red-

Dots database [15] (part 01, male speakers) which contains

speech data comprising 10 common passphrases recorded in

a number of acoustic conditions using mobile devices with a

sampling rate of 16kHz. Replayed speech is generated with

one of 16 different recording devices, 15 different playback

devices and various different acoustic conditions, including

both controlled and more variable (unpredictable) conditions.

Controlled condition recordings are made in a quiet office/-

room whereas variable condition recordings are made in nois-

ier environments. A training subset contains only controlled

condition recordings whereas an evaluation subset contains

both controlled and variable condition recordings. Table II

shows database statistics. Full details of the RedDots replayed

database and example presentation attack detection results are

available in [14]. A subset of the RedDots Replayed database

is also used in the ASVspoof 2017 challenge1 data [19], [20].

1http://www.asvspoof.org/

TABLE II
STATISTICS OF THE REDDOTS REPLAYED DATABASE: NUMBER OF

SPEAKERS (MALE), AND NUMBER OF GENUINE AND SPOOFED TRIALS.

Partition #Speakers #Genuine trials #Spoofed trials

Training 10 1508 9232

Development 39 2346 16067

C. Bandwidth reduction and channel simulation

PAD performance was assessed with different versions

of each database: (i) the original full-band versions;

(ii) bandwidth-reduced versions, and (iii) versions with ad-

ditional channel variation simulated with the Idiap acoustic

simulator software2.

Bandwidth reduction involves downsampling from 16kHz

to 8kHz. ITU G.1513 compliant bandpass filtering is applied

with a gain of -3dB at the passband edges of 300Hz and

3400Hz. The original and bandwidth-reduced versions are

referred to from hereon as wideband (WB) and narrowband

(NB).

Codec simulations employ a common ITU G.7124 com-

pliant bandpass filter. This is combined with a-law coding5

at a rate of 64kbit/s for landline telephony and with an

adaptive multi-rate narrowband (AMR-NB) codec6 at a rate of

7kbit/s for cellular telephony. These two scenarios are referred

to as landline (L) and cellular (C), respectively. Figure 1

illustrates the distortion in the long-term average spectrum for

landline and cellular coded signals compared to the original

narrowband signal for an arbitrary speech utterance from the

ASVspoof 2015 database. These spectra were obtained with

the constant Q transform (CQT, see Section III). In addition

to broad attenuation, the plots illustrates substantial spectral

distortion, especially at lower and higher frequencies. The

distortion is particularly pronounced for the cellular-coded

signal.

III. PRESENTATION ATTACK DETECTION

The work was performed with two different PAD systems. A

backend Gaussian mixture model (GMM) classifier with two

classes, one for fona fide speech and one for spoofed speech

is common to both systems. Models are learned using bona

fide and spoofed data from their respective training subsets

and with an expectation maximisation algorithm. According to

independent results, e.g. [16], [18], [21], such a simple clas-

sifier often provides competitive or even better performance

compared to other, more sophisticated algorithms. The score

for a given trial is computed as the log-likelihood ratio of the

test speech sample given the two GMMs for bona fide and

spoofed speech. The frontends are described below. Neither

employs voice activity detection.

2http://github.com/idiap/acoustic-simulator
3https://www.itu.int/rec/T-REC-G.151-198811-W/en, accessed: 2017-08-

07
4https://www.itu.int/rec/T-REC-G.712/en, accessed: 2017-08-07
5https://www.itu.int/rec/T-REC-G.711-198811-I/en, accessed: 2017-08-07
6https://www.itu.int/rec/T-REC-G.711-198811-I/en, accessed: 2017-08-07
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Fig. 1. Average long-term CQT spectra for the utterance ‘He’s worked for
several years in the United States’ for narrowband, landline and cellular
channels.

The linear-frequency cepstral coefficient frontend is the

best performing system from [16]. The energy outputs of a

uniformly-spaced, triangular filterbank are processed by the

discrete cosine transform (DCT) to derive cepstral coefficients

using an analysis window of 20ms with a 10ms shift. Since

LFCC features are computed with linearly-spaced filters, the

frequency resolution is explicitly related to the number filters.

Increasing the number improves the frequency resolution and

captures more detailed spectral characteristics. While the orig-

inal work [16] used 20 filters, use of a greater number was

found to improve performance. For work reported here, the

number of filters is optimised first for WB and then for NB

data.

Constant Q cepstral coefficients. The second front-end

involves constant Q cepstral coefficients (CQCCs) [17], [18]

which combine the constant Q transform (CQT) [22] with

standard cepstral analysis. In contrast to Fourier techniques,

the centre/bin frequencies of the CQT scale are geometri-

cally distributed [23]. The centre frequency fk for the k-th

frequency bin is given by

fk = fmin2
k−1

B (1)

where fmin is the minimum frequency considered and B

is the number of bins per octave. Higher values of B pro-

vide greater frequency resolution but reduced time resolution,

while lower values of B provide greater time resolution but

smaller frequency resolution. B thus determines the trade-

off between frequency and time resolutions and is a major

optimisation parameter for CQT-based analysis. Note that the

CQCC analysis window length and shift is effectively variable

in order to maintain a constant Q factor (trade-off between

centre frequency and filter width) across frequency bins. Full

details of CQCC extraction are described in [18].

IV. EXPERIMENTAL WORK

This section reports an assessment of bandwidth and chan-

nel variation impacts on PAD performance. All experiments

were performed with the standard protocols in [8], [14] (see

Section II). Assessments are based on the threshold-free equal

error rate (EERpad) metric for a bona fide/presentation attack

discrimination task. EERpad is the operating point where the

attack presentation classification error rate, APCER (equiva-

lent to the false alarm rate, FAR, in binary classification tasks),

and the bona-fide presentation classification error rate, BPCER

(equivalent to miss rate in binary classification tasks), are

equal. Shown first are baseline experiments using the original

high-quality WB versions of the ASVspoof 2015 development

set (in the following referred to as ASVspoof) and RedDots

Replayed database. The use of the ASVspoof development set

alone avoids any influence of results on presentation attacks

for which no training data is available; this paper is not

concerned with generalisation aspects. Then, the adopted

methodology is summarised as follows:

• Baseline experiments using the original high-quality WB

databases were performed.

• Identical experiments using NB versions of the same

databases were performed to evaluate performance for

bandwidth-reduced audio.

• Feature extraction configurations are optimised to im-

prove performance for bandwidth-reduced audio.

• A final set of experiments evaluate the robustness of

optimised PAD solutions in the face of additional speech

coding.

A. Wideband baseline

Baseline results for LFCC and CQCC features and the

original WB databases (no downsampling nor channel sim-

ulation) are presented in Table III (“Wideband” rows). LFCCs

include 20 delta (D) and 20 acceleration (A) coefficients [16]

computed using 30 filters while CQCCs include 20 A co-

efficients [18]. These configurations were optimised for the

ASVspoof database. Error rates for LFCC features are twice

those of CQCC features. Error rates for the RedDots Replayed

database are markedly higher than for the ASVspoof database,

albeit that these results were generated using un-optimised

feature configurations.

B. Bandwidth reduction

Table III (“Narrowband” rows) shows results for the NB ver-

sions of ASVspoof and RedDots Replayed databases. Results

are shown for both LFCC and CQCC features using different

combinations of static (S), delta (D) and acceleration (A)

coefficients. Results in Table III show that, for the ASVspoof

database, performance is significantly degraded for both LFCC

and CQCC features. For LFCC features, the EERpad increases

from 0.11% to 1.64% whereas that for CQCC features in-

creases from 0.05% to 9.92%. In addition, for CQCC, SD

configuration further reduces the error rate of A configuration

further down to 5.64%.

For the RedDots Replayed database, performance for LFCC

features degrades from 6.18% to 8.12%. For CQCC fea-

tures, results improve, with the EERpad dropping from 3.27%

to 2.07%. Our analysis suggests that this is because the salient



TABLE III
PERFORMANCE OF LFCC AND CQCC PAD SYSTEMS IN TERMS OF

EERpad (%) FOR ASVSPOOF DEVELOPMENT AND REDDOTS REPLAYED

DATABASES FOR WB AND NB DATA. PAD SYSTEMS WERE NOT

OPTIMIZED FOR NB DATA. S=STATIC, D=DELTA, A=ACCELERATION.

Feature
ASVspoof RedDots

2015 Replayed

Wideband LFCC DA 0.11 6.18

(16 kHz) CQCC A 0.05 3.27

S 6.60 13.30

D 3.38 9.02

A 4.06 8.24

LFCC SD 3.72 10.27

SA 3.17 9.56

DA 1.64 8.12

Narrowband SDA 2.27 8.59

(8 kHz) S 10.39 7.13

D 10.93 3.18

A 9.92 2.07

CQCC SD 5.64 4.05

SA 5.90 4.18

DA 8.97 2.14

SDA 5.71 2.88

information for replay detection is contained within low fre-

quencies for which CQCC features have better resolution. The

same behaviour is not observed for LFCC features, however.

This is because LFCC features may lack sufficient resolution

at low frequencies to capture the same information captured

by CQCC features.

While it is not entirely surprising that different features are

best for the ASVspoof and RedDots Replayed databases – they

contain presentation attacks of a different nature – performance

is sensitive to the particular configuration. Whereas DA and

A combinations give the best performance for WB ASVspoof

data for LFCC and CQCC features respectively, DA and

SD combinations give the best performance for NB data.

Performance for the RedDots Replayed database is more

consistent with DA and A configurations again giving the best

performance.

C. Feature optimisation

Reported now are results for optimised LFCC and CQCC

features for NB data. For LFCC features, optimisation is

performed by varying the number of filters. The dimensionality

of static features is fixed by considering first 20 coefficients

after the DCT. Table IV reports results for ASVspoof and

RedDots Replayed databases where the number of filters

is varied between 20 and 80. For the ASVspoof database,

performance is improved for a higher number of filters. The

best performance is obtained with 70 filters and dynamic co-

efficients (DA). However, for the RedDots Replayed database,

the optimal number of filters is 30 while performance degrades

for higher numbers.

Table V shows optimisation results for CQCC features.

Performance is illustrated for different combinations of S,

D and A coefficients and as a function of the number of

TABLE IV
OPTIMISATION OF NUMBER OF FILTERS FOR LFCC FEATURES FOR NB
ASVSPOOF DEVELOPMENT AND REDDOTS DATABASES IN TERMS OF

EERpad (%) FOR DIFFERENT CONFIGURATIONS OF STATIC (S), DELTA (D)
AND ACCELERATION (A) COEFFICIENTS.

20 30 40 50 60 70 80

A
S

V
sp

o
o

f
2

0
1

5

S 5.74 6.60 6.19 6.12 6.34 6.45 6.52

D 4.48 3.38 3.28 3.19 3.21 3.21 3.25

A 5.21 4.06 4.05 4.05 3.94 3.91 4.04

SD 3.48 3.72 3.62 3.67 3.64 3.65 3.49

SA 3.27 3.17 3.04 3.21 3.13 3.16 3.08

DA 2.10 1.64 1.67 1.49 1.50 1.44 1.55

SDA 2.34 2.27 2.18 2.21 2.13 2.16 2.06

R
ed

D
o

ts
R

ep
la

y
ed

S 13.71 13.30 13.51 13.97 14.45 15.18 15.30

D 9.06 9.02 9.51 9.66 10.14 10.05 10.60

A 8.13 8.24 8.48 8.52 8.97 9.15 9.26

SD 10.67 10.27 10.87 11.64 11.61 11.72 11.74

SA 9.97 9.56 10.14 10.38 10.72 11.08 11.13

DA 8.40 8.12 8.40 9.08 8.72 9.04 9.40

SDA 9.11 8.59 9.63 9.65 10.17 10.57 10.53

TABLE V
OPTIMISATION OF THE NUMBER OF FREQUENCY BINS PER OCTAVE B FOR

CQCC FEATURES FOR NB ASVSPOOF AND REDDOTS REPLAYED

DATABASES IN TERMS OF EERpad (%) FOR DIFFERENT CONFIGURATIONS

OF STATIC (S), DELTA (D), AND ACCELERATION (A) COEFFICIENTS.

B 192 96 48 24 12 6
A

S
V

sp
o

o
f

2
0

1
5

S 17.23 10.39 5.25 2.95 1.93 3.06

D 16.01 10.93 7.11 5.64 4.53 6.27

A 14.73 9.92 8.08 6.40 4.88 8.69

SD 10.97 5.64 2.72 1.00 0.28 0.37

SA 10.45 5.90 3.35 1.05 0.17 0.31

DA 13.29 8.97 6.25 4.44 3.54 5.70

SDA 10.30 5.71 2.60 0.84 0.16 0.27

R
ed

D
o

ts
R

ep
la

y
ed

S 6.57 7.13 8.82 10.06 9.68

D 3.50 3.18 3.46 7.55 11.68

A 2.50 2.07 3.20 4.65 9.21

SD 3.88 4.05 5.43 7.20 7.74 -

SA 3.85 4.18 5.63 7.30 8.15

DA 2.73 2.14 2.6 4.82 11.05

SDA 2.86 2.88 3.86 6.22 8.44

bins per octave B involved in the CQT computation. The

combination of SDA coefficients gives the best performance

for the ASVspoof database (0.16% EERpad for B=12) whereas

A coefficients alone give the more consistent performance for

the RedDots database (2.07% EERpad for B=96). In terms of

general trends, smaller values of B give better performance for

the ASVspoof database whereas larger values of B give better

performance for the RedDots database. This would suggest

that the detection of voice conversion and speech synthesis

attacks requires a spectro-temporal analysis with higher time

resolution. Conversely, the reliable detection of replay attacks

requires a higher frequency resolution.

D. Channel simulation

For experiments described above, PAD algorithms were

optimised for a ‘generic’ telephony scenario through the

downsampling of original WB data to NB data. Experiments



reported here focus on the evaluation of PAD systems on more

challenging data with simulated landline (L) and cellular (C)

channel variation. Results are presented in Table VI for the

optimised PAD systems corresponding to Tables IV and V.

LFCC features have dynamic coefficients (DA) computed

using 70 filters for the ASVspoof database. For the RedDots

Replayed database, features are the same, except for 30

filters. Performance degrades significantly for both landline

and cellular scenarios, more so for the ASVspoof database

than for the RedDots Replayed database.

TABLE VI
PERFORMANCE OF OPTIMUM CONFIGURATIONS FOUND IN SECTION IV-C
APPLIED TO THE ASVSPOOF AND REDDOTS REPLAYED DATABASES WITH

SIMULATED CELLULAR (C) AND LANDLINE (L) CHANNELS (RESULTS

FOR NARROWBAND (NB) ALSO INCLUDED FOR COMPARISON).

ASVspoof RedDots Replayed

NB L C NB L C

LFCC 1.44 6.05 11.09 8.12 8.38 10.14

CQCC 0.16 1.86 12.96 2.07 3.10 12.32

CQCC features involve the full SDA configuration with

B=16 frequency bins per octave for the ASVspoof database

and A coefficients with B=96 frequency bins per octave for the

RedDots Replayed database. Performance again degrades sig-

nificantly for both landline and cellular scenarios and, again,

much more for the latter. The relative degradation for CQCC

features in the case of the cellular scenario is significantly

greater than for LFCC features. This could indicate that,

despite seemingly better performance for matched conditions,

CQCC features are more sensitive to channel variation than

LFCC features. Given that both landline and cellular scenarios

share the same bandpass filtering, the degradation stems from

the use of different codecs. The AMR-NB codec has a high

compression rate of 7kbits/s. This degradation in performance

most likely stems from aggressive compression and the con-

sequential loss of frequency components which are crucial for

presentation attack detection.

To further illustrate PAD performance degradation due to

codec effects, Figure 2 shows DET plots of the CQCC

PAD system for generic narrowband, landline and cellular

scenarios on the RedDots replayed database (replay attacks).

PAD on narrowband data is more accurate than on landline

data for a wide range of operation points. PAD performance

on cellular data is importantly degraded for the complete range

of operation points.

V. CONCLUSIONS

This paper reports an investigation of bandwidth and chan-

nel variation on the reliability of presentation attack detection

(PAD) for automatic speaker verification. Experiments were

performed using two common databases of spoofed speech,

namely ASVspoof 2015 and RedDots Replayed which, to-

gether, contain a variety of different presentation attacks.

Results show that the performance of two state-of-the-art

PAD solutions optimised for WB speech degrades significantly
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Fig. 2. DET plots for narrowband, landline and cellular scenarios on the
RedDots replayed database.

when applied to NB speech, while PAD optimisation can

improve performance. A higher frequency resolution might

be needed for the detection of replay attacks whereas higher

time resolution is need for the detection of voice conversion

and speech synthesis attacks. In the face of channel variation,

performance again degrades significantly. These findings show

the need for new, common databases of spoofed speech which

incorporate channel variation in addition to new research in

channel compensation for PAD.

ACKNOWLEDGMENT

The paper reflects some results from the OCTAVE Project

(#647850), funded by the Research European Agency (REA)

of the European Commission, in its framework programme

Horizon 2020. The views expressed in this paper are those

of the authors and do not engage any official position of the

European Commission.

REFERENCES

[1] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker
identification using Gaussian mixture speaker models,” IEEE Trans.

Speech and Audio Processing, vol. 3, pp. 72–83, January 1995.

[2] T. Kinnunen and H. Li, “An overview of text-independent speaker
recognition: from features to supervectors,” Speech Communication,
vol. 52, no. 1, pp. 12–40, Jan. 2010.

[3] J. H. L. Hansen and T. Hasan, “Speaker recognition by machines and
humans: a tutorial review,” IEEE Signal Processing Magazine, vol. 32,
no. 6, pp. 74–99, 2015.

[4] “ISO/IEC 30107-3: Information technology – biometric presentation at-
tack detection,” International Organization for Standardization, Standard,
2016.

[5] N. Evans, T. Kinnunen, and J. Yamagishi, “Spoofing and countermea-
sures for automatic speaker verification,” in Proc. INTERSPEECH, 2013,
pp. 925–929.

[6] R. Hautamki, T. Kinnunen, V. Hautamki, and A.-M. Laukkanen, “Au-
tomatic versus human speaker verification: The case of voice mimicry,”
Speech Communication, vol. 72, pp. 13 – 31, 2015.



[7] Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li,
“Spoofing and countermeasures for speaker verification: A survey,”
Speech Communication, vol. 66, pp. 130 – 153, 2015.

[8] Z. Wu, J. Yamagishi, T. Kinnunen, C. Hanilci, M. Sahidullah, A. Sizov,
N. Evans, M. Todisco, and H. Delgado, “Asvspoof: the automatic speaker
verification spoofing and countermeasures challenge,” IEEE Journal of

Selected Topics in Signal Processing, vol. PP, no. 99, pp. 1–1, 2017.
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