CUDA C/C++ BASICS

What i1s CUDA?

e CUDA Architecture

— Expose GPU parallelism for general-purpose computing
— Retain performance

« CUDA C/C++
— Based on industry-standard C/C++

— Small set of extensions to enable heterogeneous
programming
— Straightforward APIs to manage devices, memory etc.

 This session introduces CUDA C/C++

Introduction to CUDA C/C++

 What will you learn in this session?
— Start from “Hello World!”
— Write and launch CUDA C/C++ kernels
— Manage GPU memory

— Manage communication and
synchronization

Prerequisites

* You (probably) need experience with C or
C++

* You don’t need GPU experience

* You don’t need parallel programming
experience

* You don’t need graphics experience

Heterogeneous Computing

Blocks

Threads

Indexing

CONCEPTS

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

© NVIDIA 2013

CONCEPTS N il Heterogeneous Computing

5-

Indexing
........... Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Hello World!

Managing devices

Heterogeneous Computing

Terminology:
The CPU and its memory (host memory)

The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Heterogeneous Computing

rclude <o

clude <agortm>

sing namespace st

wdetneN 1024
detne RADIUS 3
defne BLOCK_SIZE 16

__olobal_ i stenci_3d(1t i, "ou) |
hoed it emp{BLOCK.SIZE +2* RADIUS]

ot gin

e+ bockidx blockDim
Intinde = treadichx - RADIUS;

11 Read nput slemerss o shared memory
femplinde = fgndex)
1 (iveadidex <RADIVS)
femplindex - RADIUS] = igindex - RADIUS]
femplindex + BLOCK_SIZE] = ngindex + BLOCK_SIZE];

syeveads(;

Appythe stnci
ntresut=0;
for (mtffset = RADIUS ;ofset <= RADIUS ; offsts)

st += tmplindex + ofse]
11 Store he resut
oulginden= resut;

)

void s)

Lt n 1),

)

ot mainto)

cudaltos((void 8._out 529)

1 Copyto deice
Codalemcpy(d_in, i, size,cudaemepyHostToDevice)

cudablemepy(d_ou. ou, ize, cudahemepyHosTaDevie):

aunch senci_160 kermel on GPU

Stencd_1<<cNIBLOCK_SIZE BLOCK_SIZE>>>(d_n + RADIUS, d_out+ RADILS:

1 Copy resut back o st

udablomcpy(ou, _out, size, cudaenncpyDeviceToHos1;

i Cleanup
nee(e): ee(ou;
udaFroe(d_): cudaren(d_ou;

reumo;

- parallel fn

- serial code

| parallel code

- serial code

E]

)
I
W

A

<

[

© NVIDIA 2013

Simple Processing Flow

PCl Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory

© NVIDIA 2013

Simple Processing Flow

PCl Bus >

CPU Memory

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

© NVIDIA 2013

Simple Processing Flow

PCl Bus >

/
AU

7

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

3. Copy results from GPU memory to
CPU memory

52

DRAM

© NVIDIA 2013

Hello World!

main() {
printf("Hello World!\n");
¥
}

Standard C that runs on the
host

NVIDIA compiler (nvcc) can be
used to compile programs with
no device code

Output:

$ nvcc
hello world.
cu

$ a.out
Hello World!

$

Hello World! with Device
Code

mykernel () {

main() {
mykernel<<<i, 1>>>();
printf("Hello World!\n");

0;

" Two new syntactic elements...

Hello World! with Device
Code

void mykernel(void) {

}

« CUDA C/C++ keyword Indicates a function that:
— Runs on the device
—|Is called from host code

* nvcc separates source code into host and device
components
— Device functions (e.g. mykerne1()) processed by NVIDIA compiler

— Host functions (e.g. main()) processed by standard host
compiler
* gcc, cl.exe

Hello World! with Device
COde

mykernel<<<i,1>>>();

* Triple angle brackets mark a call from
host code to device code
— Also called a “kernel launch”

— We'll return to the parameters (1,1) in a
moment

 That’s all that is required to execute a
function on the GPU!

Hello World! with Device

Code

mykernel (
}
main () {
mykernel<<<i, 1>>>();
printf("Hello World!\n");
0,
}

* mykernel() does nothing,
somewhat anticlimactic!

)M

Output:

$ nvcc
hello.cu

$ a.out
Hello World!

$

Parallel Programming in CUDA C/C+
|

But wait... GPU computing is about massive parallelism!
We need a more interesting example...

We’ll start by adding two integers and build up to vector

addition

Addition on the Device

A simple kernel to add two integers

add (*a, *b, *c) {
*¢ = *a + *b;

}

* As before IS a CUDA C/C++
keyword meaning
- add() WIll execute on the device
- add() Will be called from the host

Addition on the Device

Note that we use pointers for the
variables

add(' ’) {
}

* add() runs on the device, sO a, b and ¢ must
point to device memory

We need to allocate memory on the GPU

Memory Management

 Host and device memory are separate entities

pointers point to GPU memory

May be passed to/from host code R
May not be dereferenced in host code

pointers point to CPU memory |

May be passed to/from device code

May not be dereferenced in device code

|||||
m"l::u:)
I|||

 Simple CUDA API for handling device memory
—cudaMalloc(), cudaFree(), cudaMemcpy ()
— Similar to the C equivalents malloc(), free(), memcpy()

Addition on the Device: add()

* Returning to our add() kernel

add (*a, *b, *c) {
*¢c = *a + *b;

}

e Let's take a look at main()...

Addition on the Device: main()

int main(void) {
int a, b, c; // host copies of a, b, ¢
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;
b =7;

© NVIDIA 2013

Addition on the Device: main()

// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<i,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}

?

-
-
é_
é‘
;
° °
Running in Parallel
: Managing devices

© NVIDIA 2013

Moving to Parallel

* GPU computing is about massive parallelism
— S0 how do we run code in parallel on the device?

add<<< 1, 1 >>>();,

add<<< I, 1 >>>();

* Instead of executing add() once, execute N
times in parallel

Vector Addition on the
Device

* With add() running in parallel we can do vector addition

* Terminology: each parallel invocation of add() IS
referred to as a
— The set of blocks is referred to as a
— Each invocation can refer to its block index using

add (*a, *b, *c) {
c[] = af 1 + b][1;
}

* By using to index into the array, each block
handles a different index

Vector Addition on the
Device

__global__ void add(int *a, int *b, int *c) {
cl] =al] + bl 1;
}

e On the device, each block can execute In
parallel:

Block O Block 1 Block 2 Block 3

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];
\, / \\) N\ s \\ /

© NVIDIA 2013

Vector Addition on the Device:
add ()

* Returning to our parallelized add()
kernel

add (*a, *b, *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

e Let's take a look at main()...

Vector Addition on the Device:
main()

main(void) {
// host copies of a, b, c
*d_a, *d_b, *d_c; // device copies of a, b, c

size = (),

// Alloc space for device copies of a, b, c

cudaMalloc((**)&d_a, size);
cudaMalloc((**)&d_b, size);
cudaMalloc((**)&d_c, size);

// Alloc space for host copies of a, b, ¢ and setup input values

Vector Addition on the Device:

main()

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks

add<<<i,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

0;

Review (1 of 2)

e Difference between host and device
CPU
GPU

* Using to declare a function as device
code
— Executes on the device
— Called from the host

* Passing parameters from host code to a device
function

Review (2 of 2)

* Basic device memory management

— cudaMalloc()
— cudaMemcpy/()
— cudaFree()

* Launching parallel kernels
— Launch ~ copies of add() With add-<-n,1->>(..);
— Use to access block index

?

—
-
-
—
;
3
Introducing Threads
: Managing devices

© NVIDIA 2013

CUDA Threads

* Terminology: a block can be split into parallel

* Let’'s change add() to use parallel threads

Instead of parallel blocks
add (*a, *b, *c) {

cl 1 = a]] + bl 17
}

 We use Instead of

* Need to make one change in main()...

Vector Addition Using Threads:

main()
#define N 512

main(void) {

*a, *b, *c; // host copies of a, b, c
*d_a, *d_b, *d_c; // device copies of a, b, c
size = N * ();

// Alloc space for device copies of a, b, c

cudaMalloc((**)&d_a, size);
cudaMalloc((**)&d_b, size);
cudaMalloc((**)&d_c, size);

// Alloc space for host copies of a, b, ¢ and setup input values

a = (int *)malloc(size); random_ints(a, N);

=2
1

(int *)malloc(size); random_ints(b, N);

¢ = (int *)malloc(size);

Vector Addition Using Threads:

main()

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N

add<<< >>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

0;

=
-
-
-
-
Combining Thread

And Blocks

© NVIDIA 2013

Combining Blocks and
Threads

We’'ve seen parallel vector addition using:
— Many blocks with one thread each
— One block with many threads

Let’s adapt vector addition to use both blocks
and threads

Why? We'll come to that...

First let’s discuss data indexing...

Indexing Arrays with Blocks and
Threads

* No longer as simple as using and

— Consider indexing an array with one element per
thread (8 threads/block)

threadIdx.x threadIdx.x

ol1/2/3lals|6/7/6/22 34 55¢6|t

blockIdx.x = 2 blockIdx.x = 3

* With M threads/block a unique index for
each thread is given by:
index = threadIdx.x + blockIdx.x * M;

Indexing Arrays: Example

 Which thread will operate on the red

e

ement?

19 | 20 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 i

threadIdx.x = 5

34l/670

1

2

3

\

J

.
blockIdx.x = 2

int index = threadIdx.x + blockIdx.x * M;

5 + 2 * 8;

= 21;

© NVIDIA 2013

Vector Addition with Blocks and
Threads

* Use the built-in variable biockoin.x fOr threads per
block

index = threadIdx.x + blockIdx.x *

* Combined version of add() to use parallel
threads and parallel blocks

add (*a, *b, *c) {
index = threadIdx.x + blockIdx.x * ;
c[index] = a[index] + b[index];

}

 What changes need to be made In main()?

Addition with Blocks and Threads:

main()

main(void) {

*a, *b, *c; // host copies of a, b, c
*d_a, *d_b, *d_c; // device copies of a, b, c
size = N * ();

// Alloc space for device copies of a, b, c

cudaMalloc((**)&d_a, size);
cudaMalloc((**)&d_b, size);
cudaMalloc((**)&d_c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);

¢ = (int *)malloc(size);

Addition with Blocks and Threads:

main()

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<< >>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

0;

Handling Arbitrary Vector

Sizes

* Typical problems are not friendly
multiples of

* Avoid accessing beyond the end of
add(*a, *c, n) {

tﬂe a[lroa)y'sthreadIdx X + blocI,(Idx X *

if (index < n)
c[index] = a[index] + b[index];

 Update the kernel launch:

add<<< ,M>>>(d_a, d_b, d_c, N);

Why Bother with Threads?

* Threads seem unnecessary
—They add a level of complexity
—What do we gain?

* Unlike parallel blocks, threads have
mechanisms to:
— Communicate
— Synchronize

* To look closer, we need a new example...

—
-
—
é‘
o
Cooperating Threads
: Managing devices

© NVIDIA 2013

1D Stencil

 Consider applying a 1D stencil toa 1D
array of elements

— Each output element is the sum of input
elements within a radius

* If radius is 3, then each output element is
the sum of 7 input elements:

radius radius

Implementing Within a
Block

* Each thread processes one output element
— blockDim.x elements per block

* Input elements are read several times

— With radius 3, each input element is read
seven times

© NVIDIA 2013

Sharing Data Between
Threads

Terminology: within a block, threads share
data via

Extremely fast on-chip memory, user-managed

Declare using , allocated per block

Data is not visible to threads in other blocks

Implementing With Shared
Memory

* Cache data in shared memory

— Read (blockDim.x + 2 * radius) input elements
from global memory to shared memory

— Compute blockDim.x output elements

— Write blockDim.x output elements to global
memory

each-bounda ry —
halo on left "' halo on right
el el e e e e o e e o e o e e
. /
Y

blockDim.x output elements
© NVIDIA 2013

Stencil Kernel

__global void stencil_1d(int *in, int *out) {
int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.Xx;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] =
if (threadIdx.
temp[lindex

temp[lindex
in[gindex

X

+
+

in[gindex];

< RADIUS) {

RADIUS] = in[gindex - RADIUS];
BLOCK_SIZE] =

BLOCK_SIZE];

© NVIDIA 2013

Stencil Kernel

result = 0;
for (offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result
out[gindex] = result;

Data Race!

" The stencil example will not work...

" Suppose thread 15 reads the halo before thread 0
has fetched it...

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

int result = 0;
result += temp[lindex + 1];

~ syncthreads()

* Synchronizes all threads within a block
— Used to prevent RAW / WAR / WAW hazards

 All threads must reach the barrier

— |In conditional code, the condition must be
uniform across the block

Stencil Kernel

stencil_1d(*1in, *out) {
temp[BLOCK_SIZE + 2 * RADIUS];
gindex = threadIdx.x + blockIdx.x * blockDim.Xx;
lindex threadIdx.x + radius;

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

(),

Stencil Kernel

result = 0;
for (offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

out[gindex] = result;

Review (1 of 2)

* Launching parallel threads

— Launch ~ blocks with » threads per block with
kernel N,M (...);

— Use to access block index within grid
— Use to access thread index within
block

 Allocate elements to threads:

index = threadIdx.x + blockIdx.x *

Review (2 of 2)

* Use to declare a
variable/array in shared memory

— Data Is shared between threads in a
block

— Not visible to threads in other blocks

e Use as a barrier
— Use to prevent data hazards

;
-
—
-
-
;
Managing the Device
: Managing devices

© NVIDIA 2013

Coordinating Host & Device

* Kernel launches are
— Control returns to the CPU immediately

* CPU needs to synchronize before

consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls
have completed

cudaMemcpyAsync() Asynchronous, does not block the cpu

cudabDeviceSynchro Blocks the CPU until all preceding CUDA
nize() calls have completed

Reporting Errors

o All CUDA API calls return an error code ()
— Error in the API call itself
OR

— Error in an earlier asynchronous operation (e.g. kernel)

e Get the error code for the last error:

cudaError_t (void)
* Get a string to describe the error:
char * (cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

Device Management

* Application can query and select GPUs

(int *count)
(int device)
(int *device)
(cudaDeviceProp *prop, int device)

* Multiple threads can share a device

* A single thread can manage multiple devices
(i) to select current device
(..) for peer-to-peer copiest

* requires OS and device support

Introduction to CUDA C/C++

What have we learned?
— Write and launch CUDA C/C++ kernels

* __global , blockIdx.x, threadIdx.x, <<<>>>

— Manage GPU memory

* cudaMalloc(), cudaMemcpy(), cudaFree()

— Manage communication and
synchronization

* __shared__, _ syncthreads()

* cudaMemcpy() VS cudaMemcpyAsync(),
cudaDeviceSynchronize()

Compute Capability

« The of a device describes its
architecture, e.q.
— Number of registers
— Sizes of memories

Compaptieres & capabifid¢ected Features Tesla
Capabilit (see CUDA C Programming Guide for models
\' complete list)
1.0 Fundamental CUDA support 870
1.3 Double precision, improved memory accesses, 10-series
atomics
2.0 CaCheS, fused multiply-add, 3D grids, surfaces, ECC, P2P, 20-series

concurrent kernels/copies, function pointers, recursion

* The following presentations concentrate on Fermi devices
— Compute Capability >= 2.0

|IDs and Dimensions

Device

— A kernel is launched as a
grid of blocks of threads

e plockIdx and threadIdx
are 3D

* We showed only one
dimension (x)

 Built-in variables:

— threadIdx
— blockIdx
— blockDim
— gridDim

© NVIDIA 2013

Textures

Read-only object
— Dedicated cache

Dedicated filtering hardware
(Linear, bilinear, trilinear)

Addressable as 1D, 2D or 3D

Out-of-bounds address handling
(Wrap, clamp)

Topics we skipped

* We skipped some details, you can learn
more:
— CUDA Programming Guide

— CUDA Zone - tools, training, webinars and
more

* Need a quick primer for later:
— Multi-dimensional indexing
— Textures

	Slide 1
	What is CUDA?
	Introduction to CUDA C/C++
	Prerequisites
	Slide 5
	Slide 6
	Heterogeneous Computing
	Heterogeneous Computing
	Simple Processing Flow
	Simple Processing Flow
	Simple Processing Flow
	Hello World!
	Hello World! with Device Code
	Hello World! with Device Code
	Hello World! with Device COde
	Hello World! with Device Code
	Parallel Programming in CUDA C/C++
	Addition on the Device
	Addition on the Device
	Memory Management
	Addition on the Device: add()
	Addition on the Device: main()
	Addition on the Device: main()
	Slide 24
	Moving to Parallel
	Vector Addition on the Device
	Vector Addition on the Device
	Vector Addition on the Device: add()
	Vector Addition on the Device: main()
	Vector Addition on the Device: main()
	Review (1 of 2)
	Review (2 of 2)
	Slide 33
	CUDA Threads
	Vector Addition Using Threads: main()
	Vector Addition Using Threads: main()
	Slide 37
	Combining Blocks and Threads
	Indexing Arrays with Blocks and Threads
	Indexing Arrays: Example
	Vector Addition with Blocks and Threads
	Addition with Blocks and Threads: main()
	Addition with Blocks and Threads: main()
	Handling Arbitrary Vector Sizes
	Why Bother with Threads?
	Slide 47
	1D Stencil
	Implementing Within a Block
	Sharing Data Between Threads
	Implementing With Shared Memory
	Slide 52
	Stencil Kernel
	Data Race!
	__syncthreads()
	Stencil Kernel
	Stencil Kernel
	Review (1 of 2)
	Review (2 of 2)
	Slide 60
	Coordinating Host & Device
	Reporting Errors
	Device Management
	Introduction to CUDA C/C++
	Compute Capability
	IDs and Dimensions
	Textures
	Topics we skipped

