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Abstract
We consider matching functions in vector quantization (VQ)
based speaker recognition systems. In VQ-based systems, a
speaker model consists of a small collection of representative
vectors, and matching is performed by computing a dissim-
ilarity value between the unknown speaker’s feature vectors
and the speaker models. Typically, the average/total quanti-
zation error is used as the dissimilarity measure. However,
this measure lack the symmetricity requirement of a proper
distance measure. This is counterintuitive because match
score between speakersX andY is different from the match
score betweenY andX. Furthermore, the distortion measure
can yield a zero value (perfect match) for non-identical vec-
tor sets, which is undesirable. In this study, we study ways of
making the quantization distortion functions proper distance
measures. The study includes discussion of the theoretical
properties of different measures, as well as an evaluation on
a subset of the NIST99 speaker recognition evaluation cor-
pus.

1. Introduction

Classically,speaker recognitionsystems are divided into two
classes [5, 12]:identificationand verification systems. In
the identification problem (or 1:N matching), the task is to
indicate the best-matching speaker with a given unknown
speaker from a database ofN known speakers. In the ver-
ification problem (or 1:1matching), the task is to make a
decision whether the unknown speaker is who he/she claims
to be.

Both speaker recognition tasks include the same basic
components: (1)feature extraction, (2) speaker modeling,
and (3)speaker matching. Only the last phase, (4)decision
logic, depends on the task. In this study, our focus is on the
matching part, and therefore it does not matter which one of
the two tasks we use in our experiments. We have selected to
use the identification task since its performance is easier to
quantify.

The feature extraction module converts the raw speech
waveform to a sequence ofacoustic feature vectors, denoted
here asX = {x1, . . . , xT }. In the speaker enrollment phase,
a model of the speaker’s vocal space is formed by using the
training vectors. In the recognition phase, same type of fea-
ture vectors are extracted and they are compared with the

stored speaker model(s), giving ameasure of similaritybe-
tween the vector sequence and the model(s).

Various features as well as speaker models have been
proposed for speaker recognition. Classical features include
the cepstrumwith many variants [1, 11, 5], andline spec-
tral frequencies[5]. Recently,subband processinghas also
become a popular technique [3, 2, 15, 28, 7, 24]. Some
of the various modeling techniques includevector quantiza-
tion (VQ) [29, 18, 16, 9],Gaussian mixture models (GMM)
[27, 26],covariances models[4], andneural networks[10].
An overview of several modeling techniques is given in [25].

In this paper, we will focus on the VQ approach because
it is simple to implement and computationally efficient. In
the VQ approach, match score computation is based on dis-
similarity measure between the unknown speaker’s feature
vectors and the model. However, the baseline quantization
distortion lacks some properties of a proper distance mea-
sure. In this paper, we discuss these shortcomings, and ways
to attack them.

2. VQ-Based Speaker Identification

In the VQ-based approach to speaker identification [29, 13,
18, 9], the speaker models are formed by clustering the
speaker’s feature vectors intoK disjoint clusters. Each clus-
ter is represented by acode vectorci, which is the centroid
(average vector) of the cluster. The resulting set of code vec-
tors{c1, · · · , cK} is called acodebook, and it serves as the
model for the speaker.

Good clustering should produce a compact codebook
whose vectors have the same underlying probability distribu-
tion as the training vectors. Thus, the codebook effectively
reduces the amount of data by preserving essential informa-
tion. We have previously addressed the issue of codebook
generation for speaker recognition [18]. Our main conclu-
sion was that the choice of the clustering algorithm is not cru-
cial, but the codebook size must be selected carefully. Larger
codebook models more accurately the original distribution,
but might start tooverfit if set too large. Typical speaker
codebook size is around 64 to 512 vectors, depending on the
selected features.

The matching function in the baseline VQ-based speaker
recognition [29] is thequantization distortionbetween the
two vector sets to be compared. Given a feature vectorxi,



generated by the unknown speaker, and a codebookC =
{c1, · · · , cK}, the quantization errore of the vectorxi with
respect toC is given by

e(xi, C) = min
cj∈C

d(xi, cj), (1)

whered(·, ·) is a distance metric defined over the feature
space. In other words, the quantization distortion for a single
vector is computed as the distance to the nearest vector in the
codebook. Typically Euclidean metric is used as the distance
measure.Total quantization distortionDQ is defined as the
sum of the individual distortions:

DQ(X,C) =
∑

xi∈X

e(xi, C). (2)

Sometimes (2) is normalized by the number of test vectors.
However, this normalization factor1/|X| is the same for all
speakers, and therefore it does not change the order of the
speakers in the matching result.

Several modifications have been proposed to the baseline
VQ distortion matching [30, 22, 14, 16, 19, 9]. For instance,
in [16, 19], we assign to each VQ code vector adiscrim-
inative weightso that a code vector that is close to some
other speaker’s code vector is given a small contribution to
the overall distance. Some alternative VQ methods are com-
pared in [9]. Despite the existence of these possibly more
sophisticated methods, the baseline matching function (2) is
typically used due to its simplicity. However, it has a few
shortcomings, which will be discussed next.

3. Shortcomings of the Baseline Measure

It is easy to see that (2) is notsymmetric, i.e. DQ(X, C) 6=
DQ(C, X) in general. For instance, by choosingX =
{(0, 0)} andC = {(0, 1), (1, 0)}, we getDQ(X,C) = 1
but DQ(C,X) = 1 + 1 = 2. The lack of symmetricity
is counter-intuitive. Mathematically, a adistance measure
D(A,B) between two objectsA andB of interest satisfies
the following three properties [23]:

(i) D(A,B) ≥ 0 for all A,B
(ii) D(A,B) = 0 if and only if A = B
(iii) D(A,B) = D(B,A) for all A,B

In fact, (2) satisfies only the condition(i). By choosing
X = {(0, 0)} andC = {(0, 0), (0, 1)}, we getDQ(X, C) =
0 but X 6= C. In fact, we can show thatDQ(X, C) = 0 if
and only ifX ⊆ C:

Theorem 1. DQ(X, C) = 0 if and only ifX ⊆ C.

Proof. First, assumeX ⊆ C. For eachxi ∈ X there is
identical vector inC, and thereforee(xi, C) = 0. It follows
thatDQ(X, C) = 0.

Conversely, letDQ(X, C) = 0. Since all the sum terms
in (2) are nonnegative,e(xi, C) = 0 for all xi ∈ C, i.e.

mincj d(xi, cj) = 0. Sinced(·, ·) is a distance measure, the
nearest neighbor ofxi in C must bexi itself, i.e. xi ∈ C.
Therefore,X ⊆ C.

The result means that if the target speaker happens to pro-
duce a “subvoice” of some other speaker, the target speaker
will be incorrectly assigned to this speaker. The quantization
distortion (2) is not originally designed for pattern matching,
but to give a quality index of a vector quantizer.

4. Symmetric Measures

Given DQ(X,C), DQ(C, X), and a functionF : R2 → R
that satisfiesF(a, b) = F(b, a) for all a, b ∈ R (i.e., F

is symmetric), we can construct a symmetric measure
DF(X,C) = F(DQ(X, C), DQ(C,X)). Commonly used
symmetrization functions include minimum, maximum,
sum and product. These induce the following symmetric
measures:

Dmin(X, C) = min(DQ(X, C), DQ(C, X))
Dmax(X, C) = max(DQ(X, C), DQ(C, X))
Dsum(X,C) = DQ(X,C) + DQ(C, X)
Dprod(X,C) = DQ(X,C) ·DQ(C, X)

All of these are symmetric, as they satisfy requirement
(iii). The requirement(ii), however, is satisfied only by
Dmax andDsum, as shown by the following Theorem:

Theorem 2.
(a) Dmax(X, C) = 0 ⇐⇒ X = C
(b) Dsum(X,C) = 0 ⇐⇒ X = C

Proof. Theorem(a) can be proven as follows:

Dmax(X, C) = 0
⇐⇒max(DQ(X, C), DQ(C, X)) = 0
⇐⇒DQ(X, C) = 0 ∧DQ(C, X) = 0
⇐⇒X ⊆ C ∧ C ⊆ X

⇐⇒X = C

Case(b) can be proven in similar way:

Dsum(X, C) = 0
⇐⇒DQ(X, C) + DQ(C, X) = 0

DQ(X, C) ≥ 0 ∧DQ(C,X) ≥ 0
⇐⇒DQ(X, C) = (C, X) = 0
⇐⇒X ⊆ C ∧ C ⊆ X

⇐⇒X = C

NeitherDmin norDprod satisfy requirement(iii). It can
be easily proven by counterexample: whenDQ(X, C) = 0
andDQ(C, X) = 1 bothDmin andDprod will be zero.

The distance properties of the symmetric measures along
with the baseline measureDQ are summarized in Table 1.
Based on these properties, we expectDmax and Dsum to



perform the best in practice since these are real distance mea-
sures. However, none of these measures is ametric, which
would be another natural requirement for a proximity mea-
sure.

Table 1: Summary of the distance properties of the measures.
Measure Distance property

(i) (ii) (iii)
DQ X
Dmin X X
Dprod X X
Dsum X X X
Dmax X X X

5. Experiments

5.1. Speech Material and Parameter Setup

For the experiments, we used a subset of theNIST 1999
speaker recognition evaluation corpus[21] (see Table 2). We
selected to use the data from the male speakers only. For
training, we used both the “a” and “b” files for each speaker.
For identification, we used the one speaker test segments
from the same telephone line. In general it can be assumed
that if two calls are from different lines, the handsets are dif-
ferent, and if they are from the same line, the handsets are the
same [21]. In other words, the training and matching condi-
tions have very likely the same handset type (electret/carbon
button) for each speaker, but different speakers can have dif-
ferent handsets. The total number of test segments for this
condition is 692.

The parameters for different feature sets and training al-
gorithm were based on our previous experiments with the
NIST corpus [17]. The frame length and shift were set to
30 ms and 20 ms, respectively, and the window function was
Hamming. We use the standard MFCCs as the features [8].
A pre-emphasiz filterH(z) = 1 − 0.97z−1 is used before
framing. Each frame is multiplied with a 30 ms Hamming
window, shifted by 20 ms. From the windowed frame, FFT
is computed, and the magnitude spectrum is filtered with a
bank of 27 triangular filters spaced linearly on the mel-scale.
The log-compressed filter outputs are converted into cepstral
coefficients by DCT, and the0th cepstral coefficient is ig-

Table 2: Summary of the NIST-1999 subset
Language English
Speakers 230
Speech type Conversational
Quality Telephone
Sampling rate 8.0 kHz
Quantization 8-bit µ-law
Training speech (avg.) 119.0 sec.
Evaluation speech (avg.) 30.4 sec.

nored. Speaker models are generated by the LBG clustering
algorithm [20].

5.2. Results

First, we experimented with different vector metrics and dis-
tortion measures by fixing the codebook size to 64. The re-
sults are shown in Table 3. For a fixed distortion measure,
the error rates increase in most cases when moving from Eu-
clidean to Maximum metric. However, the differences be-
tween metrics are relatively small, as it was expected.

The smallest error rate 16.8 % is reached with the base-
line measureDQ andDmax using the Euclidean distance.
The order of the four symmetric measures is as expected,
Dmin andDprod perform the worst whileDsum andDmax

the best. However, the baseline measureDQ is not the worst
as it was hypothesized.

Next, we fixed the metric to the Euclidean and varied the
codebook size (see Table 4). Increasing codebook size im-
proves performance in most cases, as expected from our pre-
vious experience [18, 17]. However, forDsum andDmax

the performance in fact degrades with the codebook size, for
which the reason is unclear. The best performance (13.6 %)
is obtained with the baseline measureDQ with the codebook
size 1024.

5.3. Discussion

In general, we conclude that the performance of the proposed
symmetric measures is not as good as expected. In particu-
lar, the experiments do not support the hypothesis regard-
ing the order of the measures based on their distance prop-
erties. Therefore, further theoretical development is needed.
It is possible that themetric properties would be important,
i.e. the distance functions satisfying the triangular inequal-
ity. However, a “reasonable” metric between two vector sets
is not easy to define. One candidate would be the Hausdorff
metric [6] which have also tested with poor success. The rea-
son for this is that the Hausdorff metric links only one vector
from each of the sets, and assigns the distance between the
distance of the sets as the distance between these vectors. As
a consequence, information about the distributionshapeis
lost.

One possible future direction could be towards informa-
tion theoretic distance measures. For instance, theKullback-
Leibler (KL) divergencesatisfies all other requirements of
a distance measure except the symmetricity property. The
symmetrizations proposed in this study could be applied in
the same way to the KL divergence, as well.

6. Conclusions

We have studied the distance properties of symmetric dis-
tortions for text-independent speaker recognition using the
vector quantization approach. We proposed to use four com-
monly used symmetrizations. ForDsum andDmax, the mea-
sures were proven to be properly defined distance measures.



Table 3: Error rates for different distance measures.
Euclidean Manhattan Maximum

Baseline 16.8 17.2 19.0
Dmin 37.0 34.7 36.7
Dprod 22.5 20.9 23.3
Dsum 16.9 17.0 19.0
Dmax 16.8 17.3 19.0

Table 4: Error rates for varying codebook size.
Distance CB=64 CB=256 CB=512 CB=1024

Baseline 16.8 14.9 14.2 13.6
Dmin 37.0 32.4 29.6 24.4
Dprod 22.5 18.9 18.6 18.1
Dsum 16.9 17.9 18.2 18.9
Dmax 16.8 16.5 18.4 23.0

However, the experimental results indicated that the sym-
metric measures were no better than the baseline quantiza-
tion distortion. Therefore, the future work should consists of
deeper analysis as well as totally new directions, e.g. in an
information-theoretic framework.
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