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Overview

® hardware view
o software view
o CUDA programming
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Hardware view

At the top-level, a PCle graphics card with a many-core
GPU and high-speed graphics “device” memory sits inside
a standard PC/server with one or two multicore CPUs:

DDR4 GDDR5

motherboard graphics card
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Hardware view

Currently, 3 generations of hardware cards in use:

# Kepler (compute capability 3.x):
s first released in 2012
s includes HPC cards with excellent double precision
s our practicals will use K40s and K80s

# Maxwell (compute capability 5.x):
s first released in 2014
s only gaming cards, not HPC, so poor DP

# Pascal (compute capabillity 6.x):
s first released in 2016

s Mmany gaming cards and a few HPC cards in Oxford
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Hardware view

The new Pascal generation has cards for both gaming/VR
and HPC

Consumer graphics cards (GeForce):

9

9
9
9

GTX 1060: 1280 cores, 6GB (£230)
TX 1070: 1920 cores, 8GB (£380)
TX 1080: 2560 cores, 8GB (£480)
TX 1080 Ti: 3584 cores, 11GB (£650)

OO

HPC (Tesla):

9

9

¥

2100 (PCle): 3584 cores, 12GB HBM2 (£5k)
2100 (PCle): 3584 cores, 16GB HBM2 (£6k)
2100 (NVlink): 3584 cores, 16GB HBM2 (£8k?)
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Hardware view

# building block is a “streaming multiprocessor” (SM):
s 128 cores (64 in P100) and 64k registers
96KB (64KB in P100) of shared memory

K

s 48KB (24KB in P100) L1 cache
s 8-16KB (?) cache for constants
9

up to 2K threads per SM
o different chips have different numbers of these SMs:

product SMs | bandwidth memory power
GTX 1060 10 | 192 GB/s 6 GB 120W
GTX 1070 16 | 256 GB/s 8 GB 150W
GTX 1080 | 20 | 320 GB/s 8 GB 180W
GTX Titan X | 28 | 480 GB/s 12 GB 250W
P100 56 | 720 GB/s | 16 GB HBM2 | 300W
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Hardware View

Pascal GPU
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Hardware view

There were multiple products in the Kepler generation

Consumer graphics cards (GeForce):
o GTX Titan Black: 2880 cores, 6GB
o GTX Titan Z: 2x2880 cores, 2x6GB

HPC cards (Tesla):

#» K20: 2496 cores, 5GB

o K40: 2880 cores, 12GB

o KB80: 2x2496 cores, 2x12GB
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Hardware view

# Dbuilding block is a “streaming multiprocessor” (SM):
s 192 cores and 64k registers
s 64KB of shared memory /L1 cache
s 8KB cache for constants
s 48KB texture cache for read-only arrays
s up to 2K threads per SM

# different chips have different numbers of these SMs:

product SMs | bandwidth | memory | power
GTX Titan Z | 2x15 | 2x336 GB/s | 2x6 GB | 375W
K40 15 288 GB/s 12GB | 245W
K80 2x14 | 2x240 GB/s | 2x12 GB | 300W
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Hardware View

Kepler GPU
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Multithreading

Key hardware feature is that the cores in a SM are SIMT
(Single Instruction Multiple Threads) cores:

# groups of 32 cores execute the same instructions
simultaneously, but with different data

similar to vector computing on CRAY supercomputers
32 threads all doing the same thing at the same time

o o

# natural for graphics processing and much scientific
computing

# SIMT is also a natural choice for many-core chips to
simplify each core
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Multithreading

Lots of active threads is the key to high performance:

# no “context switching”; each thread has its own
registers, which limits the number of active threads

# threads on each SM execute in groups of 32 called
“‘warps” — execution alternates between “active” warps,
with warps becoming temporarily “inactive” when
waiting for data
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Multithreading

# originally, each thread completed one operation before
the next started to avoid complexity of pipeline overlaps

-

—31]2]3[4]5— time

—_—
—1]2|3]4|5+—

—311]2[3]4|5—

however, NVIDIA have now relaxed this, so each thread
can have multiple independent instructions overlapping

# memory access from device memory has a delay of
200-400 cycles; with 40 active warps this is equivalent
to 5-10 operations, so enough to hide the latency?
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Software view

At the top level, we have a master process which runs on
the CPU and performs the following steps:

1. initialises card

2. allocates memory in host and on device
3. copies data from host to device memory
4

. launches multiple instances of execution “kernel” on
device

. copies data from device memory to host

o O

. repeats 3-5 as needed
/. de-allocates all memory and terminates
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Software view

At a lower level, within the GPU:
® each instance of the execution kernel executes on a SM

# if the number of instances exceeds the number of SMs,
then more than one will run at a time on each SM if
there are enough registers and shared memory, and the
others will wait in a queue and execute later

# all threads within one instance can access local shared
memory but can’'t see what the other instances are
doing (even if they are on the same SM)

# there are no guarantees on the order in which the
Instances execute
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CUDA

CUDA (Compute Unified Device Architecture) is NVIDIA’s
program development environment:

® based on C/C++ with some extensions

#® FORTRAN support provided by compiler from PG
(owned by NVIDIA) and also in IBM XL compiler

# |ots of example code and good documentation
— fairly short learning curve for those with experience of
OpenMP and MPI programming

# large user community on NVIDIA forums
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CUDA Components

Installing CUDA on a system, there are 3 components:

o driver
s low-level software that controls the graphics card

o toolkit
s nvcc CUDA compiler
s Nsight IDE plugin for Eclipse or Visual Studio
s profiling and debugging tools
s several libraries

o SDK
s lots of demonstration examples
s some error-checking utilities
s not officially supported by NVIDIA

o almost no documentation
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CUDA programming

Already explained that a CUDA program has two pieces:
® host code on the CPU which interfaces to the GPU
® kernel code which runs on the GPU

At the host level, there is a choice of 2 APIs
(Application Programming Interfaces):

# runtime
s simpler, more convenient

® driver

s much more verbose, more flexible (e.g. allows
run-time compilation), closer to OpenCL

We will only use the runtime API in this course, and that is

all I use in my own research.
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CUDA programming

At the host code level, there are library routines for:
# memory allocation on graphics card

# data transfer to/from device memory
» constants
s ordinary data

# error-checking
# timing

There is also a special syntax for launching multiple
instances of the kernel process on the GPU.
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CUDA programming

In its simplest form it looks like:

kernel_routine<<<gridDim, blockDim>>> (args);

#® gridDim is the number of instances of the kernel
(the “grid” size)

® blockDim is the number of threads within each
Instance
(the “block” size)

# args Is a limited number of arguments, usually mainly
pointers to arrays in graphics memory, and some
constants which get copied by value

The more general form allows gridbim and blockDim to
be 2D or 3D to simplify application programs
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CUDA programming

At the lower level, when one instance of the kernel is started
on a SM it is executed by a number of threads,
each of which knows about:

# some variables passed as arguments

pointers to arrays in device memory (also arguments)
global constants in device memory

shared memory and private registers/local variables

© o o o

some special variables:

s gridDim size (or dimensions) of grid of blocks
blockDim size (or dimensions) of each block
blockIdx index (or 2D/3D indices) of block
threadIdx index (or 2D/3D indices) of thread
warpSize always 32 so far, but could change

e o o @

Lecture 1 —p. 21



CUDA programming

1D grid with 4 blocks, each with 64 threads:

gridDim = 4
blockDim = 64
blockIdx ranges from 0 to 3

© o o o

threadIdx ranges from 0 to 63

lblockldx.x=1, threadIldx.x=44
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CUDA programming

The kernel code looks fairly normal once you get used to

two things:

# code is written from the point of view of a single thread
s quite different to OpenMP multithreading

s similar to MPI, where you use the MPI “rank” to
identify the MPI process

s all local variables are private to that thread
# need to think about where each variable lives (more on
this in the next lecture)

s any operation involving data in the device memory
forces its transfer to/from registers in the GPU

s often better to copy the value into a local register
variable
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Host code

int main (1nt argc, char *xxargv) {

float *h x, *d_x; // h=host, d=device
int nblocks=2, nthreads=8, nsize=2%8;
h x = (float *)malloc(nsizexsizeof (float));

cudaMalloc ((vold *x*)&d x,nsizexsizeof (float));
my_first_kernel<<<nblocks,nthreads>>>(d_x);

cudaMemcpy (h_x,d_x,nsizexsizeof (float),
cudaMemcpyDeviceToHost) ;

for (int n=0; n<nsize; n++)
printf (" n, X $d %f \n",n,h x[n]);

cudaFree (d_x); free(h_Xx);
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Kernel code

#include <helper_cuda.h>

__global__ void my_first_kernel (float =*x)

{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = (float) threadIdx.x;
}

#® __global__identifier says it's a kernel function

# each thread sets one element of x array

# within each block of threads, threadIdx.x ranges
from O to blockDim.x-1, SO each thread has a unigue

value for tid
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CUDA programming

Suppose we have 1000 blocks, and each one has 128
threads — how does it get executed?

On Kepler hardware, would probably get 8-12 blocks
running at the same time on each SM, and each block
has 4 warps — 32-48 warps running on each SM

Each clock tick, SM warp scheduler decides which warps
to execute next, choosing from those not waiting for

# data coming from device memory (memory latency)
# completion of earlier instructions (pipeline delay)

Programmer doesn’t have to worry about this level of detalil,

just make sure there are lots of threads / warps
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CUDA programming

Queue of waiting blocks:

Multiple blocks running on each SM:
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CUDA programming

In this simple case, we had a 1D grid of blocks, and a 1D
set of threads within each block.

If we want to use a 2D set of threads, then
blockDim.x, blockDim.y give the dimensions, and
threadIdx.x, threadIdx.y give the thread indices

and to launch the kernel we would use something like

dim3 nthreads (16,4);
my_new_kernel<<<nblocks,nthreads>>> (d_x) ;

where dim3 is a special CUDA datatype with 3 components
.x, .y, .z each initialised to 1.
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CUDA programming

A similar approach is used for 3D threads and 2D / 3D grids;
can be very useful in 2D / 3D finite difference applications.

How do 2D / 3D threads get divided into warps?

1D thread ID defined by

threadIdx.x +
threadIdx.y * blockDim.x +
threadIdx.z * blockDim.x % blockDim.y

and this is then broken up into warps of size 32.
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Practical 1

start from code shown above (but with comments)

learn how to compile / run code within Nsight IDE
(integrated into Visual Studio for Windows,
or Eclipse for Linux)

test error-checking and printing from kernel functions

modify code to add two vectors together (including
sending them over from the host to the device)

iIf time permits, look at CUDA SDK examples
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Practical 1

Things to note:

# memory allocation
cudaMalloc ((void =**) &d_x, nbytes);

# data copying
cudaMemcpy (h_x, d_x, nbytes,
cudaMemcpyDeviceToHost) ;

# reminder: prefix h_and d_ to distinguish between
arrays on the host and on the device is not mandatory,
just helpful labelling

# Kernel routine is declared by __global__ prefix, and is
written from point of view of a single thread
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Practical 1

Second version of the code is very similar to first, but uses
an SDK header file for various safety checks — gives useful
feedback in the event of errors.

® check for error return codes:
checkCudaErrors( ... ) ;

# check for kernel failure messages:
getLastCudaError( ... );
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Practical 1

One thing to experiment with is the use of print £ within
a CUDA kernel function:

# essentially the same as standard print f; minor
difference in integer return code

# each thread generates its own output; use conditional
code if you want output from only one thread

# output goes into an output buffer which is transferred
to the host and printed later (possibly much later?)

# buffer has limited size (1MB by default), so could lose
some output if there’s too much

#® need to use either cudabeviceSynchronize (); or
cudaDeviceReset () ; atthe end of the main code to
make sure the buffer is flushed before termination
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Practical 1

The practical also has a third version of the code which
uses “managed memory” based on Unified Memory.

In this version

# there is only one array / pointer, not one for CPU and
another for GPU

# the programmer is not responsible for moving the data
to/from the GPU

# everything is handled automatically by the CUDA
run-time system
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Practical 1

This leads to simpler code, but it's important to understand
what is happening because it may hurt performance:

# if the CPU initialises an array =, and then a kernel uses
it, this forces a copy from CPU to GPU

» if the GPU modifies  and the CPU later tries to read
from it, that triggers a copy back from GPU to CPU

Personally, | prefer to keep complete control over data
movement, so that | know what is happening and | can
maximise performance.
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ARCUS-B cluster

external network

_—

arcus-b

gnode1101| |[gnode1102| |[gnode1103| [gnode1104{ |[gnode1105

G| G G| G G| G G| G G| G

® arcus-b.arc.ox.ac.uk Isthe head node

o the GPU compute nodes have two K80 cards with a
total of 4 GPUs, numbered 0 — 3

# read the Arcus notes before starting the practical Lecture 1-p. 36



Key reading

CUDA Programming Guide, version 8.0:

Chapter 1: Introduction

Chapter 2: Programming Model

Appendix A: CUDA-enabled GPUs

Appendix B, sections B.1 — B.4: C language extensions
Appendix B, section B.17: print £ output

Appendix G, section G.1: features of different GPUs

© o o o o ©

Wikipedia (clearest overview of NVIDIA products):
® en.wikipedia.org/wiki/Nvidia_Tesla

® en.wikipedia.org/wiki/GeForce_10_series
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Nsight

General view:

=

Fle Edit Source Refactor MNavigate Search Project Run Window Help
& > | d | T oS I 3Debug [EEC/CH+

Jrﬁv ‘@v%v@‘@v Eﬁv @' G’v]%‘.v Dv
[t; Project Explore 22 . = K = Hllog 2 :>1 = 5|
Debug Profile An outline is not
available.

BE - Euild Run
Erdp e Closed project
P EEIMO] G Open projefit

Main editor
Code

Project structure
explorer

i Problems |'@Task's [E Console | £l Properties |

No search results available, Start a search from the sear

Misc. tabs
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Nsight

Importing the practicals: select General — Existing Projects

Select

Choose import source,

'\.,,"-

=

Select an import source;

|t§,f|:ue filter text

( & General

[E, Archive File
== Existing Projects into Workspace
|, File System
. Preferences
= CfC++
= CVS
= Git
= Install
(= Run/Debug

b A

2] He

>
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Nsight

Import Projects _ _
Select a directory to search for existing Eclipse projects. B‘
(") Select root directory: | | Browse...
@ Select archive file: [J‘hnmal’oxfordl‘eistEQ.n‘practicals.zip l Browse...
Projects:

pracia (pracia) ' Select All

praci1b (prac1hb)
prac2 (prac2)
prac3 adi3d (prac3 adi3d) Refresh
prac3 laplace3d (prac3 laplace3d) -
prac4 (prac4)

prac5 BLAS (prac5 BLAS)

pracs FFT (pracs FFT)

Deselect All

Copy projects into workspace
Working sets

[[] Add project to working sets

Working sets: ‘ Sglect...

@ Next Cancel || Einish Lecture 1 — p. 40
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Memory

Key challenge in modern computer architecture

# no point in blindingly fast computation if data can’t be
moved in and out fast enough

need lots of memory for big applications
very fast memory is also very expensive
# end up being pushed towards a hierarchical design

o o
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CPU Memory Hierarchy

Main memory | 135158,

ﬂ 200+ cycle access, 30 — 60GB/s

6—12 MB
L3 Cache 2GHz SRAM

Tm 25-35 cycle access, 200 — 400GB/s

32KB + 256KB
faster L1/L2 Cache 3GHz SRAM

more expensive
smaller

T 5-12 cycle access

registers
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Memory Hierarchy

Execution speed relies on exploiting data locality

# temporal locality: a data item just accessed is likely to
be used again in the near future, so keep it in the cache

# spatial locality: neighbouring data is also likely to be
used soon, so load them into the cache at the same
time using a ‘wide’ bus (like a multi-lane motorway)

This wide bus is only way to get high bandwidth to slow
main memory
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Caches

The cache line is the basic unit of data transfer;
typical size is 64 bytes = 8x 8-byte items.

With a single cache, when the CPU loads data into a
register:

# it looks for line in cache
» if there (hit), it gets data

# if not (miss), it gets entire line from main memory,
displacing an existing line in cache (usually least
recently used)

When the CPU stores data from a register:
# same procedure
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Importance of Locality

Typical workstation:

20 Gflops CPU

40 GB/s memory +— L2 cache bandwidth
64 bytes/line

40GB/s = 600M line/s = 5G double/s

At worst, each flop requires 2 inputs and has 1 output,
forcing loading of 3 lines — 200 Mflops

If all 8 variables/line are used, then this increases to 1.6
Gflops.

To get up to 20Gflops needs temporal locality, re-using data

already in the cache. Lecture 2 — p. 6



Pascal

Pascal GPU
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Pascal

# usually 32 bytes cache line (8 floats or 4 doubles)
# P100: 4092-bit memory path from HBM2 device

memory to L2 cache = up to 720 GB/s bandwidth

GeForce cards: 384-bit memory bus from GDDR5
device memory to L2 cache = up to 320 GB/s

# unified 4MB L2 cache for all SM’s
# each SM has 64-96kB of shared memory, and

24-48kB of L1 cache

no global cache coherency as in CPUs, so should
(almost) never have different blocks updating the same
global array elements
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GPU Memory Hierarchy

Device memory | #1288

Y
faster

more expensive
smaller

ﬂ 200-300 cycle access, 250 — 500GB/s

L2 Cache

2 —4MB

Tm 200-300 cycle access, 500 — 1000GB/s

L1 Cache

T 80 cyc

registers

16/32/48KB

€ dCCesSS
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Importance of Locality

1Tflops GPU
300 GB/s memory «— L2 cache bandwidth
32 bytes/line

250GB/s = 8G line/s = 32G double/s

At worst, each flop requires 2 inputs and has 1 output,
forcing loading of 3 lines — 3 Gflops

If all 4 doubles/line are used, increases to 11 Gflops

To get up to 500Gflops needs about 15 flops per double
transferred to/from device memory

Even with careful implementation, many algorithms are

bandwidth-limited not compute-bound
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Practical 1 kernel

__global__ void my_first_kernel (float =*x)

{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = threadIldx.x;
}

# 32 threads in a warp will address neighbouring
elements of array x

» if the data is correctly “aligned” so that x[0] is at the
beginning of a cache line, then x[0] —x[31] will be in
same cache line — a “coalesced” transfer

# hence we get perfect spatial locality
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A bad kernel

__global_ void bad_kernel (float =x)

{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[1000+xti1id] = threadIldx.x;
}

# in this case, different threads within a warp access
widely spaced elements of array x — a “strided” array
access

® each access involves a different cache line, so
performance will be awful
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Global arrays

So far, concentrated on global / device arrays:

# held in the large device memory

allocated by host code

pointers held by host code and passed into kernels
continue to exist until freed by host code

since blocks execute in an arbitrary order, if one block
modifies an array element, no other block should read
or write that same element

© o o o

Lecture 2 —p. 13



Global variables

Global variables can also be created by declarations with
global scope within kernel code file

__device_  1nt reduction_lock=0;
__global_ void kernel_1(...) {
}

__global_ void kernel 2 (...) {

}
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°

© o o o

Global variables

the _ device__ prefix tells nvcc this is a global
variable in the GPU, not the CPU.

the variable can be read and modified by any kernel
its lifetime is the lifetime of the whole application
can also declare arrays of fixed size

can read/write by host code using special routines
cudaMemcpyToSymbol, cudaMemcpyFromSymbol
or with standard cudaMemcpy In combination with
cudaGetSymbolAddress

in my own CUDA programming, | rarely use this
capability but it is occasionally very useful
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Constant variables

Very similar to global variables, except that they can’t be
modified by kernels:

o defined with global scope within the kernel file using the
prefix __constant_

# initialised by the host code using
cudaMemcpyToSymbol, cudaMemcpyFromSymbol
or cudaMemcpy In combination with
cudaGetSymbolAddress

# |use it all the time in my applications; practical 2 has an
example
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Constant variables

Only 64KB of constant memory, but big benefit is that each
SM has a 8-10KB cache

#® when all threads read the same constant, almost as fast
as a register

# doesn’t tie up a regqister, so very helpful in minimising
the total number of registers required
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Constants

A constant variable has its value set at run-time

But code also often has plain constants whose value is
Known at compile-time:

#define PI 3.1415926f

a =Db / (2.0f x PI);

Leave these as they are — they seem to be embedded into
the executable code so they don’t use up any registers

Don’t forget the £ at the end if you want single precision;
in C/C++

single x double = double
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Registers

Within each kernel, by default, individual variables are
assigned to registers:
__global___ void lap(int I, int J,
float *ul, float =*»u2) {
int 1 = threadIldx.x + blockIdx.xxblockDim.Xx;
int j = threadldx.y + blockIdx.y*blockDim.y;
int 1d = 1 + J*xI;

1f (1==0 []| 1==I-1 || J==0 []| J==Jd-1) {
u2[id] = ul[id]; // Dirichlet b.c.’s
}
else {
u2[id] = 0.25f « ( ul[id-1] + ulf[id+1]

+ ul[id-I] + ul[id+I] );

} Lecture 2 —p. 19



Registers

64K 32-bit registers per SM

up to 255 registers per thread

up to 2048 threads (at most 1024 per thread block)
max registers per thread — 256 threads

max threads — 32 registers per thread

big difference between “fat” and “thin” threads
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Registers

What happens if your application needs more registers?

They “spill” over into L1 cache, and from there to device
memory — precise mechanism unclear, but

either certain variables become device arrays with one
element per thread

or the contents of some registers get “saved” to device
memory so they can used for other purposes, then the data
gets “restored” later

Either way, the application suffers from the latency and
bandwidth implications of using device memory
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Local arrays

What happens if your application uses a little array?

__global__ void lap(float =xu) {

float ut[3];

int tid = threadldx.x + blockIdx.x*blockDim.x;

for (int k=0; k<3; k++)
ut [k] = ul[tid+k*gridDim.x*blockDim.x];

for (int k=0; k<3; k++)

ul[tid+k+rgridDim.x*blockDim.x] =
A[3xk]*ut [O]+A[3xk+1]+ut[1]+A[3+xk+2]*xut[2];
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Local arrays

In simple cases like this (quite common) compiler converts
to scalar reqisters:

__global_ void lap(float =*u) {
int tid = threadldx.x + blockIdx.x*blockDim.x;
float ut0 = ultid+0xgridDim.x*xblockDim.x];
float utl = ul[tid+lxgridDim.x*blockDim.x];
float ut2 = ul[tid+2+«gridDim.xxblockDim.x];

ulti1d+0xgridDim.x*blockDim. x]

A[O]+ut0 + A[1l]xutl + A[2]*ut?2;
ultid+lxgridDim.x*xblockDim. x]

A[3]*ut0 + A[4d4]*utl + A[L5]*ut2;
ultid+2xgridDim.x*xblockDim.x] =

A[o]ut0O + A[7]*utl + A[8]*ut2;

}
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Local arrays

In more complicated cases, it puts the array into device
memory

9

still referred to in the documentation as a “local array”
because each thread has its own private copy

held in L1 cache by default, may never be transferred to
device memory

48kB of L1 cache equates to 12k 32-bit variables,
which is only 12 per thread when using 1024 threads

beyond this, it will have to spill to device memory

Lecture 2 — p. 24



Shared memory

In a kernel, the prefix __shared___asin

__shared  1int X _dim;
___shared  float x[128];

declares data to be shared between all of the threads in
the thread block — any thread can set its value, or read it.

There can be several benefits:

# essential for operations requiring communication
between threads (e.g. summation in lecture 4)

® useful for data re-use

# alternative to local arrays in device memory
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Shared memory

If a thread block has more than one warp, it’s not
pre-determined when each warp will execute its instructions
— warp 1 could be many instructions ahead of warp 2,

or well behind.

Consequently, almost always need thread synchronisation
to ensure correct use of shared memory.

Instruction
__syncthreads () ;

iInserts a “barrier”’; no thread/warp is allowed to proceed
beyond this point until the rest have reached it (like a roll
call on a school outing)
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Shared memory

So far, have discussed statically-allocated shared memory
— the size is known at compile-time

Can also create dynamic shared-memory arrays but this is
more complex

Total size is specified by an optional third argument when
launching the kernel:

kernel<<<blocks, threads, shared_bytes>>>(...)

Using this within the kernel function is complicated/tedious;
see B.2.3 in Programming Guide

Lecture 2 — p. 27



Read-only arrays

With “constant” variables, each thread reads the same
value.

In other cases, we have arrays where the data doesn’t
change, but different threads read different items.

In this case, can get improved performance by telling the
compiler by declaring global array with

const __restrict__

qualifiers so that the compiler knows that it is read-only

At the hardware level, uses special read instructions which
give better performance.
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Non-blocking loads/stores

What happens with the following code?

__kernel void lap(float =ul, float =*u2) {
float a;

a = ul[threadldx.x + blockIdx.x*xblockDim.x]

c = bxa;
u2 [threadIdx.x + blockIdx.x*xblockDim.x] = c;

}

Load doesn’t block until needed; store doesn’t block unless,

or until, danger of modification
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Active blocks per SM

Each block require certain resources:

# threads

® regqisters (registers per thread x number of threads)
# shared memory (static + dynamic)

Together these determine how many blocks can be run
simultaneously on each SM — up to a maximum of 32 blocks
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Active blocks per SM

My general advice:

# number of active threads depends on number
of registers each needs

# good to have at least 4 active blocks,
each with at least 128 threads

# smaller number of blocks when each needs
lots of shared memory

# larger number of blocks when they don’t need
shared memory
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Active blocks per SM

On Pascal:

# maybe 4 big blocks (512 threads) if each needs a lot of
shared memory

# maybe 12 small blocks (128 threads) if no shared
memory needed

o or 4 small blocks (128 threads) if each thread needs
lots of registers

Very important to experiment with different block sizes to
find what gives the best performance.
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Summary

dynamic device arrays

static device variables / arrays
constant variables / arrays
registers

spilled registers

local arrays

shared variables / arrays
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Key reading

CUDA Programming Guide, version 8.0:
#® Appendix B.1-B.4 — essential
o Chapter 3, sections 3.2.1-3.2.3

Other reading:

# Wikipedia article on caches:
en.wikipedia.org/wiki/CPU_cache

® web article on caches:
lwn.net/Articles/252125/

o “Memory Performance and Cache Coherency Effects
on an Intel Nehalem Multiprocessor System”:
portal.acm.org/citation.cfm?id=1637764
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Lecture 3: control flow and
synchronisation

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre
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Warp divergence

Threads are executed in warps of 32, with all threads in the
warp executing the same instruction at the same time.

What happens if different threads in a warp need to do
different things?

if (x<0.0)

z = x—2.0;
else

Z = sqrt(x);

This is called warp divergence — CUDA will generate correct
code to handle this, but to understand the performance you
need to understand what CUDA does with it
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Warp divergence

This is not a new problem.

Old CRAY vector supercomputers had a logical merge
vector instruction

Zz = p ? X YV

which stored the relevant element of the input vectors x, v
depending on the logical vector p

for (1=0; 1<I; 1++) |
if (p[i]) z[i] = x[i];
else z[1] = yIli];
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Warp divergence

Similarly, NVIDIA GPUs have predicated instructions which
are carried out only if a logical flag is true.

p: a =b + ¢c; // computed only if p is true

In the previous example, all threads compute the logical
predicate and two predicated instructions

p = (x<0.0);
p: z = x-2.0; // single instruction
'p: z = sgrt (x);
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Warp divergence

Note that:

#® sqgrt (x) would usually produce a NaN when x<0, but
it's not really executed when x<0 so there’s no problem

# all threads execute both conditional branches, so
execution cost is sum of both branches
— potentially large loss of performance
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Warp divergence

Another example:

if (n>=0)

z = x[n];
else

z = 0;

#® x[n] isonly read here if n>=0

# don’t have to worry about illegal memory accesses
when n Is negative
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Warp divergence

If the branches are big, nvcc compiler inserts code to
check if all threads in the warp take the same branch
(warp voting) and then branches accordingly.

P = ...

1f (any(p)) |

"C O

1f (any (Ip)) A
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Warp divergence

Note:

# doesn’'t matter what is happening with other warps
— each warp is treated separately

# if each warp only goes one way that’s very efficient

# warp voting costs a few instructions, so for very simple

branches the compiler just uses predication without
voting
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Warp divergence

In some cases, can determine at compile time that all
threads in the warp must go the same way

e.g. if case Is a run-time argument

1f (case==1)
Z = X*X;
else
7 = X+2.3;

In this case, there’s no need to vote

Lecture 3—p. 9



Warp divergence

Warp divergence can lead to a big loss of parallel efficiency
— one of the first things | look out for in a new application.

In worst case, effectively lose factor 32 x in performance if
one thread needs expensive branch, while rest do nothing

Typical example: PDE application with boundary conditions

# if boundary conditions are cheap, loop over all nodes
and branch as needed for boundary conditions

# if boundary conditions are expensive, use two kernels:
first for interior points, second for boundary points

Lecture 3—p. 10



Warp divergence

Another example: processing a long list of elements where,
depending on run-time values, a few require very expensive
processing

GPU implementation:

# first process list to build two sub-lists of “simple” and
“expensive” elements

# then process two sub-lists separately

Note: none of this is new — this is what we did more than 25
years ago on CRAY and Thinking Machines systems.

What's important is to understand hardware behaviour and
design your algorithms / implementation accordingly
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Synchronisation

Already introduced ___syncthreads () ; which forms a
barrier — all threads wait until every one has reached this
point.

When writing conditional code, must be careful to make
sure that all threads do reach the _ _syncthreads () ;

Otherwise, can end up in deadlock
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Typical application

// load in data to shared memory

// synchronisation to ensure this has finished
__syncthreads () ;

// now do computation using shared data

Lecture 3 —p. 13



Synchronisation

There are other synchronisation instructions which are
similar but have extra capabillities:

® int _ syncthreads_count (predicate)

counts how many predicates are true

® int _ syncthreads_and(predicate)

returns non-zero (true) if all predicates are true

® int _ syncthreads_or (predicate)

returns non-zero (true) if any predicate is true

I've not used these, and don’t currently see a need for them
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Warp voting

There are similar warp voting instructions which operate at
the level of a warp:

® int _ all (predicate)

returns non-zero (true) if all predicates in warp are true

®» int _ any (predicate)

returns non-zero (true) if any predicate is true

® unsigned int _ ballot (predicate)

sets n'" bit based on n!"* predicate

Again, I've never used these
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Atomic operations

Occasionally, an application needs threads to update a
counter in shared memory.

__shared  1nt count;

1f ( ... ) count++;

In this case, there is a problem if two (or more) threads try
to do it at the same time
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Atomic operations

Using standard instructions, multiple threads in the same
warp will only update it once.

time

thread 0 thread 1 thread 2 thread 3
read read read read
add add add add
write write write write
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Atomic operations

With atomic instructions, the read/add/write becomes a
single operation, and they happen one after the other

thread 0 thread 1 thread 2 thread 3

read/add/write

. read/add/write
time
read/add/write

read/add/write
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Atomic operations

Several different atomic operations are supported,
almost all only for integers:

# addition (integers, 32-bit floats — also 64-bit in Pascal)
$ minimum / maximum

# increment / decrement

# exchange / compare-and-swap

These are

# not very fast for data in Kepler shared memory, better
iIn Maxwell and Pascal

o only slightly slower for data in device global memory
(operations performed in L2 cache)
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Atomic operations

Compare-and-swap:
int atomicCAS (1int* address,int compare,int wval);

® if compare equals o1d value stored at address then
val is stored instead

In either case, routine returns the value of o1d

e

# seems a bizarre routine at first sight, but can be very
useful for atomic locks

# also can be used to implement 64-bit floating point
atomic addition (now available in hardware in Pascal)
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Global atomic lock

// global variable: 0 unlocked, 1 locked
__device_ 1nt lock=0;

__global_ void kernel(...) {
1f (threadIdx.x==0) {

// set lock
do {} while(atomicCAS (&lock,0,1));

// free lock
lock = 0;
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Global atomic lock

Problem: when a thread writes data to device memory the
order of completion is not guaranteed, so global writes may
not have completed by the time the lock is unlocked

__global_ void kernel(...) {
1f (threadIdx.x==0) {
do {} while(atomicCAS (&lock,0,1));
__threadfence(); // wait for writes to finish

// free lock
lock = 0;
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__threadfence

®» threadfence_block();

wait until all global and shared memory writes are
visible to

s all threads in block

® threadfence();

wait until all global and shared memory writes are
visible to

s all threads in block
s all threads, for global data
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Atomic addition for double

// atomic addition from Jon Cohen at NVIDIA

static double atomicAdd (double xaddr, double wval)
{

double old=xaddr, assumed;

do {
assumed = old;
old = _ longlong_as_double (

atomi1cCAS ( (unsigned long long intx)addr,
__double_as_longlong (assumed),
__double_as_longlong (val+assumed) ) );
} while( assumed!=o0ld );

return old;
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Summary

lots of esoteric capabilities — don’t worry about most of
them

essential to understand warp divergence — can have a
very big impact on performance

__syncthreads () Is vital — will see another use of it
In next lecture

the rest can be ignored until you have a critical need
— then read the documentation carefully and look for
examples in the SDK
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Key reading

CUDA Programming Guide, version 8.0:

© o o o o o

Section 5.4.2: control flow and predicates
Section 5.4.3: synchronization

Appendix B.5: __ _threadfence () and variants
Appendix B.6: __syncthreads () and variants
Appendix B.12: atomic functions

Appendix B.13: warp voting
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2D Laplace solver

Jacobi iteration to solve discrete Laplace equation on a
uniform grid:

for (int 3=0; 3<J; J++) {
for (int 1=0; i<I; i++) {

id = 1 + J3+*I; // 1D memory location

1f (1==0 []| 1==I-1 || 3J==0 || J==J-1)
u2[id] = ul[id];

else

u2[1d] = 0.25%x( ul[id-1] + ul[id+1]
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2D Laplace solver

How do we tackle this with CUDA?

o o

each thread responsible for one grid point
each block of threads responsible for a block of the grid

conceptually very similar to data partitioning in MPI
distributed-memory implementations, but much simpler

(also similar to blocking techniques to squeeze the best
cache performance out of CPUs)

great example of usefulness of 2D blocks and 2D “grid”s
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2D Laplace solver
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2D Laplace solver
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2D Laplace solver

Each block of threads processes one of these grid blocks,
reading in old values and computing new values
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2D Laplace solver

__global_ void lap(int I, 1nt J,

const floatx _ restrict_  ul,
floatx _ restrict  u2) {
int 1 = threadlIdx.x + blockIdx.xxblockDim.Xx;
int j = threadldx.y + blockIdx.y*blockDim.y;

int 1d = 1 + J*xI;

if (1==0 || 1==I-1 || 3J==0 []| 3J==J-1) {
u2[id] = ul[id]; // Dirichlet b.c.’s

else {

uz[1d] = 0.25 * ( ulf[1d-1] + ulf[id+1]
+ ul[1d-I] + ull[id+I] );
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2D Laplace solver

Assumptions:

# T is amultiple of blockDim. x

# Jis a multiple of blockDim.y

# hence grid breaks up perfectly into blocks

Can remove these assumptions by testing whether
i, 7 are within grid
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2D Laplace solver

threads

real grid
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2D Laplace solver

__global_ void lap(int I, 1nt J,

const floatx _ restrict_  ul,
floatx _ restrict  u2) {
int 1 = threadlIdx.x + blockIdx.xxblockDim.Xx;
int j = threadldx.y + blockIdx.y*blockDim.y;

int 1d = 1 + J*xI;

if (1==0 || 1==I-1 [| J==0 []| 3==J-1) {
u2[id] = ul[id]; // Dirichlet b.c.’s
}
else 1if (i<I && J<J) {
u2[i1d] = 0.25f » ( ul[id-1] + ul[id+1]
+ ul[i1d-I] + ull[id+I] );
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2D Laplace solver

How does cache function in this application?

# if block size is a multiple of 32 in z-direction, then
interior corresponds to set of complete cache lines

# “halo” points above and below are full cache lines too

# “halo” points on side are the problem — each one
requires the loading of an entire cache line

# optimal block shape has aspect ratio of roughly 32:1
(or 8:1 if cache line is 32 bytes)
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o o

3D Laplace solver

practical 3
each thread does an entire line in z-direction

x,y dimensions cut up into blocks in the same way
as 2D application

laplace3d.cu and laplace3d_kernel.cu
follow same approach described above

this used to give the fastest implementation, but a new
version uses 3D thread blocks, with each thread
responsible for just 1 grid point

the new version has lots more integer operations, but
s still faster (due to many more active threads?)
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and reduction / scan operations
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Oxford University Mathematical Institute

Oxford e-Research Centre
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Warp shuftles

The Kepler architecture introduced a new machine
instructon: a warp shuffle

This gives a mechanism for moving data between threads
In the same warp, without using any shared memory.

At present it is only for 32-bit data, but 64-bit data can be
handled (in software) as a pair of 32-bit shuffles.
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Warp shuftles

There are 4 variants:

® _shfl up
copy from a lane with lower ID relative to caller

® __shfl_down
copy from a lane with higher ID relative to caller

® __shfl_xor
copy from a lane based on bitwise XOR of own lane ID

® _shfl
copy from indexed lane ID

Here the lane ID is the position within the warp
(threadIdx.x%32 for 1D blocks)
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Warp shuftles

int __shfl up(int var, unsigned 1int delta);

#® var is alocal register variable

#® delta Is the offset within the warp — if the appropriate
thread does not exist (i.e. it's off the end of the warp)
then the value is taken from the current thread

int __shfl_down (int wvar, unsigned int delta);

# defined similarly
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Warp shuftles

int __shfl xor(int var, 1nt laneMask);

# an XOR (exclusive or) operation is performed between
laneMask and the calling thread’s 1aneID to
determine the lane from which to copy the value

(LaneMask controls which bits of 1aneID are “flipped”)

# a “butterfly” type of addressing, very useful for reduction
operations and FFTs

int __shfl(int wvar, 1nt srclane);

# copies data from srcLane
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Warp shuftles

Very important

Threads may only read data from another thread
which is actively participating in the shuffle
command. If the target thread is inactive, the
retrieved value is undefined.

This means you must be very careful with conditional code.
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Warp shuftles
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Two ways to sum all the elements in a warp: method 2

Warp shuftles

for (int i=16; 1i>0; i=i/2)

value +=
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__shfl down (value, 1);
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Reduction

The most common reduction operation is computing the
sum of a large array of values:

# averaging in Monte Carlo simulation

o computing RMS change in finite difference computation
or an iterative solver

# computing a vector dot product in a CG or GMRES
iteration
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Reduction

Other common reduction operations are to compute a
minimum or maximum.

Key requirements for a reduction operator o are:
® commutative: aob="boa
# associative: ao (boc) = (aob)oc

Together, they mean that the elements can be re-arranged
and combined in any order.

(Note: in MPI there are special routines to perform
reductions over distributed arrays.)
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Approach

Will describe things for a summation reduction — the
extension to other reductions is obvious

Assuming each thread starts with one value, the approach
IS to

# first add the values within each thread block, to form a
partial sum
# then add together the partial sums from all of the blocks

I'll look at each of these stages in turn
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Local reduction

The first phase is contructing a partial sum of the values
within a thread block.

Question 1: where is the parallelism?

“Standard” summation uses an accumulator, adding one
value at a time — sequential

Parallel summation of N values:
# first sum them in pairs to get N/2 values
# repeat the procedure until we have only one value
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Local reduction

Question 2: any problems with warp divergence?

Note that not all threads can be busy all of the time:
# N/2 operations in first phase

# N/4in second

# N/8in third

® eflc.

For efficiency, we want to make sure that each warp is
either fully active or fully inactive, as far as possible.
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Local reduction

Question 3: where should data be held?

Threads need to access results produced by other threads:

# global device arrays would be too slow, so use shared
memory

# need to think about synchronisation
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Local reduction

Pictorial representation of the algorithm:

—
s
o ¢ ¢ ¢ o o o
/
//
o ¢ 07/ second half added pairwise to first half
/ by leading set of threads
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Local reduction

__global_ void sum(float =*d_sum, float =xd_data)
{

extern _ shared_ float templ[];
int tid = threadIdx.x;

temp[tid] = d_datal[tid+blockIdx.xxblockDim.x];
for (int d=blockDim.x>>1; d>=1; d>>=1) {

__syncthreads () ;
1f (tid<d) templ[tid] += temp[tid+d];

1f (t1d==0) d_sum[blockIdx.x] = temp[0];
}
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Local reduction

Note:

# use of dynamic shared memory — size has to be
declared when the kernel is called

#® use of __syncthreads to make sure previous
operations have completed

# first thread outputs final partial sum into specific place
for that block

# could use shuffles when only one warp still active

# alternatively, could reduce each warp, put partial sums
In shared memory, and then the first warp could reduce
the sums — requires only one __syncthreads
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Global reduction: version 1

This version of the local reduction puts the partial sum for
each block in a different entry in a global array

These partial sums can be transferred back to the host for
the final summation — practical 4
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Global reduction: version 2

Alternatively, can use the atomic add discussed in the
previous lecture, and replace

1f (t1d==0) d_sum|[blockIdx.x] = temp|[0];
by
1f (ti1d==0) atomicAdd (&d_sum, temp[0]);
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Global reduction: version 2

More general reduction operations could can use the atomic
lock mechanism, also discussed in the previous lecture:

1f (t1d==0) d_sum|[blockIdx.x] = temp|[0];
by
if (tid==0) {

do {} while(atomicCAS(&lock,0,1)); // set lock

*d_sum += temp[0];
__threadfence(); // wait for write completion

lock = 0; // free lock
}
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Scan operation

Given an input vector u;, i = 0,...,1—1, the objective of a
scan operation is to compute

o :Zui forall j < I.

i<j

Why is this important?

# a key part of many sorting routines

# arises also in particle filter methods in statistics
# related to solving long recurrence equations:

Un+1 = (1=Ap)vn + Apun

# a good example that looks impossible to parallelise
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Scan operation

Before explaining the algorithm, here’s the “punch line”:

# some parallel algorithms are tricky — don’t expect them
all to be obvious

# check the examples in the CUDA SDK, check the
literature using Google — don'’t put lots of effort into
re-inventing the wheel

# the relevant literature may be 25-30 years old
— back to the glory days of CRAY vector computing
and Thinking Machines’ massively-parallel CM5
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Scan operation

Similar to the global reduction, the top-level strategy is
# perform local scan within each block
# add on sum of all preceding blocks

Will describe two approaches to the local scan, both similar
to the local reduction
# first approach:
s very simple using shared memory, but O(N log N)
operations
# second approach:

s more efficient using warp shuffles and a recursive
structure, with O(/N) operations
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L.ocal scan: version 1

® o\osnsnsn\n

# after n passes, each sum has local plus preceding 2" —1

values

® log, N passes, and O(N) operations per pass

—> O(N log N) operations in total
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L.ocal scan: version 1

__global_ void scan(float =*d_data) {

extern _ shared__ float templ];
int tid = threadIldx.x;
temp[tid] = d_datal[tid+blockIdx.xxblockDim.x];

for (int d=1; d<blockDim.x; d<<=1) {
__syncthreads () ;
float temp2 = (tid >= d) ? temp[tid-d] : 0O;
__syncthreads () ;
temp[tid] += temp?Z;
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L.ocal scan: version 1

Notes:
® increment is set to zero if no element to the left
® both _ syncthreads (); are needed
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L.ocal scan: version 2

The second version starts by using warp shuffles to perform
a scan within each warp, and store the warp sum:

__global___ void scan(float =d_data) {
__shared__ float templ[32];
float templ, temp2;
int tid = threadIdx.x;
templ = d_data[tid+blockIdx.x*blockDim.x];

for (int d=1; d<32; d<<=1) {
tempZ2 = _ shfl_up(templ,d);
1f (£t1d%32 >= d) templ += temp2;

if (£id%32 == 31) temp[tid/32] = templ;
__syncthreads () ;
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L.ocal scan: version 2

Next we perform a scan of the warp sums (assuming no
more than 32 warps):

1f (threadIdx.x < 32) {
temp2 = 0.0f;
if (tid < blockDim.x/32)
temp2 = temp|[threadldx.x];

for (int d=1; d<32; d<<=1) {
temp3 = _ shfl up(temp2Z,d);
1f (t1d%32 >= d) temp2 += temp3;

if (tid < blockDim.x/32) temp[tid] = temp2;

syncthreads () ; octure 4 — .28
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L.ocal scan: version 2

Finally, we add the sum of previous warps:

if (tid >= 32) templ += temp[tid/32 - 1];
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Global scan: version 1

To complete the global scan there are two options

First alternative:

# use one kernel to do local scan and compute partial
sum for each block

use host code to perform a scan of the partial sums

°

# use another kernel to add sums of preceding blocks
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Global scan: version 2

Second alternative — do it all in one kernel call

However, this needs the sum of all preceding blocks to add
to the local scan values

Problem: blocks are not necessarily processed in order,
so could end up in deadlock waiting for results from a block
which doesn’t get a chance to start.

Solution; use atomic increments
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Global scan: version 2

Declare a global device variable
__device_  1int my_block_count = 0;
and at the beginning of the kernel code use

__shared___ unsigned 1nt my_blockId;
1f (threadIdx.x==0) {
my_blockId = atomicAdd( &my_block_count, 1 );

}

__syncthreads () ;

which returns the old value of my_block_count and
iIncrements it, all in one operation.

This gives us a way of launching blocks in strict order.
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Global scan: version 2

In the second approach to the global scan, the kernel code
does the following:

o
9
9

get in-order block ID
perform scan within the block

wait until another global counter my_block_count?2
shows that preceding block has computed the sum of
the blocks so far

get the sum of blocks so far, increment the sum with the
local partial sum, then increment my_block_count?2

add previous sum to local scan values and store the
results
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Global scan: version 2

// get global sum, and increment for next block

1f (ti1d == 0) {
// do—nothing atomic forces a load each time
do {} while( atomicAdd (&my_block_count2,0)
< my_blockId );

temp = sum; // copy into register
sum = temp + local; // increment and put back
__threadfence(); // wait for write completion

atomicAdd (&my_block_count2,1);
// faster than plain addition
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Scan operation

Conclusion: this is all quite tricky!

Advice: best to first see if you can get working code from
someone else (e.g. investigate Thrust library)

Don't re-invent the wheel unless you really think you can do
it better.
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Recurrence equation

Given s,,, u,, want to compute v,, defined by

Un = Sp Un—1 T Up

(Often have
Un = (1=Xp) Un—1 4+ A\pup

with 0 <\, <1 so this computes a running weighted
average, but that's not important here.)

Again looks naturally sequential, but in fact it can be
handled in the same way as the scan.
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Recurrence equation

Starting from

Un = Sp Up—11 Up

Up—1 = Sp—1Up—2+ Up—1
then substituting the second equation into the first gives
Up = (Snsn—1> Upn—2 1 (Snun—l + un)

SO (Sn—laun—l)a (Snaun) — (Snsn—la Sn“n—l"‘“n)

The same at each level of the scan, eventually giving
/ /
Up = S§,UV—1 + Uy,

where v_1 represents the last element of the previous block.
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Recurrence equation

When combining the results from different blocks we have
the same choices as before:

o store s',u' back to device memory, combine results for
different blocks on the CPU, then for each block we
have v_; and can complete the computation of v,

#® use atomic trick to launch blocks in order, and then after
completing first phase get v_; from previous block to
complete the computation.

Similarly, the calculation within a block can be performed
using shuffles in a two-stage process:

1. use shuffles to compute solution within each warp

2. use shared memory and shuffles to combine results

from different warps and update solution from first stage
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CUDA libraries

Originally, NVIDIA planned to provide only one or two
maths libraries, but over time these have steadily increased

o CUDA math library
all of the standard math functions you would expect
(i.e. very similar to what you would get from Intel)

s various exponential and log functions
trigonometric functions and their inverses
hyperbolic functions and their inverses

error functions and their inverses

Bessel functions

Gamma functions

vector norms and reciprocals (esp. for graphics)

mainly single and double precision; a few in half
precision Lecture 5 —p. 2
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CUDA libraries

® cuBLAS

s Dbasic linear algebra subroutines for dense matrices
s Includes matrix-vector and matrix-matrix product

s significant input from Vasily Volkov at UC Berkeley;
one routine contributed by Jonathan Hogg from RAL

s Iitis possible to call cuBLAS routines from user
kernels

s some support for a single routine call to do a “batch”
of smaller matrix-matrix multiplications

s also support for using CUDA streams to do a large
number of small tasks concurrently
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CUDA libraries

cuBLAS is a set of routines to be called by user host code:

# helper routines:
s memory allocation
s data copying from CPU to GPU, and vice versa

s error reporting

# compute routines:
s matrix-matrix product

s matrix-vector product

s Warning! Some calls are asynchronous, i.e. the call
starts the operation but the host code then continues

before it has completed

simpleCUBLAS example in SDK is a good example code
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CUDA libraries

® CuFFT

>

>

>

Fast Fourier Transform

1D, 2D, 3D

significant input from Satoshi Matsuoka and others
at Tokyo Institute of Technology

www.voltaire.com/assets/files/Case
studies/titech_case_study_final_for_SC08.pdf

has almost all of the variations found in FFTW and
other CPU libraries?
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CUDA libraries

Like cuBLAS, it is a set of routines called by user host code:
# helper routines include “plan” construction
# compute routines perform 1D, 2D, 3D FFTs

# it supports doing a “batch” of independent transforms,
e.g. applying 1D transform to a 3D dataset

® simpleCUFFT example in SDK
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CUDA libraries

» cuSPARSE
s various routines to work with sparse matrices

s Iincludes sparse matrix-vector and matrix-matrix
products

s could be used for iterative solution
s also has solution of sparse triangular system

s note: batched tridiagonal solver is in cuBLAS not
cuSPARSE

s contribution from Istvan Reguly (Oxford)
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CUDA libraries

# cuRAND
s random number generation

s XORWOW, mrg32k3a, Mersenne Twister and
Philox_4x32_10 pseudo-random generators

s Sobol quasi-random generator (with optimal
scrambling)

s uniform, Normal, log-Normal, Poisson outputs

® cuSOLVER: brand new in CUDA 7.0
s Key LAPACK dense solvers, 3 — 6x faster than MKL

s Sparse direct solvers, 2—14x faster than CPU
equivalents
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CUDA libraries

o CUB

s provides a collection of basic building blocks at three
levels: device, thread block, warp

s functions include sort, scan, reduction
s Thrust uses CUB for CUDA version of key algorithms

#» AmgX (originally named NVAMG)
s library for algebraic multigrid

s see presentation given at NVIDIA’'s 2013 GTC

conference:
http://on-demand.gputechconf.com/gtc/2013/presentations/

S3579-High—-Performance—-Algebraic-Multigrid-Commercial-Apps.pdf

o available from

http://developer.nvidia.com/amgx
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CUDA Libraries

cuDNN

s library for Deep Neural Networks

s some parts developed by Jeremy Appleyard
(NVIDIA) working in Oxford

CUDA math library

s lots of special functions

nvGraph

s Page Rank, Single Source Shortest Path, Single
Source Widest Path

NPP (NVIDIA Performance Primitives)

s library for imaging and video processing

s includes functions for filtering, JPEG decoding, etc.

CUDA Video Decoder API
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CUDA Libraries

® Thrust

s high-level C++ template library with an interface
based on the C++ Standard Template Library (STL)

s very different philosopy to other libraries; users write

standard C++ code (no CUDA) but get the benefits
of GPU parallelisation

s also supports x86 execution

s relies on C++ object-oriented programming; certain
objects exist on the GPU, and operations involving
them are implicitly performed on the GPU

s |'ve not used it, but for some applications it can be
very powerful — e.g. lots of built-in functions for
operations like sort and scan

s also simplifies memory management and data
movement Lecture 5—p. 11



Kokkos

# new C++ library developed by US Sandia National Lab

# aims for platform-independent application code with
performance portability (i.e. good performance on all
many-core platforms: GPU, Xeon Phi, others)

# uses “lambda” expressions, and abstracts data layouts
# tolearn more see the 2015 GTC presentation

http://on-demand.gputechconf.com/gtc/2015/
presentation/S5166-H-Carter—-Edwards.pdf
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Useful header files

® dbldbl.h available from
https://gist.github.com/seibert /5914108
Header file for double-double arithmetic for
quad-precision (developed by NVIDIA, but published
independently under the terms of the BSD license)

#® cuComplex.h part of the standard CUDA distribution
Header file for complex arithmetic — defines a class and
overloaded arithmetic operations.

® helper_math.h available in CUDA SDK
Defines operator-overloading operations for CUDA
intrinsic vector datatypes such as float4
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Other libraries

» MAGMA

s a new LAPACK for GPUs — higher level numerical
linear algebra, layered on top of CUBLAS

s open source — freely available

s developed by Jack Dongarra, Jim Demmel and
others
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Other libraries

o ArrayFire from Accelereyes:

>

>
¥
>

was commercial software, but now open source?
supports both CUDA and OpenCL execution
C, C++ and Fortran interfaces

wide range of functionality including linear algebra,
iImage and signal processing, random number
generation, sorting

WWW.accelereyes.com/products/arrayfire

NVIDIA maintains webpages with links to a variety of CUDA
libraries:
developer.nvidia.com/gpu—accelerated-libraries
and other tools:

developer.nvidia.com/tools—-ecosystem
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The 7 dwarfs

# Phil Colella, senior researcher at Lawrence Berkeley
National Laboratory, talked about “7 dwarfs” of
numerical computation in 2004

# expanded to 13 by a group of UC Berkeley professors
in a 2006 report: “A View from Berkeley”
Www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

# key algorithmic kernels in many scientific computing
applications

# very helpful to focus attention on HPC challenges and
development of libraries and problem-solving
environments/frameworks.
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The 7 dwarfs

dense linear algebra
sparse linear algebra
spectral methods
N-body methods
structured grids
unstructured grids
Monte Carlo
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Dense linear algebra

cuBLAS
cuSOLVER
MAGMA

ArrayFire
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Sparse linear algebra

® iterative solvers:
s sSome available in PetSc

s others can be implemented using sparse
matrix-vector multiplication from cuSPARSE

s NVIDIA has AmgX, an algebraic multigrid library

# direct solvers:
s NVIDIA’s cuSOLVER
s SuperLU project at University of Florida (Tim Davis)

www.cise.ufl.edu/ davis/publications_files/grgpu_paper.pdf
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Spectral methods

o cuFFT
s library provided / maintained by NVIDIA

# nothing else needed?
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N-body methods

» OpenMM

s 0Open source package to support molecular
modelling, developed at Stanford

# Fast multipole methods:

s ExaFMM by Yokota and Barba:
http://www.bu.edu/exafmm/

s FMM2D by Holm, Engblom, Goude, Holmgren:

http://user.it.uu.se/ stefane/freeware

s Software by Takahashi, Cecka, Fong, Darve:
onlinelibrary.wiley.com/doi/10.1002/nme.3240/pdf
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Structured grids

lots of people have developed one-off applications

no great need for a library for single block codes
(though possible improvements from “tiling”?)

multi-block codes could benefit from a general-purpose
library, mainly for MPI communication

Oxford OPS project has developed a high-level
open-source framework for multi-block codes,
using GPUs for code execution and MPI for
distributed-memory message-passing

all implementation details are hidden from “users”, so
they don’t have to know about GPU/MPI programming
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Unstructured grids

In addition to GPU implementations of specific codes there
are projects to create high-level solutions which others can
use for their application codes:

# Alonso, Darve and others (Stanford)

# Oxford / Imperial College project developed OP2,
a general-purpose open-source framework based on
a previous framework built on MPI

May be other work I’'m not aware of
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Monte Carlo

NVIDIA cuRAND library
Accelereyes ArrayFire library
some examples in CUDA SDK distribution

nothing else needed except for more output
distributions?
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Tools

Debugging:
® cuda—-memcheck
detects array out-of-bounds errors, and mis-aligned

device memory accesses — very useful because such
errors can be tough to track down otherwise

® cuda—-memcheck ——-tool racecheck
this checks for shared memory race conditions:

s Write-After-Write (WAW): two threads write data to
the same memory location but the order is uncertain

s Read-After-Write (RAW) and Write-After-Read
(WAR): one thread writes and another reads, but the
order is uncertain

®» cuda-memcheck ——tool i1nitcheck

detects reading of uninitialised device memory
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Tools

Other languages:

#» FORTRAN: PGl (Portland Group) CUDA FORTRAN
compiler with natural FORTRAN equivalent to CUDA C;
also IBM FORTRAN XL for new DoE systems

# MATLAB: can call kernels directly, or use OOP like
Thrust to define MATLAB objects which live on the GPU

http://www.oerc.ox.ac.uk/projects/cuda-centre-excellence/matlab—-gpus

® Mathematica: similar to MATLAB?

K Python: http://mathema.tician.de/software/pycuda

https://store.continuum.io/cshop/accelerate/

K F%: http://www.fuzzyl.com/products/gpu—analytics/

http://cran.r-project.org/web/views/HighPerformanceComputing.html

K HaSke”: https://hackage.haskell.org/package/cuda

http://hackage.haskell.org/package/accelerate
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Tools

OpenACC (“More Science, Less Programming”):

# like Thrust, aims to hide CUDA programming by doing
everything in the top-level CPU code

# programmer takes standard C/C++/Fortran code and
iInserts pragmas saying what can be done in parallel
and where data should be located

® https://www.openacc.org/

OpenMP 4.0 is similar but newer:

# strongly pushed by Intel to accommodate Xeon Phi and
unify things, in some sense

®» on-demand.gputechconf.com/gtc/2016/presentation/
s6bl0—-jJeff-larkin—-targeting—-gpus—openmp.pdf
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Tools

Integrated Development Environments (IDE):

X

Nsight Visual Studio edition — NVIDIA plug-in for
Microsoft Visual Studio

developer.nvidia.com/nvidia-nsight-visual-studio—-edition

Nsight Eclipse edition — IDE for Linux systems
developer.nvidia.com/nsight—-eclipse—-edition

these come with editor, debugger, profiler integration
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Tools

NVIDIA Visual Profiler nvprof£:
# standalone software for Linux and Windows systems

® uses hardware counters to collect a lot of useful
iInformation

# |think only 1 SM is instrumented — implicitly assumes
the others are behaving similarly

# |ots of things can be measured, but a limited number of
counters, so it runs the application multiple times if
necessary to get full info

® can also obtain instruction counts from command line:
nvprof ——metrics "flops_sp, flops_dp" prac?

do nvprof —--help for more info on other options
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Tools

GPU Direct:

K

webpage:
https://developer.nvidia.com/gpudirect

software support for direct data transfers from one GPU
to another

works across PCle within a single machine

works across PCle-connected network adapters
between different systems

iIncludes capabilities to work with cameras and other
video input devices (e.g. for self-driving cars)

very important in applications which might otherwise be
limited by PCle bandwidth
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Summary

active work on all of the dwarfs

IN most cases, significant effort to develop general
purpose libraries or frameworks, to enable users to get
the benefits without being CUDA experts

too much going on for one person (e.g. me) to keep
track of it all

NVIDIA maintains a webpage with links to CUDA
tools/libraries:
developer.nvidia.com/cuda-tools—ecosystem

the existence of this eco-system is part of why | think
CUDA will remain more used than OpenCL for HPC
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Overview

synchronicity
multiple streams and devices
multiple GPUs

other odds and ends
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Warnings

| haven’t tried most of what | will describe

some of these things have changed from one version of
CUDA to the next — everything here is for the latest
version

overall, keep things simple unless it's really needed for
performance

If it is, proceed with extreme caution, do practical 11,
and check out the examples in the SDK
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Synchronicity

A computer system has lots of components:
CPU(s)

GPU(s)

memory controllers

network cards

© o o o

Many of these can be doing different things at the same
time — usually for different processes, but sometimes
for the same process
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Synchronicity

The von Neumann model of a computer program is
synchronous with each computational step taking place

one after another

# this is an idealisation — almost never true in practice

# compiler frequently generates code with overlapped
instructions (pipelined CPUs) and does other
optimisations which re-arrange execution order and
avoid redundant computations

# however, it is usually true that as a programmer you can
think of it as a synchronous execution when working out
whether it gives the correct results

# when things become asynchronous, the programmer
has to think very carefully about what is happening and
In what order Lecture 6 — p. 5



Synchronicity

With GPUs we have to think even more carefully:

# host code executes on the CPU(s);
kernel code executes on the GPU(s)

# ... but when do the different bits take place?
# ... can we get better performance by being clever?
# ... might we get the wrong results?

Key thing is to try to get a clear idea of what is going on
— then you can work out the consequences
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GPU code

o for each warp, code execution is effectively
synchronous

# different warps execute in an arbitrary overlapped
fashion —use __syncthreads () If necessary to
ensure correct behaviour

# different thread blocks execute in an arbitrary
overlapped fashion

All of this has been described over the past 3 days
— nothing new here.

The focus of these new slides is on host code and the
implications for CPU and GPU execution
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Host code

Simple/default behaviour:

s 1 CPU

s 1 GPU

# 1 thread on CPU (i.e. scalar code)
# 1 default “stream” on GPU
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Host code

# most CUDA calls are synchronous / blocking:

# example: cudaMemcpy

s host call starts the copying and waits until it has
finished before the next instruction in the host code

s why? — ensures correct execution if subsequent host
code reads from, or writes to, the data being copied
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Host code

CUDA kernel launch is asynchronous / non-blocking

» host call starts the kernel execution, but doesn’t wait
for it to finish before going on to next instruction

similar for cudaMemcpyAsync

s starts the copy but doesn’t wait for completion

s has to be done through a “stream” with page-locked
memory (also known as pinned memory) — see
documentation

In both cases, host eventually waits when at a
cudaDeviceSynchronize () call

benefit? — in general, doesn’t affect correct execution,
and might improve performance by overlapping CPU
and GPU execution
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Host code

What could go wrong?
# Kkernel timing — need to make sure it's finished

# could be a problem if the host uses data which is
read/written directly by kernel, or transferred by
cudaMemcpyAsync

® cudaDeviceSynchronize () can be used to ensure
correctness (similar to __syncthreads () for kernel
code)
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Multiple Streams

Quoting from section 3.2.5.5 in the CUDA Programming
Guide:

Applications manage concurrency through streams.

A stream is a sequence of commands (possibly
Issued by different host threads) that execute in
order.

Different streams, on the other hand, may execute
their commands out of order with respect to one
another or concurrently.
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Multiple Streams

Optional stream argument for

# Kkernel launch

® cudaMemcpyAsync

with streams creating using cudaStreamCreate

Within each stream, CUDA operations are carried out in
order (i.e. FIFO —first in, first out); one finishes before the
next starts

Key to getting better performance is using multiple streams
to overlap things
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Page-locked memory

Section 3.2.4:

# host memory is usually paged, so run-time system
keeps track of where each page is located

# for higher performance, can fix some pages, but means
less memory available for everything else

® CUDA uses this for better host <— GPU bandwidth,
and also to hold “device” arrays in host memory

# can provide up to 100% improvement in bandwidth

°

also, it is required for cudaMemcpyAsync

# allocated using cudaHostAlloc, Or registered by
cudaHostRegister
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Default stream

The way the default stream behaves in relation to others
depends on a compiler flag:

# noflag, or -—default-stream legacy

old (bad) behaviour in which a cudaMemcpy or kernel
launch on the default stream blocks/synchronizes with
other streams

® ——default-stream per—-thread

new (good) behaviour in which the default stream
doesn’t affect the others

# note: flag label is a bit odd — it has other effects too
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Practical 11

cudaStream_t streams[8];
float *xdatal[8];

for (int 1 = 0; 1 < 8; i++) {
cudaStreamCreate (&streams[1]) ;
cudaMalloc (&data[i], N % sizeof (float));

// launch one worker kernel per stream
kernel<<<l, 64, 0, streams[i]>>>(datal[i], N);

// do a Memcpy and launch a dummy kernel on default stream

cudaMemcpy (d_data, h_data,sizeof (float),
cudaMemcpyHostToDevice) ;

kernel<<<l, 1>>>(d _data, 0);

}

cudaDeviceSynchronize () ; Lecture 6 —p. 16



Default stream

The second (main?) effect of the flag comes when using
multiple threads (e.g. OpenMP or POSIX multithreading)

In this case the effect of the flag is to create separate
independent (i.e. non-interfering) default streams for each
thread

Using multiple default streams, one per thread, is a good
alternative to using multiple “proper” streams
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Practical 11

omp_set_num_threads (8);
float xdatal8];

for (int 1 = 0; 1 < 8; 1++)
cudaMalloc (&datal[1], N *= sizeof (float));

fpragma omp parallel for
for (int 1 = 0; 1 < 8; 1i++) {

printf (" thread ID = %d \n",omp_get_thread_num());
// launch one worker kernel per thread

kernel<<<l, 64>>>(dataf[i], N);

cudaDeviceSynchronize () ;
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Stream commands

Each stream executes a sequence of kernels, but
sometimes you also need to do something on the host.

There are at least two ways of coordinating this:

# use a separate thread for each stream

s It can wait for the completion of all pending tasks,
then do what’s needed on the host

# Uuse just one thread for everything

s for each stream, add a callback function to be
executed (by a new thread) when the pending tasks
are completed

s It can do what's needed on the host, and then launch
new kernels (with a possible new callback) if wanted
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Stream commands

cudaStreamCreate ()
creates a stream and returns an opaque “handle”

cudaStreamSynchronize ()
waits until all preceding commands have completed

cudaStreamQuery ()
checks whether all preceding commands have
completed

cudaStreamAddCallback ()
adds a callback function to be executed on the host
once all preceding commands have completed
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Stream events

Useful for synchronisation and timing between streams:

® cudaEventCreate (event)
creates an “event”

® cudaEventRecord (event, stream)
puts an event into a stream (by default, stream 0)

® cudaEventSynchronize (event)
CPU waits until event occurs

® cudaStreamWaitEvent (stream, event)
stream waits until event occurs

® cudakEventQuery (event)
check whether event has occured

® cudaEventElapsedTime (time, eventl, event?l)
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Multiple devices

What happens if there are multiple GPUs?

CUDA devices within the system are numbered, not always
In order of decreasing performance

# by default a CUDA application uses the lowest number
device

# current device can be set by using cudaSetDevice

°

cudaGetDeviceProperties does what it says

# each stream is associated with a particular device
— must also be the current device when doing a kernel
launch or a memory copy

® see simpleMultiGPU example in SDK

® see section 3.2.6 for more information
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Multi-GPU computing

Single workstation / server:
# a big enclosure for good cooling

# up to 4 high-end cards in 16x PCle v3 slots — up to
12GB/s interconnect

# 2 high-end CPUs
o 1.5kW power consumption — not one for the office

NVIDIA DGX-1 Deep Learning server

# 8 NVIDIA GP100 GPUs, each with 16GB HBM2
® 2 x 20-core Intel Xeons (E5-2698 v4 2.2 GHz)
# 512 GB DDR4 memory, 8TB SSD

# 80GB/s NVlink interconnect between the GPUs
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Multi-GPU computing

A bigger configuration:

# a distributed-memory cluster / supercomputer with
multiple nodes, each with
s 2-4 GPUs
s 100 Gb/s Infiniband

® PCle v3 bandwidth of 12 GB/s similar to Infiniband
bandwidth
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Multi-GPU computing

The biggest GPU systems in Top500 list (June 2017):

# Tianhe-2 (China)
s 34 petaflop (#2), 18MW
s Intel Xeon Phi accelerators

o Piz Daint (CSCS Switzerland)
s 20 petaflop (#3), 2MW
s Cray XC50 with NVIDIA P100 GPUs

o Titan (ORNL)
s 18 petaflop (#4), SMW
s Cray XK7 with NVIDIA K20X GPUs

o Cori (LBNL/NERSC)
s 14 petaflop (#6), 4MW
s Cray XC40 with Intel Xeon Phi
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Multi-GPU computing

How does one use such machines?

Depends on hardware choice:

# for single machines, use shared-memory multithreaded
host application

# for clusters / supercomputers, use distributed-memory
MPI| message-passing
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MPI approach

In the MPI approach:

9
9

one GPU per MPI process (nice and simple)

distributed-memory message passing between MPI
processes (tedious but not difficult)

scales well to very large applications

main difficulty is that the user has to partition their
problem (break it up into separate large pieces for each
process) and then explicitly manage the communication

note: should investigate GPU Direct for maximum
performance in message passing
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Multi-user support

What if different processes try to use the same device?

Depends on system compute mode setting (section 3.4):

# in “default” mode, each process uses the fastest device
s good when one very fast card, and one very slow
s not good when you have 2 identical fast GPUs

# in “exclusive” mode, each process is assigned to first
unused device; it's an error if none are available

°

cudaGetDeviceProperties reports mode setting

# mode can be changed by sys-admin using
nvidia—-smi command line utility
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Odds and ends

Appendix B.21: loop unrolling

If you have a loop:
for (int k=0; k<4; k++) a[i] += b[1i];

then nvcc will automatically unroll this to give

al0] += b[0];
all] += b[1l];
al2] += b[2];
al3] += b[3];

to avoid cost of incrementing and looping.

The pragma
fpragma unroll 5

will also force unrolling for loops without explicit limits L ociure 6 — p. 28



Odds and ends

Appendix B.2.5: _restrict__ keyword

vold foo(const float* _ restrict_  a,

const floatx _ restrict b,
float+x _ restrict__ c) {

c[0] = al[0] = b[O0];

c[1] al0] = b[0];

cl2] = al0] « b[0] * all];

c[3] = al0] » a[l];

cl4] al0] = b[0];

c[5] = bl0];

}

The qualifier asserts that there is no overlap between

a,b,c ,sothe compiler can perform more optimisations
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Odds and ends

Appendix E.3.3.3: volatile keyword

Tells the compiler the variable may change at any time, so
not to re-use a value which may have been loaded earlier
and apparently not changed since.

This can sometimes be important when using shared
memory
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Odds and ends

Compiling:
#® Makefile for first few practicals uses nvcc to compile
both the host and the device code

s Internally it uses gcc for the host code, at least by
default

s device code compiler based on open source LLVM
compiler

# sometimes, prefer to use other compilers (e.g. icc,
mpicc) for main code that doesn’t have any CUDA calls

# this is fine provided you use —fpIcC flag for
position-independent-code (don't know what this means
but it ensures interoperability)

# can also produce libraries for use in the standard way
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Odds and ends

Prac 6 Makefile:

INC := —I$(CUDA_HOME) /include -TI.
LIB := —LS (CUDA_HOME) /1lib64 —-lcudart
FLAGS := ——ptxas—-options=-v —-use_fast_math

mailn.o: maln.cpp
gt++ —c —fPIC -0 malin.o maln.cpp

prac6t.o: pracbt.cu
nvcc praco6.cu —c —o prac6.o S (INC) $(FLAGS)

pracbt: mailn.o prac6t.o
gt+t+ —-fPIC -0 prac6t main.o prac6.o $(LIB)
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Odds and ends

Prac 6 Makefile to create a library:

INC := —I$(CUDA) /include -TI.
LIB := —-L$(CUDA) /1lib64 -lcudart
FLAGS := ——ptxas—-options=-v —-use_fast_math

mailn.o: maln.cpp
gt++ —-c¢ —fPIC -0 main.o maln.cpp

pracb6t.a: pracbt.cu
nvcc pracb.cu —-lib -o prac6.a $(INC) $(FLAGS)

pracba: maln.o pracé6.a
gt+ —-fPIC -0 prac6a main.o prac6t.a $(LIB)
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Odds and ends

Other compiler options:

®» —-arch=sm_35
specifies GPU architecture

$» —maxrregcount=n
asks compiler to generate code using at most n
registers; compiler may ignore this if it's not possible,
but it may also increase use up to this limit

This is much less important now since threads can have
up to 255 registers
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Odds and ends

Launch bounds (B.20):
#® -maxrregcount modifies default for all kernels

# each kernel can be individually controlled by specifying
launch bounds heuristics

__global__ wvoid

___launch bounds  (maxThreadsPerBlock,
minBlocksPerMultiprocessor)

MyKernel (...)
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Conclusions

This lecture has discussed a number of more advanced
topics

As a beginner, you can ignore almost all of them

As you get more experienced, you will probably want to
start using some of them to get the very best performance
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Initial planning

1) Has it been done before?

© o o o
O O O O

nec
nec
nec

nec

K CUDA SDK examples
K CUDA user forums
K gpucomputing.net

K with Google

Lecture 7 —p. 2



Initial planning

2) Where is the parallelism?

o efficient CUDA execution needs thousands of threads

# usually obvious, but if not
s go backto 1)
s talk to an expert — they love a challenge
s go for a long walk
# may need to re-consider the mathematical algorithm

being used, and instead use one which is more
naturally parallel — but this should be a last resort
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Initial planning

Sometimes you need to think about “the bigger picture”

Already considered 3D finite difference example:
# |ots of grid nodes so lots of inherent parallelism

» even for ADI method, a grid of 1283 has 128 tri-diagonal
solutions to be performed in parallel so OK to assign
each one to a single thread

# but what if we have a 2D or even 1D problem to solve?
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Initial planning

If we only have one such problem to solve, why use a GPU?

But in practice, often have many such problems to solve:
o (different initial data
o different model constants

This adds to the available parallelism
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Initial planning

2D:

® 64KB of shared memory == 16K float so grid of 642
could be held within shared memory
s one kernel for entire calculation
» each block handles a separate 2D problem; almost

certainly just one block per SM

# for bigger 2D problems, would need to split each one
across more than one block
s separate kernel for each timestep / iteration
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1D:

Initial planning

# can certainly hold entire 1D problem within shared
memory of one SM

# maybe best to use a separate block for each 1D
problem, and have multiple blocks executing

concurrent

# Dbut for imp
tri-diagona

y on each SM
icit time-marching need to solve single

system in parallel — how?
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Initial planning

Parallel Cyclic Reduction (PCR): starting from
n Tn—1+Tp +Cpntpr1=d,, n=0,...N—1

with a,, =0 for m<0, m> N, subtract a,, times row n—1,
and ¢, times row n+1 and re-normalise to get

k %k *
ay, Tp—2 + Ty + €, Tpto = d,

Repeating this log, N times gives the value for z,, (since
r,—n=0,z,.ny=0) and each step can be done in parallel.

(Practical 7 implements it using shared memory, but if
N < 32 so it fits in a single warp then on Kepler hardware

it can be implemented using shuffles.)
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Initial planning

3) Break the algorithm down into its constituent pieces

each will probably lead to its own kernels
do your pieces relate to the 7 dwarfs?

re-check literature for each piece — sometimes the
same algorithm component may appear in widely
different applications

© o ©

°

check whether there are existing libraries which may be
helpful
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Initial planning

4) |s there a problem with warp divergence?

#® GPU efficiency can be completely undermined if there
are lots of divergent branches

# may need to implement carefully — lecture 3 example:

processing a long list of elements where, depending on
run-time values, a few involve expensive computation:

s first process list to build two sub-lists of “simple” and
“expensive” elements

» then process two sub-lists separately

# ... oragain seek expert help
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Initial planning

5) Is there a problem with host <—> device bandwidth?

o usually best to move whole application onto GPU,
so not limited by PCle bandwidth (5GB/s)

# occasionally, OK to keep main application on the host
and just off-load compute-intensive bits

# dense linear algebra is a good off-load example;
data is O(N?) but compute is O(N?) so fine if
N Is large enough
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Heart modelling

Heart modelling is another interesting example:

#» keep PDE modelling (physiology, electrical field)
on the CPU

# do computationally-intensive cellular chemistry on GPU
(naturally parallel)

# minimal data interchange each timestep
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Initial planning

6) is the application compute-intensive or data-intensive?

# Dbreak-even point is roughly 40 operations (FP and
integer) for each 32-bit device memory access
(assuming full cache line utilisation)

# good to do a back-of-the-envelope estimate early on
before coding = changes approach to implementation
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Initial planning

If compute-intensive:
# don’t worry (too much) about cache efficiency

# minimise integer index operations — surprisingly costly
(this changes with Volta which has separate integer
units)

# if using double precision, think whether it's needed

If data-intensive:
# ensure efficient cache use — may require extra coding

# may be better to re-compute some quantities rather
than fetching them from device memory

# if using double precision, think whether it's needed
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Initial planning

Need to think about how data will be used by threads,
and therefore where it should be held:

® regqisters (private data)

shared memory (for shared access)
device memory (for big arrays)
constant arrays (for global constants)

© o o o

“local” arrays (efficiently cached)
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Initial planning

If you think you may need to use “exotic” features like
atomic locks:

# look for SDK examples
# write some trivial little test problems of your own
# check you really understand how they work

Never use a new feature for the first time on a real problem!
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Initial planning

Read NVIDIA documentation on performance optimisation:
# section 5 of CUDA Programming Guide

CUDA C Best Practices Guide

Kepler Tuning Guide

Maxwell Tuning Guide

© o o o

Pascal Tuning Guide
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Programming and debugging

Many of my comments here apply to all scientific computing

Though not specific to GPU computing, they are perhaps
particularly important for GPU / parallel computing because

debugging can be hard!

Above all, you don’'t want to be sitting in front of a 50,000
line code, producing lots of wrong results (very quickly!)
with no clue where to look for the problem
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Programming and debugging

plan carefully, and discuss with an expert if possible

code slowly, ideally with a colleague, to avoid mistakes
but still expect to make mistakes!

code in a modular way as far as possible, thinking how
to validate each module individually

build-in self-testing, to check that things which ought to
be true, really are true

(In my current project | have a flag 0P _DIAGS;
the larger the value the more self-testing the code does)

overall, should have a clear debugging strategy to
identify existence of errors, and then find the cause

Includes a sequence of test cases of increasing

difficulty, testing out more and more of the code
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Programming and debugging

When working with shared memory, be careful to think
about thread synchronisation.

Very important!

Forgetting a
__syncthreads () ;

may produce errors which are unpredictable / rare
— the worst Kind.

Also, make sure all threads reach the synchronisation point
— otherwise could get deadlock.

Reminder: can use cuda-memcheck —-tool
racecheck to check for race condition Lecture 7 —p. 20



Programming and debugging

In developing 1laplace3d, my approach was to

» first write CPU code for validation

# next check/debug CUDA code with printf statements
as needed, with different grid sizes:
s grid equal to 1 block with 1 warp (to check basics)

s grid equal to 1 block and 2 warps (to check
synchronisation)

s grid smaller than 1 block (to check correct treatment
of threads outside the grid)

s grid with 2 blocks
# then turn on all compiler optimisations
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Performance improvement

The size of the thread blocks can have a big effect on
performance:

# often hard to predict optimal size a priori

# optimal size can also vary significantly on different
hardware

# optimal size for 1aplace3d with a 1283 grid was
s 128 x 2 on Fermi generation
s 32 x 4 on later Kepler generation
at the time, the size of the change was a surprise

# we're not talking about just 1-2% improvement,
can easily be a factor 2x by changing block size
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Performance improvement

A number of numerical libraries (e.g. FFTW, ATLAS) now
feature auto-tuning — optimal implementation parameters

are determined when the library is installed on the specific
hardware

| think this is going to be important for GPU programming:
# write parameterised code

# use optimisation (possibly brute force exhaustive
search) to find the optimal parameters

# an Oxford student, Ben Spencer, developed a simple
flexible automated system to do this — can try it in one
of the mini-projects
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Performance improvement

Use profiling to understand the application performance:

9

9
9
9

where is the application spending most time?
how much data is being transferred?
are there lots of cache misses?

there are a number of on-chip counters can provide this
kind of information

The CUDA profiler is great

>
9

provides lots of information (a bit daunting at first)
gives hints on improving performance
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Going further

In some cases, a single GPU is not sufficient

Shared-memory option:
# single system with up to 8 GPUs

# single process with a separate host thread for each
GPU, or use just one thread and switch between GPUs

# can also transfer data directly between GPUs

Distributed-memory option:
# a cluster, with each node having 1 or 2 GPUs

# MPI message-passing, with separate process for each
GPU
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Going further

Keep an eye on what is happening with new GPUs:

# Pascal came out in 2016:
s P100 for HPC with great double precision
s HBM2 memory — improved memory bandwidth

s NVIink — 4x20GB/s links per GPU for greatly
improved GPU-GPU & CPU-GPU bandwidth

# Volta is coming out later this year:
s V100 for HPC

s roughly 50% faster than P100 in compute, memory
bandwidth and NVIink

s Quest lecture on Friday
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Going further

Two GPU systems:

# NVIDIA DGX-1 Deep Learning server
s 8 NVIDIA GP100 GPUs, each with 16GB HBM2
s 2 x 20-core Intel Xeons (E5-2698 v4 2.2 GHz)
s 512 GB DDR4 memory, 8TB SSD
s 80GB/s NVIink interconnect between the GPUs

# |IBM “Minsky” server
s 4 NVIDIA GP100 GPUs, each with 16GB HBM2

s 2 x 12-core IBM Power8+ CPUs, with up to 230GB/s
memory bandwidth

s 80GB/s NVlink interconnect between the GPUs,
CPUs and large system memory
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JADE

Joint Academic Data science Endeavour

°

funded by EPSRC under national Tier 2 initiative
22 DGX-1 systems

#® 50/30/20 split in intended use between
machine learning / molecular dynamics / other

°

# Oxford led the consortium bid, but system sited at
STFC Daresbury and run by STFC / Atos

# early users are starting to use it now

There is also a GPU system at Cambridge.
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Going further

Intel:

# |atest “Skylake” CPU architectures
s some chips have built-in GPU, purely for graphics
s 4-22 cores, each with a 256-bit AVX vector unit
s 512-bit vector unit on new high-end Xeons

# Xeon Phi architecture
s “Knights Landing (KNL)”: up to 72 cores, out now
s performance comparable to a GPU — 300 watts

ARM:
# already designed OpenCL GPUs for smart-phones
# new 64-bit Cavium Thunder-X2 has up to 54 cores
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Going further

My current software assessment:

® CUDA is dominant in HPC, because of
s ease-of-use

s NVIDIA dominance of hardware, with big sales in
games/VR, machine learning, supercomputing

s extensive library support

s support for many different languages
(FORTRAN, Python, R, MATLAB, etc.)

s extensive eco-system of tools

# OpenCL is the multi-platform standard, but currently
only used for low-end mass-market applications

s computer games
s HD video codecs Lecture 7 — p. 30



Going further

# Intel is promoting a confusing variety of alternatives for
Xeon Phi and multicore CPUs with vector units

s low-level vector intrinsics
OpenCL

OpenMP 4.0 directives

TBB (thread building blocks)
Cilk Plus directives
auto-vectorising compiler

e o o o o

Eventually, | think the auto-vectorising compiler with
OpenMP 4.0 will be the winner.

Lecture 7 — p. 31



Final words

# exciting times for HPC

# the fun will wear off, and the challenging coding will
remain — computer science objective should be to
simplify this for application developers through

s libraries

s domain-specific high-level languages
s code transformation

s Dbetter auto-vectorising compilers

# confident prediction: GPUs and other accelerators /
vector units will be dominant in HPC for next 5-10 yeatrs,
so it's worth your effort to re-design and re-implement
your algorithms
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GPUs

In the last 6 years, GPUs have emerged as a major new technology in
computational finance, as well as other areas in HPC:

@ over 1000 GPUs at JP Morgan, and also used at a number of other
Tier 1 banks and financial institutions

@ use is driven by both energy efficiency and price/performance, with
main concern the level of programming effort required

@ Monte Carlo simulations are naturally parallel, so ideally suited to
GPU execution:

> averaging of path payoff values using binary tree reduction
> key requirement is parallel random number generation, and that is
addressed by libraries such as CURAND
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Finite Difference calculations

Focus of this work is finite difference methods for approximating
Black-Scholes and other related multi-factor PDEs

@ explicit time-marching methods are naturally parallel — again a good
target for GPU acceleration

@ implicit time-marching methods usually require the solution of lots of
tridiagonal systems of equations — not so clear how to parallelise this

@ key observation is that cost of moving lots of data to/from the main
graphics memory can exceed cost of floating point computations

» 288 GB/s bandwidth
» 4.3 TFlops (single precision) / 1.4 TFlops (double precision)

—> should try to avoid this data movement
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1D Finite Difference calculations

In 1D, a simple explicit finite difference equation takes the form
+1 _
ul™t = ajui g+ bjuf + G ujy
while an implicit finite difference equation takes the form

. ntl 01 on+l _ on
ajui’y +bjuj +Guly =y

requiring the solution of a tridiagonal set of equations.

What performance can be achieved?
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1D Finite Difference calculations

o grid size: 256 points

@ number of options: 2048
@ number of timesteps: 50000 (explicit), 2500 (implicit)

@ K20 capable of 3.5 TFlops (single prec.), 1.2 TFlops (double prec.)

single prec. double prec.
msec | GFinsts | GFlops | msec | GFinsts | GFlops
explicitl | 347 227 454 | 412 191 382
explicit2 89 882 1763 | 160 490 980
implicitl 28 892 1308 80 401 637
implicit2 33 948 1377 88 441 635
implicit3 14 643 1103 30 294 505

How is this performance achieved?

Mike Giles (Oxford University) PDEs on GPUs
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NVIDIA Kepler GPU
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64kB L1 cache /

shared memory

SMX

SMX

SMX

SMX

1.5MB L2 cache

SMX

SMX

SMX

SMX

PDEs on GPUs
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1D Finite Difference calculations

Approach for explicit time-marching:

@ each thread block (256 threads) does one or more options
e 3 FMA (fused multiply-add) operations per grid point per timestep

@ doing an option calculation within one thread block means no need to
transfer data to/from graphics memory — can hold all data in SMX
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1D Finite Difference calculations

@ explicitl holds data in shared memory
@ each thread handles one grid point

@ performance is limited by speed of shared memory access,
and cost of synchronisation

__shared__ REAL u[258];
utmp = ulil;

for (int n=0; n<N; n++) {
utmp = utmp + a*uli-1] + b*utmp + c*uli+1];
__syncthreads () ;
uli] = utmp;
__syncthreads () ;
}
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1D Finite Difference calculations

explicit2 holds all data in registers

@ each thread handles 8 grid points, so each warp (32 threads which
act in unison) handles one option

@ no block synchronisation required

@ data exchange with neighbouring threads uses shuffle instructions
(special hardware feature for data exchange within a warp)

@ 64-bit shuffles performed using in software
(Julian Demouth, GTC 2013)
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1D Finite Difference calculations

for (int n=0; n<N; n++) {
um = __shfl_up(ul[7], 1);
up = __shfl_down(ul[0], 1);

for (int i=0; i<7; i++) {

u0 = ul[i];
uli] = uli] + alil*um + b[il*u0 + cl[il*uli+1];
um = u0;

}

ul7] = ul7] + al7]*um + b[7]*ul[7] + c[7]*up;
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1D Finite Difference calculations

Bigger challenge is how to solve tridiagonal systems for implicit solvers.

@ want to keep computation within an SMX and avoid data transfer
to/from graphics memory

@ prepared to do more floating point operations if necessary to avoid
the data transfer

@ need lots of parallelism to achieve good performance
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Solving Tridiagonal Systems

On a CPU, the tridiagonal equations
a,-u,-,l—i—b,-u,-—l—c,-u,url =d, i=0,1,...,N—1

would usually be solved using the Thomas algorithm — essentially just
standard Gaussian elimination exploiting all of the zeros.

@ inherently sequential algorithm, with a forward sweep and then a
backward sweep
@ would require each thread to handle separate option

@ threads don't have enough registers to store the required data
— would require data transfer to/from graphics memory to hold /
recover data from forward sweep

@ not a good choice — want an alternative with reduced data transfer,
even if it requires more floating point ops.
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Solving Tridiagonal Systems
PCR (parallel cyclic reduction) is a highly parallel algorithm.
Starting with

ajui—1 + uj + ¢ ujp1 = dj, i=01,...,N-1,

where u;=0 for j<0,j> N, can subtract multiples of rows /11, and
re-normalise, to get

diui s+ ui+cuo=d, i=01,...,N-1
Repeating with rows i+2 gives
af-'u;_4+u;+c,{'u,-+4:d,{' i=0,1,...,N—1,

and after log, N repetitions end up with solution because uj1y = 0.
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Solving Tridiagonal Systems

template <typename REAL> __forceinline__ __
REAL tridl_warp(REAL a, REAL c, REAL d){

REAL b;

uint s=1;
#pragma unroll

for (int n=0; n<5; n++) {

b = __rcp( 1.0f - a*__shfl_up(c,s)
- cx__shfl _down(a,s) );

device__

d=(d - ax__shfl up(d,s)
- c*__shfl_down(d,s) ) * b;
a= - ax__shfl_up(a,s) * b;
c = - c*__shfl_down(c,s) * b;
= s<<1;
}
return d;
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1D Finite Difference calculations

Using a naive implementation of PCR we would have:

@ 1 grid point per thread

@ multiple warps for each option, so data exchange via shared memory,
and synchronisation required — not ideal

@ O(Nlog, N) floating point operations — quite a bit more than
Thomas algorithm

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 15/ 33



1D Finite Difference calculations

This leads us to a hybrid algorithm: implicitl.
o follows data layout of explicit?2 with each thread handling 8 grid
points — means data exchanges can be performed by shuffles

@ each thread uses Thomas algorithm to obtain middle values as a
linear function of two (not yet known) “end” values

Uppj=Asj+Bijus+Crpjuygr, 0<j<7

@ the reduced tridiagonal system of size 2 x 32 for the “end” values
is solved using PCR

@ total number of floating point operations is approximately double
what would be needed on a CPU using the Thomas algorithm
(but CPU division is more expensive, so similar Flop count overall?)
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1D Finite Difference calculations

implicit?2 is very similar to implicitl, but instead of solving

o+l Coon+1 Con+l n
ajul"y +bju G uly = uj

it instead computes the change Au; = ujf’H — ujf’ by solving
ajAuj_1 + bj Auj + ¢ Aujy1 = djn

and then updates u;.

This gives better accuracy, which might be important if working in
single precision.
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1D Finite Difference calculations

Errors:

@ explicitl, explicit2 SP errors: le-5
could improve a little by changing to

u}’“ =ul +(ajuly +bjul +qujy)
implicitl SP errors: 5e-5
implicit2 SP errors: le-6

discretisation errors: le-4

model errors (wrong PDE, wrong coefficients): MUCH larger

Personally, | think single precision is perfectly sufficient, but the banks
still prefer double precision.
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1D Finite Difference calculations

If the matrices do not change each timestep, then some parts of the
tridiagonal solution do not need to be repeated each time.

Impressively, the compiler noticed this in the original version of
implicitl, and pre-computed as much as it could, at the cost of
some additional registers.

For meaningful performance results for real time-dependent matrices,
| stopped this by adding a (zero) time-dependent term on the main

diagonal.

However, for applications with fixed matrices, implicit3 exploits this
to pre-compute as much as possible.
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3D Finite Difference calculations
What about a 3D extension on a 256> grid?
@ memory requirements imply one kernel with multiple thread
blocks to handle a single option

@ kernel will need to be called for each timestep, to ensure that
the entire grid is updated before the next timestep starts

@ 13-point stencil for explicit time-marching

Feiae

@ implementation uses a separate thread for each grid point in
2D x-y plane, then marches in z-direction
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3D Finite Difference calculations

o grid size: 2563 points

@ number of timesteps: 500 (explicit), 100 (implicit)
@ K40 capable of 4.3 TFlops (single prec.), 1.4 TFlops (double prec.)

and 288 GB/s

single prec. double prec.
msec | GFlops | GB/s | msec | GFlops | GB/s
explicitl 747 597 100 | 1200 367 127
explicit2 600 760 132 | 923 487 144
implicitl | 505 360 130 | 921 235 139

Performance as reported by nvprof, the NVIDIA Visual Profiler
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3D Finite Difference calculations

explicitl relies on L1/L2 caches for data reuse — compiler does an
excellent job of optimising loop invariant operations

u2[indg] = t23
+ t13
+ (c1_3#%83%8S3 - c2_3%33 - t13 - t23)
+ t12
+ (c1_2%S2%S2 - c2_2%S2 - t12 - t23)
+ (c1_1%S1%S1 - c2_1%S1 - t12 - t13)
+ (1.0f - c3 - 2.0f%( c1_1*S1%S1 + c1
- t12 - t13 - t23 ) )
+ (c1_1#S1%S1 + c2_1%S1 - t12 - t13)
+ (c1_2%82%S2 + c2_2%S2 - t12 - t23)
+ t12
+ (c1_3#S3*83 + c2_3*S3 - t13 - t23)
+ t13
+ t23

Mike Giles (Oxford University) PDEs on GPUs
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ul[indg-KOFF-JOFF]
ul[indg-KOFF-IOFF]
u1 [indg-KOFF]
ul[indg-JOFF-I0FF]
ul [indg-JOFF]
ul [indg-IOFF]

2%S2xS2 + c1_3*S3*S3

ul [indg]

u1 [indg+I0FF]

ul [indg+JOFF]

ul [indg+JOFF+I0FF]
ul[indg+KOFF]

ul [indg+KOFF+I0FF]
ul [indg+KOFF+JOFF] ;
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3D Finite Difference calculations

explicit2 uses extra registers to hold values which will be needed again

ul_mm =
ul_om =
ul_mo =
ul_pp =

t23 * ul_om
+ t13 * ul_mo
+ (c1_3%S3%S3 - c2_3*%S3 - t13 - t23) * ul_m;
ul[indg-JOFF-IO0FF];
ul[indg-JOFF];
ul[indg-IOFF];
ul [indg+IOFF+JOFF] ;
+ t12 * ul_mm
+ (c1_2%82%82 - c2_2%S2 - t12 - t23) * ul_om
+ (c1_1%81xS1 - c2_1*S1 - t12 - t13) * ul_mo
+ (1.0f - c3 - 2.0f*( c1_1*S1*S1 + c1_2xS2%S2 + c1_3%S3*S3

- t12 - t13 - t23 ) ) * ul_oo
+ (c1_1%S1%S1 + c2_1xS1 - t12 - t13) * ul_po
+ (c1_2%82%S2 + c2_2%S2 - t12 - t23) * ul_op
+ t12 * ul_pp;
KOFF;
= ul_oo;

ul[indgl;
ul[indg+I0FF];
ul[indg+JOFF];
+ (c1_3%83%83 + c2_3*S3 - t13 - t23) * ul_oo
+ t13 * ul_po
+ t23 * ul_op;
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3D Finite Difference calculations

For implicit time-marching, the ADI discretisation requires the solution
of a tridiagonal equations along each line in the x-direction, and then
the same in the y- and z-directions.

implicit1 is based on library software being written by Endre L3aszl6,
Istvdn Reguly and Jeremy Appleyard (NVIDIA), based on the 1D hybrid
PCR code - - better than the Thomas method because it involves much
less data transfer to/from graphics memory.

The clever part of the implementation is in the data transpositions
required to maximise bandwidth — a bit like transposing a matrix.
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3D Finite Difference calculations

The implicitl code has the following structure:
@ kernel similar to explicit kernel to produce r.h.s.

@ separate kernel for tridiagonal solution in each coordinate direction

Fairly balanced between computation and communication, provided
attention is paid to maximising data coalescence.

In x-direction:
@ each warp handles one tri-diagonal system
@ data is contiguous in global memory

o data is loaded in coalesced way, then transposed in shared memory
so each thread gets 8 contiguous elements

care is taken to avoid shared memory bank conflicts

process is reversed when storing data
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Data transposition
What is the problem?

In this application, a warp of 32 threads wants to load in an array of 256
elements:

@ natural coalesced load means warp reads in first 32, then next 32,
and so on
o thread 0 ends up with elements 0, 32, 64, 96, 128, ...

@ but, for hybrid PCR algorithm, thread 0 needs elements 0, 1, 2, 3, 4,
56,7

@ so, how does data get re-arranged?
@ more generally, how do we handle it with / elements per thread?

@ same problem arises in applications where 32 threads want to load 32
objects (structs) each consisting of / contiguous elements

Mike Giles (Oxford University) PDEs on GPUs July 25th, 2014 26 / 33



Data transposition

If I is odd, it can be done very simply using shared memory.

If j is the thread index, then

for i=0, I-1 do
load global array element j 4 32 %/
write into shared memory j + 32 % / 4
end for J
for i=0, I-1 do
read from shared memory i + j * / 10]11]12]13]14
end for 56/ 789
0l 1 2| 3| 4

>
>

Key point is that in final read, each thread in the warp is reading from a

different shared memory bank — there are 32 of these.
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Shared memory

@ physically, the shared memory hardware is organised into 32 memory
banks

@ data for shared memory location k is stored in bank k mod 32

@ if two threads in the warp read different data from the same memory
bank then it takes longer (the requests are handled sequentially)

@ generally not a major concern, but in a worst case it can perform very
poorly

@ no bank conflict for odd / because j=32 is first positive integer with
Jj I mod 32 = 0 producing a bank conflict with j = 0.

@ when / is a power of 2, there is a problem since j = 0,32//,64/1 ...
all access the same bank — particularly bad for large /
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Data transposition

When [ is a power of 2, we avoid bank conflicts by padding the shared

memory storage

for i=0, |-1 do
k=j+32x%i
load global array element k -
write into shared memory k+k /32 padded by 1
end for

for i=0, I-1 do

k=i+jx*I

read from shared memory k+k/32
end for
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Data transposition

@ this can be extended to general / (neither odd nor a power of 2)
o definitely confusing the first time you learn about it
@ not worth worrying about in most applications

@ can be important when developing library software to achieve the
ultimate in performance
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3D Finite Difference calculations

In y and z-directions:

thread block with 8 warps to handle 8 tri-diagonal systems
data for 8 systems is loaded simultaneously to maximise coalescence
each thread gets 8 elements to work on

data transposition in shared memory so that each warp handles PCR
for one tridiagonal system

then data transposition back to complete the solution and finally
store the result

quite a tricky implementation but it performs very well

Bottom line — distinctly non-trivial, so check out the code on my webpage!
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Finite Difference calculations
Other dimensions?

2D:
e if the grid is small (1282?) one option could fit within a single SMX

> in this case, could adapt the 1D hybrid PCR method for the 2D ADI

solver
» main complication would be transposing the data between the x-solve
and y-solve so that each tridiagonal solution is within a single warp

@ otherwise, will have to use the 3D approach, but with solution of
multiple 2D problems to provide more parallelism

4D:

@ same as 3D, provided data can fit into graphics memory
(buy a K40 with 12GB graphics memory!)
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Conclusions

@ GPUs can deliver excellent performance for financial finite difference
calculations, as well as for Monte Carlo

@ some parts of the implementation are straightforward, but others
require a good understanding of the hardware and parallel algorithms
to achieve the best performance

@ some of this work will be built into future NVIDIA libraries
(CUSPARSE, CUB?)

@ we are now working to develop a program generator to generate
code for arbitrary financial PDEs, based on an XML specification

For further info, see software and other details at
http://people.maths.ox.ac.uk/gilesm/codes/BS_1D/
http://people.maths.ox.ac.uk/gilesm/codes/BS_3D/
http://people.maths.ox.ac.uk/gilesm/cuda_slides.html
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