
Parallel computing 12.1.2018
Exercise 1

Read the questions carefully, answer to all parts of each question. Draw a picture of each exercise.

Submit the solutions to Moodle by 12.1. 09:00 (1 hour before exercises).

1. Design a manual message-passing sorting algorithm for a group of real persons and A4 papers.
Each paper has a name according to which it is sorted. At the beginning, all papers are
in a stack by the first person. At the end, the sorted papers should be returned to the first
person. A person can perform local operations and give a stack of one or more papers for
the neighboring person. The recipient needs not to be ready to accept the stack (post-pox
messaging). No person can move from his/hers position.

Assume that you have a) 10 persons, b) 100 persons located in a single row. Assume that
you have A) 100 papers, B) 10 000 papers.

Design the sorting algorithm (as fast as possible) to do the real-world sorting (in both a
and b sitting arrangements and both A and B paper piles). Calculate the approximate time
needed (in seconds) for all (Aa, Ab, Ba, Bb) cases.

Hint: try to avoid situations when only one person is doing something useful.

2. Modify the previous case b) algorithm so that instead of a single row, the 100 persons are
located in a 10 by 10 matrix, and are able to pass the papers in 4 directions. Take advantage of
the reduced diameter of the human network. Calculate the time again for both A and B cases.

3. Design an algorithm for 10 000 papers and 1000 persons. Calculate again the time required.
Persons can move freely and you can (have to) define how they are located. Notice, however,
the physical space requirements for 1000 persons. Hint: try to avoid situations when only
few people are doing something elaborate.

The following tasks are best solved by spreadsheet formulas. Bring your sheet to the exercise session..

4. Let us consider an computational problem that can be solved sequentially in time n3 (e.g.,
matrix operations for n× n matrices) and unit time is one ns (10−9s). Thus, e.g., for
n=1000, the computation would take 10003×1ns=1s. Let us first assume that our parallel
algorithm is fully work efficient, i.e., parallel computation will take n3/p (p = the number
of processors/cores). How much larger inputs we can handle in 1) 1 second, 2) 1 year, if we
have a) 8, b) 1000, c) 1 million processors available? How many processors we would need
if we would like to solve the problem for n = 10 million in a year? Do a quick www-search
and estimate how much such machine would cost? Make a coarse estimate of euro/core.

5. Let us continue the previous task, but now our algorithm is inefficient by factor of
a) 2, b) loglogn, c) logn, d)

√
n, e) n, f) √p.

(logarithms are base 2, log21000=10). E.g., for n=1000, p=100, inefficiency = logn, the
computation would take 10003×log1000×1ns/100=0.1s. Now, how many processors in
each case (a-f) we would need to solve the problem in a year for n = 10 million.


