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Abstract. Spectral subband centroids (SSC) have been used as an addi-
tional feature to cepstral coefficients in speech and speaker recognition.
SSCs are computed as the centroid frequencies of subbands and they
capture the dominant frequencies of the short-term spectrum. In the
baseline SSC method, the subband filters are pre-specified. To allow bet-
ter adaptation to formant movements and other dynamic phenomena,
we propose to adapt the subband filter boundaries on a frame-by-frame
basis using a globally optimal scalar quantization scheme. The method
has only one control parameter, the number of subbands. Speaker veri-
fication results on the NIST 2001 task indicate that the selection of the
parameter is not critical and that the method does not require additional
feature normalization.

1 Introduction

The so-called mel-frequency cepstral coefficients [1] (MFCC) have proven to be
efficient feature set for speaker recognition. A known problem of cepstral features,
however, is noise sensitivity. For instance, convolutive noise shifts the mean value
of the cepstral distribution whereas additive noise tends to modify the variances
[2]. To compensate for the feature mismatch between training and verification
utterances, normalizations in feature, model and score domains are commonly
used [3].

Spectral subband centroids [4; 5; 6; 7] (SSC) are an alternative to cepstral
coefficients. SSCs are computed as the centroid frequencies of subband spectra
and they give the locations of the local maxima of the power spectrum. SSCs
have been used for speech recognition [4; 5], speaker recognition [7] and audio
fingerprinting [6]. Recognition accuracy of SSCs is lower in noise-free condi-
tions compared with MFCCs. However, SSCs can outperform MFCCs in noisy
conditions and they can be combined with MFCCs to provide complementary
information.
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Fig. 1. Computation of the SSC and the proposed OSQ-SSC features. In SSC, the
subband boundaries are fixed and in OSQ-SSC, the boundaries are re-calculated for
every frame by partitioning the spectrum with optimal scalar quantization.

The key component of the SSC method is the filterbank. Design issues include
the number of subbands, the cutoff frequencies of the subband filters, the shape
of the subband filters, overlapping of the subband filters, compression of the
spectral dynamic range and so on [5]. The parameters of the filterbank can be
optimized experimentally for a given task and operating conditions.

In this study, our aim is to simplify the parameter setting of the SSC method
by adding some self-adaptivity to the filterbank. In particular, we optimize the
subband filter cutoff frequencies on a frame-by-frame basis to allow better adap-
tation to formant movements and other dynamic phenomena. We consider the
subbands as partitions or quantization cells of a scalar quantizer. Each subband
centroid is viewed as the representative value of that cell and the problem can be
defined as joint optimization of the partitions and the centroids. The difference
between the conventional SSC method and the proposed method is illustrated
in Fig. 1.

2 Spectral Subband Centroids

In the following, we denote the FFT magnitude spectrum of a frame by S[k],
where k = 1, . . . , N denotes the discrete frequency index. The index k = N
corresponds to the half sample rate fs/2. The mth subband centroid is computed
as follows [5]:

cm =

∑qh(m)
k=ql(m) kWm[k]Sγ [k]

∑qh(m)
k=ql(m) Wm[k]Sγ [k]

, (1)
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where Wm[k] are the mth bandpass filter coefficients, ql(m), qh(m) ∈ [1, N ] are
its lower and higher cutoff frequencies and γ is a dynamic range parameter.

The shape of the subband filter introduces bias to the centroids. For instance,
the triangular shaped filters used in MFCC computation [1] shift the centroid
towards the mid part of the subband. To avoid such bias, we use a uniform filter
in (1): Wm[k] = 1 for ql(m) ≤ k ≤ qh(m). Furthermore, we set γ = 1 in this
study. With these modifications, (1) simplifies to

cm =

∑qh(m)
k=ql(m) kS[k]

∑qh(m)
k=ql(m) S[k]

. (2)

3 Adapting the Subband Boundaries

To allow better adaptation of the subband centroids to formant movements and
other dynamic phenomena, we optimize the filter cutoff frequencies on a frame-
by-frame basis. We use scalar quantization as a tool to partition the magnitude
spectrum into K non-overlapping quantization cells. The subband cutoff frequen-
cies, therefore, are given by the partition boundaries of the scalar quantizer.

The expected value of the squared distortion for the mth cell is defined as

e2
m =

∑

q(m−1)<k≤q(m)

pk(k − cm)2, (3)

where pk = S[k]/
∑N

n=1 S[n] is the normalized FFT magnitude, cm is the sub-
band centroid as defined in (2) and q(m− 1), q(m) are the subband boundaries:
0 = q(0) < q(1) < q(2) < · · · < q(K) = N . The scalar quantizer design can then
be defined as the minimization of the total error:

min
(q(0),q(1),...,q(K))

K∑
m=1

e2
m. (4)

The number of subbands (K) is considered as a control parameter that needs to
be optimized experimentally for a given application.

We have implemented a globally optimal scalar quantizer which uses ma-
trix searching technique to solve (4) [8]. The time complexity of the method is
O(KN) and our implementation runs 18 times faster than realtime on a 3 GHz
Pentium processor for (K, N) = (8, 128). It is interesting to note that optimal
algorithms for vector quantization [9] require exponential time but globally op-
timal scalar quantizer can be designed in polynomial time. This theoretically
interesting property, in fact, was one of our initial motivations to apply the
method to feature extraction. We term the proposed method as optimal scalar
quantization based spectral subband centroids (OSQ-SSC).

Figure 2 shows the centroids from both the SSC with mel filterbank and the
OSQ-SSC method. The spectrogram is also shown as a reference. It can be seen
that the OSQ-SSC features are better adapted to local dynamic changes of the
spectrum compared with SSC. In particular, the centroids from OSQ-SSC tend
to follow the F0 harmonics and the formant frequencies during voiced regions.
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Fig. 2. Illustrations of conventional spectral subband centroids with fixed filterbank
(SSC) and the proposed method with adapted subband boundaries (OSQ-SSC).

4 Speaker Verification Setup

We use the NIST 2001 speaker recognition evaluation corpus, a conversational
cellular phone corpus, in our experiments3. The 1-speaker detection task as de-
fined by NIST consists of 174 target speakers and 22418 verification trials with
a genuine/impostor ratio of 1:10. The amount of training data per speaker is
about 2 minutes and the duration of the test segments varies from a few seconds
up to one minute.

3 http://www.nist.gov/speech/tests/spk/
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We use the state-of-the-art Gaussian mixture model - universal background
model (GMM-UBM) with diagonal covariance matrices as the recognizer [10].
The background model is trained using the development set of the NIST 2001
corpus with the expectation-maximization (EM) algorithm. Target speaker mod-
els are derived with maximum a posteriori (MAP) adaptation of the mean vec-
tors and the verification score is computed as the average log-likelihood ratio.
The GMMs have 256 Gaussian components for all the features and parameters
tested.

We include the standard MFCC front-end as a reference, including 12 MFCC
with their delta and double-delta coefficients. RASTA filtering, energy-based
voice activity detection (VAD) and mean/variance normalization are applied to
enhance robustness. The same VAD is used with SSC and OSQ-SSC features.

5 Speaker Verification Results

We first study the effects of the number of subbands and feature normalization.
Feature normalization is performed after voice activity detection to give zero
mean and/or unit variance features. The equal error rates (EER) for the NIST
2001 evaluation set are shown in Table 1. The best result is obtained without any
normalization, indicating that OSQ-SSC is a robust feature in itself (In contrast,
both the mean and variance normalization were helpful for MFCC). Optimal
number of subbands is K = 8. For too few subbands, speaker discrimination is
expected to be poor. For too many subbands, on the other hand, the spacing
of the centroids becomes small. This makes the different frames similar to each
other, removing some useful variability.

Table 1. Effects of the number subbands and normalization to accuracy of the OSQ-
SSC feature (EER %)

Subbands Feature normalization

None Mean Var Mean+Var

4 19.4 27.5 31.7 27.5
8 18.0 24.8 29.8 24.5
16 19.1 23.1 27.5 23.3
32 19.8 24.6 28.4 24.2

We next compare OSQ-SSC, their delta coefficients and the concatenation of
the static and delta coefficients at the frame level. Based on Table 1, we turn off
the normalizations. The results are given in Table 2. The delta coefficients yield
higher error rates compared with the static coefficients which is expected. We
did, however, expect some improvement when combining static and delta features
which is not the case. The error rates of the delta coefficient are relatively high
compared with the static coefficient which partly explains why the fusion is not
successful. The simple differentiator method for computing deltas may not be
robust enough and other methods like linear regression should be considered.
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Table 2. Comparison of static and delta features of OSQ-SSC (EER %).

Subbands Feature set

OSQ-SSC ∆OSQ-SSC OSQ-SSC + ∆

4 19.4 26.9 20.3
8 18.0 22.2 19.7
16 19.1 23.4 20.3
32 19.8 24.0 21.3

Table 3. Comparison of MFCC, OSQ-SSC and ∆OSQ-SSC under additive white noise
condition (EER %).

Noise Feature set
weight (α) MFCC OSQ-SSC ∆OSQ-SSC

0 8.3 18.0 22.2
0.3 15.7 19.9 26.6
0.6 18.4 22.6 29.2
0.9 25.6 28.7 47.9

We next study noise robustness of the OSQ-SSC feature. We contaminated
all the training and testing files with additive white noise with three different
noise levels. The noise was added with linear combination of the speech and noise
as xnoisy[n] = αz[n] + (1 − α)xorig[n], where xnoisy[n], z[n] and xorig[n] denote
the noisy speech, noise and the original speech signals, respectively. The results
for K = 8 subbands and their delta coefficients are given in Table 3. The MFCC
result is shown as a reference.

All the three features degrade when noise level is increased, which is expected.
The MFCC feature gives the best result in all cases and ∆OSQ-SSC gives the
worst result in all conditions. However, relative degradation of OSQ-SSC is much
smaller compared with MFCC. For instance, the relative increase in EER from
α = 0 to α = 0.3 is 89 % for MFCC, whereas for OSQ-SSC it is only 11 %. This
is interesting since the MFCC features have 36 dimensions, including deltas and
double deltas, mean and variance normalization and RASTA filtering. In turn,
OSQ-SSC has only 8 dimensions and is without any normalizations. We interpret
the result so that the intrinsic resistance to additive noise of OSQ-SSC is better
than that of MFCC. On the other hand, speaker discrimination of MFCC is
clearly higher.

Finally, we compare OSQ-SSC with SSC. We consider the following three
filterbank configurations for the SSC feature:

– SSC(1) : linear frequency scale, non-overlapping rectangular filters
– SSC(2) : mel frequency scale, non-overlapping rectangular filters
– SSC(3) : mel frequency scale, overlapping triangular filters

According to [7], mean subtraction helps SSC. We confirmed this experimentally
and we apply it in all the three cases. The results are shown in Table 4.
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Table 4. Comparison SSC and OSQ-SSC (EER %).

Subbands Feature set
OSQ-SSC SSC(1) SSC(2) SSC(3)

4 19.4 24.8 23.9 24.8
8 18.0 19.7 21.9 15.4
16 19.1 21.0 25.3 17.5
32 19.8 24.2 26.3 22.5

The performance of the SSC method strongly depends on the parameter set-
ting. The best SSC result (EER=15.4 %) is obtained by using eight overlapping
filters on the mel-scale. Overall, SSC(3) gives the best result among the three
filterbank configurations, followed by SSC(1) and SSC(2), respectively. Overlap-
ping filters are useful for SSC.

Comparing OSQ-SSC with SSC, OSQ-SSC is less sensitive to parameter
setup. The method has only one control parameter and the results incidate
that the method is not sensitive to it. For SSC(3), the error rate varies between
15.4% - 24.8 % whereas for OSQ-SSC, the range is 18.0 % - 19.8 %. The OSQ-SSC
method has a built-in “self-optimizing” property of the filterbank. The success
of the SSC method, on the other hand, depends on the correct setting of the
filterbank parameters.

6 Discussion

The different settings for SSC presented in Table 4 indicate that SSC gives the
best results when the filterbank resembles the one used with MFCC features
(mel-frequency scale with triangular overlapping filters). For OSQ-SSC, this is
not the case by definition (filters are rectangular and non-overlapping).

The advantage of the OSQ-SSC feature over the baseline SSC feature, in
theory, is that the subband boundaries are adapted for each frame. The partitions
of the scalar quantizer, however, are themselves non-overlapping. This forces
the centroid frequencies to be monotonically increasing, thereby limiting their
dynamic range. The results of Table 4, on the other hand, indicate the usefulness
of overlapping filters. A possible future direction would be studying optimization
of the filterbank parameters using a probabilistic clustering model such as the
GMM.

Does the centroid information provide complementary information that is not
captured by the MFCCs? Overall, the accuracies of both the SSC- and OSQ-
SSC-based recognizers are significantly lower compared with the MFCC-based
features which is disappointing. We did several pairwise fusion experiments,
combining both the SSC and OSQ-SSC classifier output scores with the MFCC
scores by weighted sum. None of these lead to improvement even when the fusion
weights were optimized on the evaluation set. This suggests that the cepstrum-
and centroid-based classifiers are redundant. The centroid information seems to
be already absorbed into the MFCCs.
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In [7] SSCs yielded comparable results to MFCCs in noise-free condition.
Moreover, SSCs outperformed MFCCs under additive noise conditions with low
signal-to-noise ratios. We did not observe similar pattern; MFCCs outperformed
both the SSCs and OSQ-SSCs with a wide margin in all cases. One source for this
disparity may arise from implemetation differences of the feature extraction, in
particular, the channel compensation methods applied. In [7], mean subtraction
was used with the SSC features, but no channel compensation was mentioned in
conjunction with the MFCC features. Our MFCC front-end, on the other hand,
includes RASTA filtering and utterance level mean/variance normalization to
increase robustness. Our MFCC front-end is comparatively more robust and the
centroid information does not seem to yield additional gain in this case.

7 Conclusions and Future Work

We have studied subband centroid based features for the speaker verification
task. In particular, we simplified the spectral subband centroid (SSC) method
by adding self-adaptivity to the filterbank. The proposed feature (OSQ-SSC)
has one control parameter and the experiments indicated that the method is
not sensitive to it. It was also found that the proposed feature does not require
normalization like MFCC and SSC. This is beneficial for real-time applications.

Our experiments indicate that the centroid-based features have limited use
in speaker verification if a robust MFCC front-end is used. The theoretical ad-
vantage of SSCs over MFCCs would be that they have a direct physical inter-
pretation. Therefore, SSCs and/or OSQ-SSCs might be used as alternatives to
traditional LPC-based formant estimation in forensic speaker recognition [11].
Another potential application would be speech recognition. The subband cen-
troids are related to formant frequencies, and they depend, in addition to the
speaker, on the text spoken. Recently SSC-based features have shown promise
as an additional feature in noisy speech recognition tasks [12; 4].

From the theoretical side, relation of the OSQ-SSC centroid frequencies to
poles of the LPC model would be an interesting future direction. The cepstral
coefficients derived from the LPC model [13] have been successful in speaker
verification in addition to MFCCs. The centroids given by OSQ-SSC might be
an alternative, numerically stable, “pole” presentation of speech signals.
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