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Abstract. Speakers can conceal their identity by deliberately changing
their speech characteristics, or disguising their voices. During voice dis-
guise, speakers alter their normal movements of the articulators, such as
tongue positions, according to a predetermined strategy. Even though
technology for accurate articulatory measurements has existed for years,
few studies have investigated articulation during voice disguise. In this
pilot study, we recorded articulation of four speakers during regular and
disguised speech using electromagnetic articulography. We analyzed im-
itation of foreign accents as a voice disguise strategy and utilized func-
tional t-tests as a novel method for revealing articulatory differences be-
tween regular and disguised speech. In addition, we evaluated discovered
articulatory differences in the light of the performance of an x-vector-
based automatic speaker verification system.

Keywords: electromagnetic articulography · functional data analysis ·
foreign accent · voice disguise · automatic speaker verification.

1 Introduction

The human voice is extremely variable and flexible. Besides inter-speaker varia-
tion due to organic differences in vocal production systems, speakers can modify
the content and the style of speaking flexibly, leading to intra-speaker speech
variation of a given individual. Some of this variation is intentional and control-
lable by the speaker (e.g. whispering to enable private communication) while
others are either automatic (e.g. Lombard reflex) or only weakly controllable
by the speaker (e.g. accent of one’s mother tongue) [7]. Depending on whether
the focus is on speech science or speech technology, these variations are either
the main object of interest or an unwanted nuisance. For automatic speaker
verification (ASV), speech variation cause problems as it lowers even the state-
of-the-art ASV system’s accuracy [6]. Consequently, some speakers might try to



2 L. Tavi et al.

exploit this deficiency by deliberately varying their speech features, or disguising
their voices.

One highly common form of variation is caused by foreign accent, which yields
various phonetic changes in speech. Second language (L2) learners also tend to
use phonemic substitution rules of their first language (L1), leading to foreign-
accented speech that shares properties of both L1 and L2 [5]. Consequently,
characteristics of L2 speech can be imitated as a form of voice disguise [13].

Human speech is essentially multimodal – it can be analyzed and repre-
sented in terms of articulatory, acoustic and perceptual attributes. While re-
search in speech technology and acoustic phonetics has benefited from large
acoustic datasets available in many languages, acoustic–articulatory speech data
is much scarcer [4]. The study of speech production involves tracking the dis-
placement, timing, and coordination of articulators (such as the tongue, the jaw
and the lips) inside and outside of the vocal tract. Traditional imaging tech-
niques such as x-ray, ultrasound and magnetic resonance imagining have been
used to visualize articulators. These methods can be restrictive since speech is
characterized by fast, complex and small 3-dimensional movements of the artic-
ulators. Our focus, electromagnetic articulography (EMA), is a 3D measurement
technique designed to track and record articulatory movements during speech
production. EMA is an invasive method but it allows precise tracking of the po-
sition and orientation of miniaturized sensor coils attached to various places on
the articulators. An articulograph records articulator trajectories directly with-
out the need for additional image processing techniques. However, disadvantages
of EMA are rather heavy post-processing of raw data and time-consuming data
collection.

In this study, we recorded L1 and imitated L2 speech from Finnish and
Russian speakers using EMA and explored 1) articulatory differences between
L1 and imitated L2 speech and 2) the effect of imitated L2 accent on a modern
deep speaker embedding ASV. The latter was tested using an x-vector-based
ASV system. In former, we utilized functional data analysis (FDA), particularly
functional t-tests. Although there are existing EMA corpora in English (e.g.
MOCHA-TIMIT [24], mngu0 [19], USC-TIMIT [12]), Mandarin-accented English [8],
German [2] and Italian [4], the authors are unaware of previous EMA corpora
available for the combination of Finnish and Russian. To our knowledge, this
study is also the first data collection that addresses voice disguise through EMA
measurements.

2 Phonology of Finnish and Russian

Finnish and Russian have numerous differences in their phonological systems
[21], which can affect production and imitation of Russian and Finnish accents.
For instance, Finnish has eight vowels, which can occur short or long, while
Russian has six. Finnish has also 18 diphthongs that are absent in Russian.

Russian sibilants and affricates can be particularly problematic for Finns.
Additionally, in Russian most of the consonants can be palatalized in various
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positions. In palatalization, the place of articulation is higher and more an-
terior [10]. Palatalized consonants acquire a secondary place of articulation on
the palatal region of the mouth while preserving the primary constriction. Unlike
Finnish, Russian has phonological oppositions in palatalized and non-palatalized
consonants, where the usage of palatalization changes the meaning (e.g. мать,
‘mother’ and мат, ‘check mate’). However, most Finnish consonants can oc-
cur either short or long. Furthermore, typical structure of a Finnish syllable is
CV(C/V), but Russian syllables can contain one vowel and up to five consonants,
e.g. a word взгляд, ‘a look’.

Another essential difference between Finnish and Russian phonology is the
position of word stress. In Russian, word stress can occur in any syllable resulting
in stress-based minimal pairs, e.g. му’кa, ‘flour’ and ‘мукa, ‘torment’. In Finnish,
the first syllable of a word is always stressed.

3 EMA Data Collection

3.1 Corpus Design

We collected simultaneous recordings of read-aloud speech and articulatory move-
ments tracked by EMA (EMA Wave by Northern Digital) for Finnish and Rus-
sian. The collected speech included three different speaking styles from each
speaker: speech in native (L1) and non-native (L2) Finnish or Russian, and
while imitating Finnish or Russian foreign accent (IL2) in the L1. In the IL2,
participants were asked to imitate the foreign accent without further instructions
or practise. In this study, we focused on the differences between the L1 and the
IL2.

Overall, we collected data from six speakers including one Finnish female, one
Finnish male, one Russian female, and three Russian male speakers. To have a
balanced set of native languages and sexes for this pilot study, we focused on
four speakers summarized in Table 1. Even though four participants can be
considered as a limited number of speakers, EMA studies commonly have few
participants: for example, [4], [12], [19] and [24] collected articulatory data from
four or less speakers. Yet, we do not claim generality of the presented findings
beyond the collected material — rather, the point is to demonstrate specific
elicited speech variations in terms of articulatory changes, and to address the
potential ramification of such changes on ASV performance.

To this end, read-aloud speech is elicited by Finnish and Russian versions of
Aesop’s Fable ’The north wind and the sun’. Additionally, we collected prompt
sentences (ca 70 sentences in both languages) involving most frequent vowels,
diphthongs, and consonants in different segmental and prosodic contexts, and
text material contained spontaneous speech, elicited by a story telling task based
on a cartoon. The prompted sentences and spontaneous speech based on a car-
toon were excluded from analyses, but the prompted sentences were included in
ASV evaluation (see 4.2).
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Table 1. Speaker information. L2 and IL2 (i.e. "imitated L2") levels are self-evaluated
by each speaker using categories of low–middle–high and 1–5 scale, respectively. For
the IL2 level, the higher the number, the better the imitation.

speaker sex age L1 L2 L2 level IL2 level
FIN_M_001 male 28 Finnish Russian high 5
FIN_F_001 female 22 Finnish Russian high 2
RUS_M_003 male 30 Russian Finnish middle 3
RUS_F_001 female 18 Russian Finnish middle 3

3.2 Recording Procedure

Recording setup included AKG C444 close-talking microphone (headset), the
EMA system and a Windows desktop computer running the EMA recording
software. Sensor positions are presented in Table 2.

Table 2. Sensor positions. Left and right are in relation to the experimenter.

sensor number position
10–12 biteplate (in a triangular shape)

9 nose
7 and 8 left and right mastoid

6 jaw (behind the lower lip, on the gum)
3 and 5 left and right lateral

4 laminal
1 and 2 tongue dorsum and anteo-dorsum

Articulatory movements and the audio signal were recorded simultaneously
at sampling frequencies of 200 Hz and 22.05 kHz, respectively. The recording
procedure included the following steps: 1) gluing reference sensors 9,8 and 7, 2)
a bite-plate recording, 3) gluing sensors 1-6, 4) doing a palate trace recording,
where participant produced syllables ta, ti, tu, ka, ki and ku, and 5) performing
a rehearsal run and 6) finally recording itself. The prompt items were displayed
on sheets of paper. Fig. 1 shows the EMA system and sensors 1–5 glued on the
tongue.

Since EMA recordings involve physically attaching sensors on participants,
our study underwent detailed ethical and safety evaluation by the Ethics Com-
mittee of the University of Eastern Finland. In January 2020, the Committee
gave a supporting statement for the proposed research.
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Fig. 1. Example of attached sensors on the tongue.

4 Methods

4.1 Functional Data Analysis

FDA involves a set of statistical methods, which are extended from their tradi-
tional counterparts to function of time [18]. First step in FDA is to transform
discrete data points, such as EMA sensor movements, to continuous curves using
basis functions. We used B-splines, a common choice with non-periodic signals.
This step also smooths data trajectories, which helps to avoid overfitting [20].

The occurrence of palatalization, which requires tongue dorsum raising and
fronting, is one of the major differences between Finnish and Russian accents (see
Section 2). Therefore, we focused on sagittal plane of tongue dorsum (TD) sensor
which tracks down–up and front–back movement of TD. TD sensor curves were
constructed from each word of Finnish and Russian versions of ’The north wind
and the sun’. However, words that contained less than 40 measured samples were
excluded. This resulted in a total of 531 curves for both the sensor directions.

The second step in FDA is to perform statistical analysis on continuous
curves. For comparing the mean TD sensor curves between the L1 and the IL2,
we used functional t-tests, extensions of classical t-tests, where the t-statistic is
defined as

T (t) =
|x1(t)− x2(t)|√

1
n1

Var[x1(t)] +
1
n2

Var[x2(t)]
. (1)

In Equation 1, x̄ s are the curve means and Var(x s) are the curve variances for
the L1 and the IL2. In functional t-tests, the maximum value of T(t) is used as a
test statistic, which critical value is found using permutation test. The labels of
the curves are randomly shuffled and the maximum value of T(t) is recalculated
with new labels. As a result, a null distribution is constructed. In this study,
FDAs were carried out using R [16] package fda [17]. WebMAUS [9] and Praat [3]
were used to time-align the word segments. Following list will summarize the
FDA procedure used in this study:
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1. First, TD sensor trajectories were recorded from four participants, who read
’The north wind and the sun’ once with their native language and once while
imitating a foreign accent.

2. Then, the sensor trajectories were segmented into individual word trajecto-
ries using word-level annotations and converted to smoothed functions (i.e.
curves) using B-splines.

3. Finally, the means of the word curves of the two speaking styles were com-
pared using functional t-tests; four functional t-tests were performed sepa-
rately on each participants’ speaking styles.

4.2 Automatic Speaker Verification

We considered the effects of accent imitation in an ASV experiment. The L1 read
speech from the “The north wind and the sun” was used to train the speaker
model (enrollment). In the evaluation phase, we considered gender-dependent
trials, same speaker’s (target) trials correspond to the speaker’s audio samples
from the prompted sentences, and for different speaker’s (nontarget) trials the
prompted sentences read by the other speaker. The test audio samples average
duration is 3.5 sec. The trials with L1 are considered as the baseline case, and
the effect of including IL2 trials as the disguise case. The number of trials is
shown in Table 3.

Table 3. The number of ASV trials per speaking style.

speaking style sex target non-target
L1 male 294 294
IL2 male 302 302
L1 female 296 296
IL2 female 296 296

In the experiments, we used an x-vector based ASV system [23]. The sys-
tem is based on a speaker-discriminative training using deep neural network
architecture [22]. The ASV system correspond to the implementation in Kaldi-
toolkit [14] with the pre-trained model recipe [1] from augmented VoxCeleb 1
and 2 data [11]. The speech samples were turned from stereo to mono samples by
selecting the left channel, and then downsampled to 16 kHz. The feature extrac-
tion configuration consists of 23-dimensional Mel-frequency cepstral coefficients
(MFCCs) extracted from 25 ms long frames every 10 ms. A cepstral mean sub-
traction was applied over a 3-second sliding window and energy-based speech
activity detection was used to filter out the non-speech frames. A probabilistic
linear discriminant analysis (PLDA) [15] was used for scoring the extracted 512-
dimensional x-vectors representation of the trial’s samples. The x-vectors were
centred, whitened, and unit length normalized.



Articulation During Voice Disguise: a Pilot Study 7

5 Results

5.1 Functional T-tests

Functional t-tests were applied to check for significant differences between the
mean values of the TD sensor curves in the L1 and the IL2. Although the curves
contained variation caused by producing different words, the same speech ma-
terial (i.e. ’The north wind and the sun’) was used in comparison of the L1 and
the IL2. Consequently, the mean word curves of each speaker’s speaking styles
show average TD movements revealing plausible articulatory changes related to
the IL2.
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Fig. 2. FIN_F_001’s mean TD movements in the IL2 and the L1 (left panels) and
functional t-tests (right panels). The panels on the left show the down–up (above) and
the front–back (below) movements.

Figures 2–5 show the mean curves in the L1 and the IL2 and the results of
the functional t-tests for all four speakers. Comparing T-statistic to conservative
reference line, maximum critical value, no statistically significant differences be-
tween the TD positions in the L1 and the IL2 were found for female speakers (see
Figs. 2 and 4). However, male speakers’ front–back TD curves differed statisti-
cally significantly between the speaking styles. These differences are at strongest
approximately on the left and on the right side of the curve, while in the middle
they are at weakest. This indicates that especially the beginning and the ending
of the words are pronounced differently, i.e. the position of TD in the IL2 is more
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Fig. 3. FIN_M_001’s mean TD movements in the IL2 and the L1 (left panels) and
functional t-tests (right panels). The panels on the left show the down–up (above) and
the front–back (below) movements.
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Fig. 4. RUS_F_001’s mean TD movements in the IL2 and the L1 (left panels) and
functional t-tests (right panels). The panels on the left show the down–up (above) and
the front–back (below) movements.



Articulation During Voice Disguise: a Pilot Study 9

0 10 20 30 40
−

16
−

14
−

12
−

10

norm. time

Z
−

ax
is

 (
do

w
n—

up
)

IL2
L1

0 10 20 30 40

0
2

4
6

args

t−
st

at
is

tic

Observed Statistic
pointwise 0.05 critical value
maximum 0.05 critical value

0 10 20 30 40

−
14

−
12

−
10

−
8

norm. time

X
−

ax
is

 (
fr

on
t—

ba
ck

) IL2
L1

0 10 20 30 40
0

2
4

6

args

t−
st

at
is

tic

Observed Statistic
pointwise 0.05 critical value
maximum 0.05 critical value

Fig. 5. RUS_M_003’s mean TD movements in the IL2 and the L1 (left panels) and
functional t-tests (right panels). The panels on the left show the down–up (above) and
the front–back (below) movements.

anterior compared to the TD position in the L1. The down–up sensor movements
showed no differences expect briefly at the middle of FIN_M_001’s mean curves.
Compared to other speakers, FIN_M_001’s TD positions between the L1 and
the IL2 differed the most, which most likely related to his self-evaluated imita-
tion performance (i.e. 5 out of 5; see Table 1), which was the highest number of
all four speakers.

5.2 Speaker Verification Results

We tested whether the articulatory differences found between the L1 and the
IL2 (see Section 5.1) relate to the x-vector system (see Section 4.2) performance.
Table 4 shows the effect of the IL2 on the ASV system as percentage of equal
error rates (EERs). The EER is an error rate, which equates false acceptance
rate and false rejection rate by adjusting a detection threshold. The higher the
EER value, the lower the accuracy of the system.

Female speakers’ IL2 had no effect on ASV accuracy since the EERs (%)
were the same (0.34) for the L1 and the IL2. On the contrary, male speakers’
IL2 caused a strong negative effect on ASV accuracy, increasing the EER (%)
from 3.06 to 11.59. The same conclusions can be drawn from Fig. 6, where
density distributions of genuine trials ASV scores for each speaker are presented.
Because male speakers’ IL2 yields lower scores compared to their L1 especially
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Table 4. Gender-dependent equal error rates for the L1 and the IL2.

sex speakers L1–EER(%)) IL2–EER(%)
male FIN_M_001 & RUS_M_03 3.06 11.59
female FIN_F_001 & RUS_F_01 0.34 0.34
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Fig. 6. Density distributions of ASV target scores for each speaker. The lower the ASV
scores, the less confident the system is that the speakers are the same.

for FIN_M_001, the results from the ASV tests support the articulatory data
indicating that tongue fronting was used as an effective voice disguise technique.

6 Conclusions

In this study, we investigated articulation of Finnish and Russian speakers during
imitation of a foreign accent. The imitation of a foreign accent served as a method
of voice disguise. We recorded tongue movements during regular and disguised
speech using EMA and performed functional t-tests on the trajectories of TD
movements. Additionally, we recorded the audio signal and tested the effect of
voice disguise on an x-vector based ASV system. Using these two approaches, it
was possible to investigate actual articulatory changes during different speaking
styles and the effectiveness of the changes against an x-vector-based ASV system.

Functional t-tests revealed significant differences in the front–back TD move-
ments between male speakers’ L1 and IL2; for female speakers, there were no
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significant differences in the TD positions. Although male speakers had different
L2 and IL2, they both fronted their tongues during voice disguise. Fronting the
tongue can occur during palatalization, which can be an expected when imitating
(palatalized) Russian accent as a Finnish L1 speaker. However, also the Russian
speaker’s average TD position was more at front while imitating Finnish accent.
In this case, the type of imitated Finnish feature was less clear.

The articulatory differences were also evaluated in the respect of ASV per-
formance. The EERs(%), which were calculated using the x-vector-based ASV-
system, supported the articulatory findings: while female speakers’ IL2 had no
effect on ASV performance, male speakers’ IL2 increased the EERs(%) from
3.06 to 11.59. The declined ASV performance can be possibly explained by male
speakers’ tongue fronting.

This pilot study has shown that articulatory movements during voice disguise
can be revealed using EMA measurements and functional data analysis. When
the Covid-19 restrictions ease, we aim to continue collecting EMA data and
reveal more articulatory mechanisms of voice disguise.
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