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ABSTRACT

A new filter bank approach for speaker recognition front-end
is proposed. The conventional mel-scaled filter bank is
replaced with a speaker-discriminative filter bank. Filter bank
is selected from a library in adaptive basis, based on the broad
phoneme class of the input frame. Each phoneme class is
associated with its own filter bank. Each filter bank is
designed in a way that emphasizes discriminative subbands
that are characteristic for that phoneme. Experiments on
TIMIT corpus show that the proposed method outperforms
traditional MFCC features.

1. INTRODUCTION

Several studies have indicated that different phonemes have
unequal discrimination powers between speakers [3, 10, 12].
That is, the inter-speaker variation of certain phonemes are
different from other phonemes. For instance, in [3] vowels and
nasals were found to be most discriminating phoneme groups.

Discrimination analysis of speech sounds can be, however,
carried out from a non-phonetic viewpoint also. In several
engineering-oriented studies, evidence of the different
discrimination properties of certain frequency bands have been
discovered [6, 14, 15]. For example, in [6] the spectra of
speech were divided into upper and lower frequency regions
with the cutoff frequency being the varied parameter. It was
found, among other observations, that regions 0-4 kHz and 4-
10 kHz are equally important for speaker recognition.

In [11] a more detailed analysis of frequency band
discrimination was performed. Spectral analysis was carried
out with a filter bank with triangular overlapping filters.
Discrimination powers of these subbands were then evaluated
with three different criteria, the F-ratio [1] being one criterion.
A non-linear frequency warping based on the discrimination
values was then proposed: more filters with narrower
bandwidths were placed in the discriminative regions, while
less filters with broader bandwidth were placed in the non-
discriminative regions. The proposed system outperformed
conventional mel-frequency warped filter bank.

Although the phonetic studies indicate differences in
phoneme-level discrimination powers, no segmentation is
usually done prior to discrimination analysis with the
engineering-oriented approaches. The problem is, however,

that when all different phoneme classes’  data are pooled
together, some discriminative frequency bands that are
characteristic for a certain phoneme may be averaged away.
The frequency of occurence of phonemes reflects directly to
the discrimination values. As a consequence, if the corpus
used in experiments contains a discriminating phoneme which
is infrequent, its significance decreases.

In this work, we introduce an approach which falls in the
middle ground between the ”phonetical” - and ”engineering”-
oriented discrimination analyses.

Idea of the proposed front-end is illustrated in Fig. 1. Each
speech frame is processed with a filter bank which is selected
from a library of filter banks according to the phoneme class
of the frame. Thus, each phoneme class is filtered in a
customed way instead of a global filter bank as in [11].

Figure 1: The idea of adaptive filter bank

The basic idea of the proposed method is simple. However,
there arises immediately the following design issues:
• Which parametrization to choose in the determination of

the phoneme class,
• How to generate and represent the phoneme templates,
• What is “optimal number”  of the phoneme templates,
• How to compute discriminative values for subbands in

phoneme-depended filter banks,
• How to exploit the filter bank in the feature extraction.

These are the substantial topics of this paper.



2. THE PHONEME CLASSIFIER

2.1 Representation of the phoneme templates

In order to be of general use, the phoneme template model
must be speaker (or even language) independent. That is, the
same model for all speakers can be used to find the phoneme
classes. We denote this model as the universal phoneme
model (UPM). Due to the requirement of speaker-
independence, the UPM must be designed such that it
accounts the differences between speakers and other sources
of variability.

Note in Fig. 1 the block labeled “speaker-normalizing spectral
parametrization” . Speaker normalization means that we wish
to de-emphasize speaker-depended features. We use the
following parametrization which is general in speech
recognition [12]:

• High emphasis with H(z)=1 - 0.97z-1,
• Frame length 30 ms, Hamming-windowed and shifted

by 20 ms (33 % overlap),
• 12 lowest mel-frequency coefficients (MFCC), 20

triangular filters in the bank, coefficient c0 discarded,
• Cepstral coefficients weighted by raised sine function.

2.2 Generation of the templates

We use clustering techniques [4, 5, 7] for generating the
UPM from MFCC vectors. We use 100 speakers from the
TIMIT corpus [9] as the training set. For each speaker, we
take five speech files in the training data. These are
downsampled to 8 kHz and processed with the
parametrization given above. Final training set consists of
approximately 100,000 vectors.

From the training set, a codebook is generated by the RLS
algorithm [4]. The following different codebook sizes K are
used: K=4, 8, 16, 32, 64.

The worth noticing point here is that we use unsupervised
learning in the UPM generation; i.e. we do not use any
explicit segmentation of speech or labeling of phonemes,
since we are not interested in decoding the linguistic message
of the input signal.

2.3 Classification of a frame

When applying the UPM in the phoneme classification, the
class is simply determined by the nearest neighbor rule.
Frame is first parametrized in the way described in Section
2.1, resulting in a single MFCC vector x. The label of the
phonetic class is then given by
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where d is the squared Euclidean distortion measure. The
index i* is sent to the filter bank library to select the
associated filter bank (see Fig. 1).

3. DESIGNING THE LIBRARY OF
DISCRIMINATIVE FILTER BANKS

3.1 Subband processing

We want to assign discriminative values for each subband per
each phoneme class present in the UPM. To get started, we
must specify what we mean here by a subband.

As in general speech processing front-ends [2] we use
overlapping triangular filters to cover the entire frequency
range (see Fig. 2). Filters are uniformly spaced and overlap by
50%. In this phase we wish to avoid using any nonlinear
frequency warping, such as mel or Bark-scales, in order to be
sure that each subband has equal contribution in the
discrimination analysis.

Figure 2: Uniform triangular filter bank

For a Hamming-windowed frame s, an N-point FFT S[k] is
first computed. The magnitude spectrum in dB-scale is then
computed as 10log10|S[k]|. The dB magnitude spectrum is
weighted by the triangular filterbank of M filters, thus
implying M subband energies Ej, j=1,...,M. These are
collected in a M-dimensional vector E = (E1,...,EM)T.
Hereafter, by “ jth subband” we simply refer to Ej. We fix the
number of filters to M=40. Thus, for the speech with sampling
rate Fs = 8 kHz, the bandwidth of each filter is 100 Hz.

3.2 Assigning the discrimination values to subbands

We use the F ratio [1] for assigning a discrimination value for
the jth subband of ith phoneme:
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If the inter-speaker variability is large while inter-speaker
variability being low, F ratio is large.

Since we wish to assign the F ratios for each phoneme-
subband pair, we must first segment the training data into
phonetic classes using the UPM described in Section 2. Then,
for each “phonetic class pool”  (i) we can compute the
discrimination values for subbands (j) using F-ratio (2). The
segmentation of the data into the pools is outlined in the
following pseudocode.  



Inputs:
• Frames of speech { sk,t} , where k is the speaker number

and t is the frame number,
• The UPM of K phoneme templates, UPM={ p1,...,pK} ,
• The number of subbands, M
Outputs:
• K pools of subband vectors

Procedure:
FOR EACH speaker k DO

• Get next frame s = sk,t ;
• Compute the MFCC vector x for s (as described in

Section 2.1) ;
• Compute the subband vector E for s (as described in

Section 3.1) ;
• Find nearest phoneme i* for x from UPM by (1) ;
• Add the vector E to the pool of  phoneme i* ;

ENDFOR

Figure 3: Segmentation of the training data for
discrimination analysis

To put it in words, each frame is classified by its phonetic
content, the UPM code vectors { pi}  serving as the phoneme
class representatives. The subband vector of the frame is
assigned to the best matching phoneme template.

After the pooling, F ratios of each pool are computed. Indeed,
different phonemes have different F curves as seen in Fig. 4,
where we have used an UPM of size K=8.

A few prelimary observations can be made from the F curves.
Firstly, nearly all phonemes have a peak in discrimination
values approximately in the subbands 2-4, which correspond
to frequency range 50-250 Hz. Secondly, one may see some
resemblance of the F ratio shapes with the envelopes of
smoothed LPC spectra, thus indicating the importance of
formant structure and overall spectral envelope in speaker
recognition.

Figure 3: F ratios of subbands for different phonemes
(UPM size K=8)

We run also an experiment in which, instead of pre-
smoothing the spectra with a filter bank, we used all the
magnitude values from FFT analysis as such and computed
the F ratios. We found soon out that the F curves obtained in
this way were very noisy; further, the computational load for
this method is huge compared pre-smoothing using the filter
bank. For these reasons, we end up using the filter bank.

3.3 Utilization of the filter bank in feature extraction

Once the F ratios are computed for each phoneme-subband
pair, it is straightforward to utilize them in the feature
extraction. The broad phoneme class i* is first found by (1).
This is followed by the subband analysis as described in
Section 3.1, leading to vector E. The components of E are
then weighted by the relative F ratio of the subband:
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An example of subband weighting is shown in Fig. 4. The
figures from top to down show the magnitude spectrum,
filtered magnitude spectrum, relative weights for each
subband, and the weighted filter outputs.

Figure 4 : An Example of subband weighting

Weighted filter outputs are then fed to discrete cosine
transform (DCT) for decorrelating the features. Only the
lowest L coefficients of DCT are retained, excluding the 0th
coefficient.

In summary, the processing steps are same to that of the
conventional MFCC analysis, except for that the mel-spaced
filter bank is replaced with the discriminative filter bank.
Hereafter, we abbreviate the features obtained in this way by
ADFB-cep (standing for Adaptive Discriminative Filter Bank
Cepstrum).



4. RESULTS

The overall process of evaluating the proposed approach
consists of the following steps:
• Create UPM as described in Section 2 (Using speaker set

SET 1),
• Use independent data for finding the F ratios as described

in Sections 3.1 and 3.2 (SET 2),
• Using third speaker set (SET 3), compute the ADFB-cep

features as described in Section 3.3. We choose the
number of filters to M=40 and number of coefficients to
L=20. SET 3 is further divided into training and
evaluation sets.

All the three sets are disjoint. In this way we ensure that
results will be not biased by the tuning to the training set; that
is, we wish to have a general front-end without the need to
construct the UPM and/or the filter design data each time the
database is switched.

Each of the three sets consist of 100 speakers. We use VQ
codebooks as speaker models [8, 13], each model having 64
code vectors and created using the RLS clustering method [4].
Average duration of the training speech data is 15 seconds.

Each test set X = { x1,...,xT}  is divided into overlapping
segments as shown in the following:

Average duration of the test segment is about 1 second. Each
of the segments is classified using the speaker models by the
minimum average quantization error rule [13]. We use the
percentage of correctly classified segments as the evaluation
criterion.. The results for different UPM sizes are shown in
Table 1.

Table 1: Evaluation results
UPM size ID rate (%)
4 69.37
8 74.85
16 67.071
32 58.49
64 55.73

For comparison, conventional 20 mel-cepstral coefficients
(MFCC) were computed with same frame rate and equal
parameters: number of mel-filters was 40 and the number of
coefficients was 20. The identification rate using MFCC was
61.96.

Based on these experiments, we make several observations.
Firstly, the optimum size of UPM is K=8. When the UPM size
is increased, results get poor. Also, the differences in
performance are quite large, which suggests that we should
use a linear scale instead of exponential when finding the
“optimum size” .

Secondly, and more interestingly, the proposed method
outperforms MFCC parameters, even if the UPM size is not
“optimal” . The overall identification rates are quite poor in all
cases, due to the very short test segment length.

5. CONCLUSIONS

A new feature set based on discriminative weighting of the
characteristic subbands for each “phoneme class”  was
proposed and evaluated experimentally. Prelimary results are
very encouraging since they outperform the popular MFCC
features. In future experiments, we plan to include cross-
language evaluation, careful optimization of the UPM, and
other discrimination criteria in addition to F ratio.
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