
Parallel computing 8.2.2018
Exercise 5

These exercises exceptionally at Joensuu on Thursday 8.2. 10-12 TB248, and at Kuopio on Monday
12.2. 14-16 F213.

Submit each solution separately to Moodle by 8.2. 09:00 (1 hour before exercises). Take skeletons
from course www-page.

21. Parallelize the prefix-sum -algorithm using OpenMP. Take the sequential implementation
from www-page and use the same technique that we showed in the blocking prefix sum
algorithm and radix sort. I.e., do local prefix sums, prefix sum the sums (sequentially), and
adjust the final result. Now the simple ”parallel for” -construct is not enough, but you
need to use OpenMP threads and make a function that uses those.

22. Refine the PRAM algorithm for parallel ”binary search” (idea described on lectures). The algo-
rithm returns the position (rank) of an element x in a sorted arrayA. Do not use CW variants.
The algorithm is actually a (P+1) -ary search as it divides the input with P division points on
every iteration. Pay attention to the indexes and make the indexing work with any N or P .

23. Parallelize the [Sellers] dynamic programming algorithm for approximate string matching.
First design a PRAM parallelization (O(textlength) time should be straightforward). Notice,
however, the dependencies between cells.

24. Parallelize the C version of the dynamic programming approximate string matching algorithm
using OpenMP. Now, as we cannot use strict synchrony, the parallelization is a bit more
difficult. You need to find a way to make computation a bit more asynchronous. Remember
that we have only few processors. Achieving speedup might be difficult, but keep the
algorithm function correct. The sequential version is available at www-page.

Now we’ll forget shared memory and start using message passing between processes/processors.
All processes execute the same code. Use PID (process-id) to distinguish the processes.

25. Convert the prefix-sum algorithm (handouts p. 38, slides p. 126) to a message passing
algorithm. In the beginning, each process has a single value. In the end, the each process
has the corresponding value of the prefix sum. Express your algorithm so that all processes
can execute the same algorithm, i.e., use PID (process-id) in giving roles to processes. Use
message passing primitives send(in destination, in data) and receive(in source,
out data), where destination and source are process-id’s and data is the value to be
send / variable to which message is received.


