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Abstract

Mobile phone environment and other devices that re-
quire low power consumption, restrict the computations
of DSP processors to fixed point arithmetic only. This is
a common practise based on cost and battery power sav-
ings. In this paper, we first discuss the specific software
architecture requirements set up by the Symbian oper-
ating system and the Series 60 platform. We analyse
mel frequency cepstral coefficient based classification,
and show techniques to avoid information loss, when a
floating-point algorithm is replaced by a corresponding
algorithm that uses fixed-point arithmetic. We analyse
the preservation of discrimination information, which is
the key motivation in all classification applications. We
also give insight to the relation between information pre-
serving and operator presentation accuracy. The results
are exemplified with tests made on algorithms that are
identical except for the different arithmetics used.

1 Introduction

We are working in a speech technology project, where
one of the main goals is to integrate speaker recognition
technique in Series 60 mobile phones. The classification
algorithm that we use in this paper is a common unsuper-
vised learning vector quantizer.

Our research team has been developing speaker recog-
nition methods based on signal processing models that
are commonly used in speech recognition, and a generic
automatic learning classification. Up to now, we have
mainly been doing research on the closed set speaker
identification problem. We have been looking into differ-
ent aspects of the problem. A thourough investigation on
the effect of the feature vector computation is presented
in [8]. We reported some real-time speaker identification
results in [10]. We have also investigated the concurrent
use of several speaker cues [9].

In this paper, we consider application of closed set
speaker identification. In general, this means that we
are looking at a system where mathematical models of
voices of N speakers are created and stored in a speaker
database. During the recognition a speech sample is com-
pared to the models in the database. The result is the best
identified speaker, or a list of several best matched speak-

Figure 1: Closed set speaker identification system

ers along with matching scores. We have ported such ap-
plication to a Symbian mobile phone with Series 60 user
interface. In this report, we study the properties of this
platform and our implemented system. In particular, we
focus on the numerical analysis of the signal processing
algorithms converted to fixed point arithmetic. We also
discuss the effect of numerical round-off error in dicrim-
ination properties of the classification.

This research was carried out in the project New
Methods and Applications of Speech Processing 1 and
was supported by the Finnish Technology Agency and
Nokia Research Center.

2 Speaker identification system

We consider a speaker identification system with sepa-
rate modules for speech signal processing, training and
classification, and speaker database (Fig. 1). The system
operates in training mode or recognition mode. The two
different chains of arrows starting from the signal pro-
cessing module describe the data flow (Fig. 1).

The system input in training mode is a collection of
speech samples from N different speakers. A signal pro-
cessing model is applied to produce a feature vector set
separately for each speaker. Then a mathematical model
is fitted to the feature vector set. We use the vector
quantization (VQ) model to represent the statistical dis-
tribution of the features from each speaker. Each fea-
ture vector set is replaced by a codebook, a smaller set of

1Puheenkäsittelyn uudet menetelmät ja sovellukset (PUMS),
http://cs.joensuu.fi/pages/pums



Figure 2: MFCC signal processing steps

code vectors with fixed size that is stored in the speaker
database to represent the speaker. A common codebook
design goal is minimizing quantization distortionof train-
ing data, i.e. we look for code vectors that minimize
the quantization distortion, when training vectors are re-
placed by their nearest neighbours from the codebook.
We use the generalized Lloyd algorithm (GLA) [12] to
minimize the mean squared error (MSE) distortion.

The recognition mode input speech sample is pro-
cessed with a signal processing model identical to the
training. The resulting feature set is matched against the
speaker database by computing the distortion of the input
data against each stored codebook. This is done by quan-
tizing the data using the codebook of each candidate and
computing how much it is distorted. The speaker whose
codebook gives the least distortion is identified. If N -
best decision is requested, the system returns N smallest
distortions and corresponding speakers.

The signal processing of the system uses the mel fre-
quency cepstral coefficient (MFCC) computation, which
is commonly used in speech recognition [13]. The speech
is divided into overlapping frames, within a frame the
pre-emphasized signal is multiplied with a windowing
function, and a Fourier spectrum is computed. A mel fil-
ter bank is applied to the magnitude spectrum, and log-
arithm of the filter bank output is finally cosine trans-
formed. The first coefficient of the cosine transform is
omitted as an energy normalization step, and only part of
cosine transform output coefficients are used as the fea-
ture vector.

The filter bank spectra of speech are non-negative.
Typically their shape varies around a certain set of typical
vectors corresponding to the phones appearing in speech.
Another major source of variance is speaker dependent
variability. However, it appears that the speech energy
lost in truncation is always small as all the energy is con-
centrated in the beginning of the representation in the co-
sine basis. Figure 2 illustrates the signal processing steps.

3 Symbian OS

Nowadays market for mobile phones is changing very
rapidly. Sales are highly dependent on the innovative
features available in particular phone. These are, for
example, handling of still and moving images, wireless
communications, among many others. In these circum-
stances, software developing for mobile phones becomes
a complex task. To reduce this cost the leading man-

ufactures have co-operatively developed a new industry
standard operating system for mobile phones, known as
Symbian OS [7].

3.1 Mobile devices

The mobile devices are small in size, which leads to
greater demand on manufacturers. To meet these require-
ments each new hardware design must be cheap to manu-
facture, fit to small space, and have low power consump-
tion.

Most commonly used mobile phone processors are
developed by the company Advanced RISC Machines
(ARM). These are fully 32-bit RISC processors with 4
GB of address range. A three-stage pipeline is used there,
which allows executing one instruction every cycle [6].

Modern ARM processors implement 32-bit wide in-
struction set as well as new Thumb instruction set, which
is 16-bit wide. Therefore it needs less ROM to store pro-
gram binaries and works fast with narrow memory [6].
Traditional 32-bit instruction set is compressed into 16-
bit Thumb instruction set, which is then decompressed
and executed at execution time. Thumb decode is very
simple and it is possible to decompress it on the fly with-
out additional cycles [6]. Usually there is no floating
point arithmetic support in such processors because of its
complexity and hard power consumption.

3.2 Series 60 Platform

Symbian was formed from Psion Software in 1998 by the
leaders of wireless industry: Nokia, Ericsson, Panasonic,
Motorola, Psion, Siemens, and Sony Ericsson. The goal
of Symbian was to develop an operating system for ad-
vanced, data-enabled mobile phones [3]. Symbian OS
evolved from EPOC operating system developed by
Psion. It has modular microkernel-based architecture [3].
The core of Symbian OS consists from the base (micro-
kernel and device drivers), middleware (system servers)
and communications (telephony, messaging, etc.) [3].

Symbian OS is fully multitasking operating system.
It has support for simultaneously running processes,
threads, separate address space, and pre-emptive schedul-
ing [7]. However, because it runs on limited performance
mobile phones, it is recommended that most applications
use built-in framework, called Active Objects, which im-
plements non-pre-emptive multitasking [3]. Symbian OS
also has a file system, which is stored in phone ROM or
RAM memory, or on small removable flash-disks. It also
supports dynamic link libraries [3].

Although Symbian OS is used in most mobile phones,
they are further equipped with different user interface
(UI) platforms. A platform is a set of programmable UI
controls which all have similar style. There are three UI
platforms known to the authors: UIQ (developed by Sony
Ericsson), Series 80, and Series 60 (developed by Nokia).



3.3 Programming for Symbian OS

There are two programming languages that can be used
to write programs that run on Symbian OS phones: Java
and C++. However, Java has very limited API and exe-
cution speed, therefore real programs are usually written
in C++. Symbian also has limited support for ANSI C
standard library [3, 7]. Symbian OS offers a wide range
of different API’s for C++ programmer.

Almost all programs developed for Symbian OS can
first be tested and debugged on an emulator running in a
PC. Manufacturers provide emulators for different user
interface platforms. Emulators have few distinctions,
compared to real phone. Therefore applications are usu-
ally first tested on emulator and only after that they are
run on real hardware. Emulators can also simulate ex-
ceptional situations like absence of free memory or file
system errors [3, 7].

The main difference of Symbian OS programming
from conventional PC is that program must always be
ready for exceptional situations. Device can easily use
all available memory or program can be interrupted by
incoming phone call, which has a higher priority. Pro-
grams must also be as small and efficient as possible to
not overwhelm limited hardware resources. Robustness
is also important, because mobile phones are supposed to
work without restart for months or even more [7].

Algorithms must be selected carefully so that there are
only numerically stable ones with low time complexity.
However, there is no floating-point arithmetic support by
hardware, it is emulated by software components. But
this option should be used very rarely because of its com-
plexity and higher power consumption. Instead algo-
rithms must be ported to use fixed-point arithmetic only.

There are several restrictions to C++ language made
by Symbian OS. First of all, there is no standard C++
exception handling. Instead Symbian desingers have im-
plemented their own mechanism [7]. This has been done
mainly because GCC compiler, used in target builds, had
no support for this in the time when Symbian was de-
signed [7]. First consequence of this decision is that C++
class constructor cannot create any other objects because
this can cause, for example, out-of-memory exception but
there is no way in Symbian to handle exceptions from
constructor. To overcome this problem Symbian uses
two-phase construction, where object is first created and
then initialized [7]. Second consequence is that mem-
ory stack is not unrolled after exception and programmer
must use special framework called the cleanup stack that
is used to manually maintain the stack, which will be un-
rolled by the framework after exception occurs [7]. This
framework requires that all objects that can be allocated
in the heap are derived from common base class (CBase),
added to the stack immediately after allocation and re-
moved only just before deletion [7]. Basically, absence
of C++ exception handling adds more work that the pro-
grammer must do by hand and what is usually compiler
task in conventional C++ programming.

Another important aspect of Symbian programming

is dictated by efficiency requirements. Applications or
DLL’s can be executed in ROM without copying them
first to RAM. This makes another programming limita-
tion: An application stored in a DLL has no modifiable
segment and can not use static data [7]. Basically, all ap-
plications interacting with the user are stored in a DLL
and loaded by framework, when user selects to execute
that particular program [7]. However, Symbian provides
a thread local storage mechanism for static data [7].

We decided to implement most of the computational
algorithms in ANSI C language and use POSIX stan-
dard where applicable. The reasons for such deci-
sion were good portability, an existing prototype writ-
ten in C, and the (limited) ANSI/POSIX support in the
Symbian OS. Symbian OS offers an implementation of
the standard C library, so many programs can be easily
ported to Symbian OS. Main limitation is that no static
data, i.e. global variables can be used. Another re-
striction is file handling in multi-threaded programs: the
function fopen and other file processing functions may
not work as expected in multi-threaded programs. The
Symbian OS developer documentation encourages to use
the provided file server mechanisms instead.

4 Numerical analysis of MFCC and
VQ in fixed point arithmetic

During the speaker recognition the speaker information
carried by the signal propagates through the signal pro-
cessing (Fig. 2) and classification to a speaker identity
decision. The mappings involved in the MFCC process
are smooth and numerically stable. In fact, the MFCC
steps are one-to-one mappings, except those where the
mapping is to a lower dimensional vector space.

The MFCC algorithm consists of a lot of evaluations of
different vector mappings f between vector spaces, de-
note such evaluation f(x). During the execution of our
computer implementation a lot of values f̂ (x̂) are eval-
uated, where x̂ is an approximation of x represented in
some finite accuracy number system, and f̂ is our imple-
mentation that tries to capture the behaviour of f . From
information theory point of view, it is important to mini-
mize the relative error of implementation f̂

ε =
||f(x̂) − f̂ (x̂)||

||f(x̂)|| ,

instead of the absolute error ||f(x̂) − f̂ (x̂)||. All ele-
ments of all vectors, during all computational stages, in-
dependent of the numerical scale of data in the subspace
corresponding to the element, may carry information that
is crucial to the final identification decision. The input x̂
is usually the output of the previous step.

Most MFCC processing steps are linear mappings and
the non-linear ones behave well, there are two of them.
The real valued magnitudes of complex valued Fourier
spectrum are computed before applying the filter bank,



and later filter bank output logarithms are used in order
to bring the numerical scale of the outputs closer to linear
relation with human perception scale [13]. However, in
fixed point arithmetic, not even computing the value of a
well behaving mapping is always straightforward.

We consider a system capable of fixed-point arithmetic
with signed integers stored in at most 32 bits. Assume
that the MFCC input is a stream of signed integers, sam-
pled signal amplitudes represented with 16 bits. In many
parts we use different integer value interpretation, a scal-
ing integer I > 1 represents 1 in the normal algorithm. In
some parts we also divide input, output, or intermediate
results to ensure they fit in the used integer type, usually
a 32-bit integer. Let us now analyse the system.

4.1 Pre-emphasis

Many speech processing systems apply a pre-emphasis
filter to the signal before further processing. The differ-
ence formula xt = xt−αxt−1 is applied to the signal xt,
our choice is a common α = 0.97. Such filter emphasizes
higher frequencies and damps the lowest.

4.2 Signal windowing

Numerically speaking, there is nothing special in the sig-
nal windowing. A signal frame is pointwise multiplied
with a window function. The motivation is to avoid arte-
facts in the Fourier spectrum that are likely to appear be-
cause of the signal periodicity assumption in the Fourier
analysis theory. Therefore, the window function has usu-
ally a taper-like shape, such that the multiplied signal
amplitude is near original in the middle of the frame but
smoothly forced to zero near the endpoints. The smooth
transition requires that we use enough bits to represent
the window function values.

4.3 Fourier spectrum

The frequency spectrum of a digital signal can be com-
puted as the N -point discrete Fourier transform (DFT)
F : CN → CN

F(x) =

N−1
∑

t=0

e2πiωt/N xt, ω = 0, . . . , N − 1. (1)

As a (unitary) linear map, F has a corresponding matrix
F ∈ CN×N , and F(x) can be computed as a matrix-
vector product Fx using O(N 2) operations. The radix-2
fast Fourier transform (FFT) is a tool for computing DFT
efficiently for N = 2m, m > 0. It utilizes the structure
of F and computes Fx in O(N log N ) operations.

Each element λk = (Fx)k =
∑N

t=1 Fktxt of the prod-
uct is linear combination of N elements of x, whereas
the FFT algorithm actually transforms the computations
to log2 N layers of N/2 butterflys

f l+1
t = f l

t + W l
t f

l
t+T ,

f l+1
t+T = f l

t − W l
t f

l
t+T .

(2)

The time complexity of one butterfly is O(1). The super-
scripts denote the layer. The first layer input is the signal
f0

k = xk, k = 0, . . . , N − 1. The offset constant T de-
pends on the layer, and whether we are using decimation
in time FFT or decimation in frequency FFT [15]. Dec-
imation means reorganizing either input or output to a
bit reverse order [15] and takes O(N ) operations. When
both decimation and butterfly computations are done, the
outputs f

log
2

N
k consist of the same values as λk above.

The FFT efficiency is based on the layer structure. But
fixed point implementations, like code generated with
fftgen [11], introduce significant error. The fixed point
arithmetic round-off errors accumulate in the repeatedly
applied butterfly layers. We gain back some the lost accu-
racy by improving the information preserving properties
in our fixed point implementation.

4.3.1 FFT in fixed-point arithmetic

The FFT code generated by fftgen [11] has the butterfly
layers and the element reordering all merged in few sub-
routines, with all loops unrolled. It uses 16-bit integers
for the input signal, intermediate results, and the auto-
matically computed power spectrum output. Multiplica-
tion results in (2) are 32-bit integers, but stored in a 16-bit
integers after shifting 16 bits to the right. This is neces-
sary in order to keep the next layer input in proper range.
Overflow in addition and subtraction is avoided by shift-
ing inputs 1 bit to the right appropriately. Such trunca-
tions introduce round-off error and information loss.

We employed the generated FFT code in the fixed point
MFCC implementation and compared to its floating point
counterpart. The MFCC outputs computed from identi-
cal inputs with the two implementations did not correlate
much. One reason for this may be accumulating errors.
However, detailed analysis of results showed that the first
source of large relative error is the FFT (DFT in Fig. 2).
We also verified that the large error is not due to the final
truncation of power spectrum elements to 16 bits, but the
FFT algorithm itself.

We started to improve the accuracy with an existing
radix-2 complex FFT implementation [14]. First we
changed the data types, additions, and multiplications
similar to the fftgen-generated code.

The generated code uses 16 bits for the layer input real
and imaginary parts, as well as real valued trigonomet-
ric constants arising from (2), after the Euler formula
eiϕ = cos ϕ + i sin ϕ is applied in (1). We changed
the data type of intermediate results in (2) from 16-bit
to 32-bit integers. But this alone does not really help to
preserve more than 16 bits of intermediate results (sig-
nal information) if operator constants still use all 16 bits.
The multiplication would overflow. A solution is to re-
duce the DFT operator representation accuracy in order
to increase the preserved signal information.

Consider the DFT in the operator form f = Fx and
our implementation f̂ = F̂ x̂. The approximation er-
ror f − f̂ consists of the input error x − x̂ and the im-



plementation error. Since F and F̂ are linear, the im-
plementation error is F − F̂ . This is not exactly true,
as we have a limited accuracy numeric implementation,
which is only linear up to numeric accuracy. Now repeat
the same analysis but consider a linear butterfly layer in
FFT algorithm g = Gy and its implementation ĝ = Ĝŷ.
The inputs ŷ carry information about accurate values y,
i.e. information about signal x. In (2), each multipli-
cation of the layer input f l ∈ C with the operator con-
stant W l ∈ C expands to two additions and four mul-
tiplications of real values. If we use more than 16 bits
for f l , we must use less bits for the operator implemen-
tation constants W l , in order to fit the multiplication re-
sult in 32-bits. Thus we allow the relative layer opera-
tor error ||G − Ĝ||/||G|| to increase while relative input
error ||y − ŷ||/||y|| is decreased, so that more informa-
tion about y fits into ŷ, and more is preserved in the mul-
tiplication result. More information about y propagates
to the next layer input ĝ in all layers. Thus information
loss decreases in the whole implementation. We increase
the FFT operator error ||F − F̂ ||/||F || little but preserve
more information about x. Consequently, the relative er-
ror ||F x̂ − F̂ x̂||/||F x̂|| decreases. Here the norm and
difference of linear operators have their usual definition.
This is the main idea and can also be applied to other
algorithms implemented in fixed point arithmetic.

The N -point DFT uses the values ± sin πm/N and
± cos πm/N , m = 0, . . . , N/2 − 1. Before deciding
how many bits to use for the signal and the operator, we
look at the relative round-off error made in these values
for different FFT sizes N and bit usages B > 0. For each
B, we find the scaling integer minimizing the maximum
relative round-off error

E(c, N ) = max
m=0,...,N/2−1

|sm − ŝm|/|sm|, (3)

where sm = c sin πm/N and ŝm denotes sm rounded to
the nearest integer. It is enough to consider plus signed
sines, since cosine values are in the same set. We found
out that for N = 256, 512, 1024, 2048, and 4096 there
are several peaks downwards in the graph of E(c, N ) as
function of c, that are good choices of c even if they do
not minimize E(c, N ) for certain N . Table 1 shows pairs
of such good values c and E(c, N ) for different N . The
bit usage B is the number of bits needed to store c.

We decided to limit the FFT size to N ≤ 1024 and not
minimize E(c, N ) for each N separately. For all N =
256, 512, and 1024, the constant c = 980 appears to be
the best choice with B = 10. That leaves 22 bits for the
signal information. We replaced the signal/operator bit
usage 16/16 with 22/10. We did not check all possible
combinations of B and c. There may be better choices in
terms of the relative error, but our choice fits our purpose,
as we mostly use N = 256.

In our floating point MFCC, we compute the FFT with
the Fastest Fourier Transform in the West (FFTW) C li-
brary [5]. The FFTW relative error is very small and we
compare fixed point algorithms to it. Figures 3–5 illus-
trate the different error of the fftgen FFT, and the pro-

Table 1: Selected c/E(c, N ) value pairs with small
E(c, N ) and different FFT sizes N ; the values E(c, N )
have been multiplied by 103.

N = 256 512 1024 2048 4096
82/16.6 164/9.7 327/6.4 654/3.7 1306/2.4
164/9.5 327/6.4 328/6.3 1306/2.4 1307/2.5
246/7.1 328/6.3 653/4.1 1307/2.5 2610/1.6
327/5.9 490/4.8 654/3.7 1958/1.9 2611/1.5
409/5.3 491/4.4 979/3.1 1959/1.8 3915/1.1
491/4.2 653/4.0 980/2.9 2610/1.6 3916/1.2
572/4.0 654/3.6 2611/1.5
654/3.3 815/3.8 3262/1.3
735/3.5 816/3.6 3263/1.3
736/3.5 817/3.1 3915/1.1
817/3.1 979/3.1 3916/1.2
899/2.9 980/2.7
980/2.7 981/3.2
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Figure 3: Speech near the beginning of speaker 1 file 1 in
the TIMIT corpus.

posed FFT with c = 980 and B = 10. The input speech
in Fig. 3 is near the beginning of the first file of the first
speaker in the TIMIT corpus, but sampled at 8 kHz.

Fig. 4 has two scatter plots of pairs of logarithms of
absolute values of fftgen FFT and a floating point FFT
(FPFFT). Fig. 5 has the same for proposed FFT and
FPFFT value pairs. Without error all dots reside on a
straight line. Comparison of the FFT’s of the original sig-
nal x (left) and a scaled 4x (right) shows that in a fixed
point arithmetic we may decrease the error when using
the integer scale more efficiently, relative round-off error
is smaller. The proposed FFT is accurate even without
scaling, also note the increased range of accurate values.

4.4 Magnitude spectrum

The Fourier spectrum is {λk; k = 0, . . . , N/2 − 1}, the
power spectrum is {|λk|2}, and the magnitude spectrum
{|λk|} consists of the absolute values. There is little dif-
ference in using the square or not in the filter bank input.
However, the usage of the fixed point number range in the
power spectrum values is non-uniform. The same is true
for magnitude spectrum, but the usage of the value range
is not as sparse as with power spectrum. By the unifor-
mity of the number range usage we mean the density of
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Figure 4: Scatter plots of fftgen FFT output (x-axis)
against FFTW output (y-axis). Scales are logarithmic.
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Figure 5: Scatter plots of proposed FFT output (x-axis)
against FFTW output (y-axis). Scales are logarithmic.

the values |λk| = |x2
k + y2

k| or |λk|2, when xk and yk

take all possible 32-bit integer values. The FFT output
is a vector of complex numbers. The absolute value of a
complex value is a square root

|z| = |x + iy| =
√

x2 + y2 (4)

In our experiments we tried the familiar and efficient
Newton iteration [4] applied to the square root. We also
developed an efficient non-iterative solution.

The square root argument in (4) allows an efficient
polynomial approximation. Without loss of generality,
assume that |x| ≥ |y|. Then (4) can be written

|z| =
√

x2 + y2 = |x|
√

1 +
( y

x

)2

,

where 1+
(

y
x

)2 ∈ [1, 2] always. By introducing a param-
eter t = |y/x| ∈ [0, 1] we can approximate |z| with

|z| = |x|
√

1 + t2 ≈ |x|Pn(t),

where Pn : [0, 1] → [1,
√

2] is a polynomial of order
n ≥ 1 with Pn(0) = 1 and Pn(1) =

√
2. To ensure

that the boundary conditions are met, we actually find
the orthogonal projection of

√
1 + t2 − (1 + (

√
2 − 1)t)

into the function space spanned by the set of functions
S = {t − t2, t − t3, t − t4, t − t5} defined for t ∈ [0, 1],
i.e. fit a least squares polynomial. Our approximation is
√

1 + t2 ≈ 1 + (
√

2 − 1)t

− 0.505404(t− t2) + 0.017075(t− t3)

+ 0.116815(t− t4) − 0.043182(t− t5).

The maximum relative approximation error for t ∈ [0, 1]
is 1.30× 10−5.

The motivation for our boundary conditions is that a
least squares polynomial often maximizes approximation
error in the endpoints of closed interval. We are approxi-
mating a function, therefore trying to minimize the max-
imum error, instead of minimizing the integrated error.
The idea of selecting basis to meet boundary conditions
is borrowed from the finite element method for solving
partial differential equations.

There are likely numerically better choices for basis
besides S. However, it is straightforward to evaluate tk+1

from tk and t in our scaled integer arithmetic. Also S is
a basis and meets boundary conditions. Note also that
0 ≤ t, tk, t − tk ≤ 1 for t ∈ [0, 1].

In the fixed point implementation we choose an integer
scaling factor d ∈ [1, 215) to represent 1, note that mul-
tiplication results must always fit in 32-bits. The value
t and coefficients of 1, t, . . ., t − t5, are evaluated to
rescaled integers before the polynomial evaluation. We
chose d = 20263. It minimizes the average relative
round-off error in the polynomial coefficients. The ap-
proximation in the fixed point arithmetic becomes

20263 + 8393t− 10241(t− t2)

+ 346(t− t3) + 2367(t − t4) − 875(t− t5),

where the original t ∈ [0, 1] is multiplied with d and trun-
cated to integer before the evaluation. During the evalu-
ation all multiplication inputs are within [0, d] and multi-
plication results are always divided with d.

If the parameter is s = (y/x)2 we get much smaller
maximum relative approximation error 1.62 × 10−6. In
this case we approximate different function

√
1 + s−(1+

(
√

2 − 1)s) similarly as above. However, when s = t2

is used instead of t, there are more multiplication-rescale
combinations in fixed point implementation in powers of
s. For example, computing s4 means computing (y/x)8 .
Such high powers introduce more error.

4.5 Filter bank

Applying a linear filter in the frequency domain is techni-
cally similar to the signal windowing in the time domain,
a spectrum is pointwise multiplied with a frequency re-
sponse. Applying a linear filter bank (FB) means apply-
ing several filters, and is the same as computing a matrix-
vector product, where matrix rows consist of the filter
frequency responses. Numerically, the fixed point imple-
mentation is not complicated, we just need enough bits to
represent the frequency response values.

The choice of FB has a large effect on the speaker
recognition accuracy [8]. Our choice is a common, but
not optimal mel FB with triangular filter shape.

One could argue that the smoothing effect of the FB
forgives the numeric error of the FFT and magnitude
computations. However, discrimination information is
lost in both the numeric round-off and the smoothing.



4.6 Logarithm

A lot of work has been done on the accurate evaluation of
the logarithm function for integers, for example [2] intro-
duces several methods for computing integer logartihms
and [1] analyses the error in several methods. Our choice
is efficient and has low error. We compute logarithms
log2 t, t > 1 by using lookup tables and piecewise linear
interpolation. If t > 2, the problem is first transformed to
logarithm problem in the set (1, 2] by using the recursion
log2(t) = 2 log2(t/2) [2]. The maximum relative error
in the logarithm evaluation depends on the amount of bits
used for the lookup table indices. We use 8 bits and reach
the maximum error 4.65× 10−6 at t = 272063.

4.7 Discrete cosine transformation

The discrete cosine transformation (DCT) is a linear in-
vertible mapping, that is most efficiently computed using
the FFT and some additional processing. In our applica-
tion we transform 25–50-dimensional vectors to 10–15-
dimensional vectors and use only part of DCT output, so
we compute it with the direct formula without FFT. We
utilize the most common DCT form [16, DCT-II]

µj =

NFB−1
∑

k=0

lk cos

(

π

NFB

(

k +
1

2

)

j

)

, (5)

where j = 0, . . . , NMFCC − 1, input lk consists of filter
bank outputs or their logarithms, k = 0, . . . , NFB−1, and
NMFCC is the number of the MFCC coefficients needed.
Usually µ0 is ignored, as it only depends on the signal
energy. This DCT form is orthogonal if µ0 is multiplied
by 1/

√
2 and all coefficients are output [16]. The DCT

is applied to filter bank outputs in speech applications for
few reasons. It rescales and decorrelates the filter bank
outputs. This is important for the GLA clustering and the
VQ classification.

We did not analyse the DCT error in the fixed point
imlementation. Instead, we simply assigned the scaling
factor 32767 for cosine values and truncate 16 bits from
the 32-bit input values. Similar analysis as with the FFT
above would help to gain accuracy.

4.8 System training and recognition

The GLA algorithm constructs a codebook {ck} that min-
imizes the MSE distortion

MSE(X, C) =

N
∑

j=1

min
1≤k≤K

||xj − ck||22, (6)

of training data {xj}. This is our speaker modeling.
The algorithm is simple and does not really involve parts
that require floating point arithmetic. The differences be-
tween floating point and fixed point implementations are
due to limited accuracy in the relative MSE change near

Table 2: Identification rates for two different implemen-
tations with 100 first speaker subset of the TIMIT corpus.

Implementation Identification rate (%)
Fixed point arithmetic 82
Floating point arithmetic 100

Table 3: Identification rates in GSM/PC experiments.

Rec. device 13/16 14/16 15/16 16/16
Symbian audio 1 3 3 10
PC audio 0 0 0 17

the convergence, and most importantly, the accumulat-
ing round-off error during the iteration. Also the round-
off error in the MSE distance computations is different in
fixed point arithmetic.

In speaker identification, the distortion (6) of input
speech is computed for codebooks of all speakers stored
in the speaker database. The result is a list of speakers
and matching scores, sorted according to the score.

5 Experiments

In our training-recognition experimients, we used 8 kHz
signal sampling rate, α = 0.97 for pre-emphasis, 30 ms
frame length with 10 ms overlap Hamming window, FFT
size 256, logarithm of mel FB with 27 outputs, and finally
12 coefficients from the DCT. The GLA speaker model-
ing used 5 different random initial solutions picked from
the training data. Codebook size was always 64.

The results with subset of 100 first speakers of the
TIMIT corpus are listed in table 2. We eliminated the ef-
fect of randomly sampled GLA initial solutions by pick-
ing the same initial solutions for both implementations.

We tested our implementation in a mobile phone for
some time. The recognition accuracy was poor and we
decided to invesitigate the signal. We created a 16-
speaker GSM/PC dual recordings data for that. Speech
was recorded simultaneously with a Symbian phone via
the Symbian API, and a basic PC microphone attached
to the phone with a rubber band. All speakers spoke the
same text. Indeed, a quick signal analysis showed sys-
tematically different frequency content. Before recogni-
tion experiments all pairs of nearly 1 min long recodings
were time aligned with a multi-resolution algorithm, and
finally split to separate training and test segments.

We repeated training/recognition cycles for both GSM
and PC data with the fixed point implementation. We
eliminated the random effect of GLA initial solutions
by using the same initial solutions for both data sets.
The worst case identification rate for the phone data was
13/16. We did not carefully record all results but we re-
call that approximately the frequencies listed in table 3
did occur.



6 Conclusion

We had four main obstacles when porting the speaker
recognition PC application to a Series 60 mobile phone:
limited memory, numeric accuracy, and processing
power, as well as the Symbian programming constraints.
The numeric error in the fixed point implementation can
be kept at a feasible level with a careful numerical anal-
ysis. The memory usage and computational complexity
of the speaker identification algorithms are low enough
for real-time operation already in today’s mobile phones.
The programming constraints take some learning effort
for a programmer familiar with more common platforms.

Our experience is that the current smart phone hard-
ware has enough resources for real-time speaker identifi-
cation with small speaker databases. However, the qual-
ity of the signal obtained directly from the Symbian audio
API, is not good enough as such for reliable recognition,
not even with small speaker database.

The recognition accuracy in the fixed point implemen-
tation is not yet the same as with a normal floating point
implementation, but we are working on it.

7 Future work

We plan to utilize a more efficiently speaker discriminat-
ing filter bank. This is needed especially because the
tested mobile phone hardware seems to enhance speech
frequences while loosing information in frequencies that
are useful when discriminating speakers.

If signal pre-conditioning cannot improve the identifi-
cation results enough, we plan to use a better transforma-
tion in place of the DCT. This means that a generic DCT,
whose purpose is to normalize or balance filter bank out-
puts, is replaced by something that would do this opti-
mally with respect to speech as opposed to any signal.

Reworking the scaling factors of signal windowing, fil-
ter bank, and DCT in the context of the whole MFCC
process would give more accurate MFCC output.

The FFT we implemented has a double loop. The in-
nermost loop table indices are computed from the outer-
most loop index. A better solution would integerate the
proposed accuracy improvements in the fftgen software.

We are going to extend the current implementation
to also handle the open set identification task and also
include the real-time methods we have developed [10].
Naturally, the open set problem requires a working back-
ground model computation framework. There are such
models used in the speaker verification problem, so actu-
ally we are going to attack that problem also.
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