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Abstract

Front-end or feature extractor is the first component in an automatic speaker
recognition system. Feature extraction transforms the raw speech signal into
a compact but effective representation that is more stable and discriminative
than the original signal. Since the front-end is the first component in the
chain, the quality of the later components (speaker modeling and pattern
matching) is strongly determined by the quality of the front-end. In other
words, classification can be at most as accurate as the features.

Several feature extraction methods have been proposed, and successfully
exploited in the speaker recognition task. However, almost exclusively, the
methods are adopted directly from the speech recognition task. This is some-
what ironical, considering the opposite nature of the two tasks. In speech
recognition, speaker variability is one of the major error sources, whereas
in speaker recognition it is the information that we wish to extract. The
mel-frequency cepstral coefficients (MFCC) is the most evident example of
a feature set that is extensively used in speaker recognition, but originally
developed for speech recognition purposes. When MFCC front-end is used
in speaker recognition system, one makes an implicit assumption that the
human hearing meachanism is the optimal speaker recognizer. However, this
has not been confirmed, and in fact opposite results exist.

Although several methods adopted from speech recognition have shown
to work well in practise, they are often used as “black boxes” with fixed pa-
rameters. It is not understood what kind of information the features capture
from the speech signal. Understanding the features at some level requires
experience from specific areas such as speech physiology, acoustic phonetics,
digital signal processing and statistical pattern recognition. According to
the author’s general impression of literature, it seems more and more that
currently, at the best we are guessing what is the code in the signal that
carries our individuality.

This thesis has two main purposes. On the one hand, we attempt to see
the feature extraction as a whole, starting from understanding the speech pro-
duction process, what is known about speaker individuality, and then going
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into the details of the feature extraction methods. Although prosodics and
other high-level features have been recently exploited successfully in speaker
recognition, our attention is on the low-level spectral features due to their
widespread use, easy computation and modeling, and the “black box” effect
associated with these. Particularly, attention is paid on subband processing,
LPC parameters, cepstral processing and spectral dynamics (delta-features).

On the other hand, the second purpose of the thesis is to find out which of
the several spectral features are best suited for automatic speaker recognition
systems in terms of their reliability and computational efficiency. We aim
to find what are the critical parameters that affect the performance and try
to give some general guidelines about the analysis parameters. We conduct
experiments on two speech corpora using vector quantization (VQ) speaker
modeling. The corpora are a 100 speaker subset of the American English
TIMIT corpus, and a Finnish corpus consisting of 110 speakers. Although
noise robustness is an important issue in real applications, it is outside the
scope of this thesis. Our main attempt is to gain at least some understanding
what is individual in the speech spectrum.

Keywords: speaker individuality, feature extraction, spectral features, au-
tomatic speaker recognition
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Chapter 1

INTRODUCTION

It is not uncommon that you receive a phone call where the caller starts by
saying “Hello, it is me”, and you reply immediately “Well, hi!”. You have
recognized the caller from his/her voice only (supposing your telephone does
not show the caller’s name). This is an example of naive speaker recognition
that we perform in our everyday life.

There is an increasing need for person authentication in the world of in-
formation, applications ranging from credit card payments to border control
and forensics. In general, a person can be authenticated in three different
ways [128]:

1. Something the person has, e.g. a key or a credit card,

2. Something the person knows, e.g. a PIN number or a password,

3. Something the person is, e.g. signature, fingerprints, voice, facial fea-
tures

The first two are traditional authentication methods that have been used
several centuries. However, they have the shortcoming that the key or credit
card can be stolen or lost, and the PIN number or password can be easily
misused or forgotten. For the last class of authentication methods, known
as biometric person authentication [15, 128, 78], these problems are lesser.
Each person has unique anatomy, physiology and learned habits that familiar
persons use in everyday life to recognize the person.

Increased computing power and decreased microchip size has given impe-
tus for implementing realistic biometric authentication methods. The interest
in biometric authentication has been increasing rapidly in the past few years.
The topic of this thesis deals with our most natural way of communicating
with each other, speech. Speaker recognition refers to task of recognizing
peoples by their voices.
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1.1 Applications

The main applications of speaker recognition technology include the follow-
ing:

• Person authentication

• Forensics

• Speech recognition

• Multi-speaker environments

• Personalized user interfaces

Person authentication is the most obvious application of any biometric au-
thentication technique. Speaker recognition could be used in credit card
transactions as an authentication method combined with some others like
face recognition. Alternatively, it could be used in computer login, a “key”
to a physical facility, or in border control.

Forensics is an important application of speaker recognition. If there is
a speech sample that was recorded during the commitment of a crime, the
suspect’s voice can be compared with this in order to give an indication of
the similarity of the two voices. This topic is covered in detail in [139]. In
Finland, about 50 requests related to forensic audio research are sent each
year to the Crime Laboratory of the National Bureau of Investigation [111].
A considerable number of these are related to speaker recognition (see Table
1.1).

Table 1.1: Research requests sent to the Crime Laboratory of the National
Bureau of Investigation related to forensic audio [111].

1999 2000 2001 2002

Total # requests 38 40 45 51
Speaker recognition 24 (63 %) 13 (32 %) 13 (28 %) 32 (62 %)

Speech recognition, i.e. conversion from speech to text, has been actively
studied since the 1950’s, but there is not yet a universal speech recognition
system that would work for unlimited vocabulary and for all speakers. Speech
and speaker recognition are dual research areas in the sense that speaker
variability is one of the major problems in speech recognition, whereas in
speaker recognition it is an advantage. Speaker recognition technology could
be used to reduce the speaker variability in speech recognition systems by
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speaker adaptation [81]. For instance, speech recognition system could have
a “speaker gating” unit that recognizes who is speaking (see Fig. 1.1). Then,
the system could adapt its speech recognizer parameters to suit better for
the current speaker, or to select a speaker-dependent speech recognizer from
its database.

Figure 1.1: Applying speaker recognition in speech recognition.

In a multi-speaker environment, several speakers are included in the audio
recording. Examples can be found everywhere: panel discussions, court room
conversations, teleconferencing, TV and radio broadcasts. Speaker recog-
nition technology might be very useful in application designed for multi-
speaker environments. Three different multi-speaker tasks are recognized
[102]: speaker detection, speaker tracking, and speaker segmentation. The
detection task consist of deciding whether a known speaker is present in a
multi-speaker recording. In the tracking task, a given speaker’s speaking
intervals are located in the recording. The segmentation task consists of
locating the speech intervals of each different speaker. In the most general
case, there might be no prior knowledge of the speakers or their number (see
an example of a such system in [84]). Applications of speaker segmentation
have been proposed for segmentation of news broadcasts [94, 82].

Finally, speech user interfaces such as voice-mail are becoming more and
more popular due to the developments in speech technology in general. By
recognizing the speaker, the system could adapt to his/her needs and pref-
erences.

3



1.2 Pros and Cons of Speaker Recognition

The main advantage of speaker recognition is its naturalness. Speaking is our
main communication matter, and embedding speaker recognition technology
into applications is non-intrusive from the user’s viewpoint. Another strong
advantage are cheap costs; no special equipment is needed. In order to cap-
ture a speech signal, only a microphone is needed, as contrasted to fingerprint
and retinal scanners, for instance. Signal processing and pattern matching al-
gorithms for speaker recognition are low-cost and memory-efficient, and thus
applicable for mobile devices. Last but not least, performance of automatic
speaker recognition is considerably high in right conditions.

It has been demonstrated that integration of speech with other biometric
authentication methods (multi-modal person authentication) improves overall
recognition performance [19, 153]. In the latest AVBPA conference [78],
speech was the third most popular biometric after face and fingerprint. In the
same conference, nine different multimodal biometric authentication systems
were introduced, and speaker recognition was included in six of them.

A common belief is that speaker recognition is an unreliable authentica-
tion method, and this is true to a certain extent. Persons “voice signature”
simply is not as unique as, for instance, a fingerprint. The difference be-
tween fingerprint and voice is that the former is a physical biometric, which
is directly measured from person’s body. The voice, on the other hand, is
more a behavioral biometric, which is a result of body part movements. The
resulting speech wave is merely a reflection of the physical properties of the
speech production organs. The articulatory movements and consequently
the acoustic speech wave, are never exactly the same even when the same
speaker produces the same utterance two times successively.

The most common argument that the author hears is referred via imper-
sonators: person’s voice can be easily imitated. However, this is based on
our subjective impression only. Often the impersonator exaggerates certain
person characteristics (and uses possibly also visual information to make a
better impersonation). If the impersonated speaker has a “personal sound-
ing” voice, human listeners tend to pay attention more to the exaggerated
voice characteristics such as accent [166]. Speaker individuality consists of
several different parameters that supplement each other, and human listen-
ers probably use only a small subset of available cues. Based on our own
subjective impression, we tend to think that speaker recognition technology
is not reliable.
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1.3 Elementary Concepts and Terminology

The most common characterization of automatic speaker recognition is the
division into two different tasks: speaker identification and speaker verifica-
tion tasks [20, 43].

1.3.1 Identification and Verification Tasks

In the identification task, or 1:N matching, an unknown speaker is compared
against a database of N known speakers, and the best matching speaker is
returned as the recognition decision. The verification task, or 1:1 matching,
consists of making a decision whether a given voice sample is produced by
a claimed speaker. An identity claim (e.g., a PIN code) is given to the
system, and the unknown speaker’s voice sample is compared against the
claimed speaker’s voice template. If the similarity degree between the voice
sample and the template exceeds a predefined decision threshold, the speaker
is accepted, and otherwise rejected.

Of the identification and verification tasks, identification task is generally
considered more difficult. This is intuitive: when the number of registered
speakers increases, the probability of an incorrect decision increases [28, 44,
128]. The performance of the verification task is not, at least in theory,
affected by the population size since only two speakers are compared.

Open and Closed-Set Identification

Speaker identification task is further classified into open- and closed-set tasks.
If the target speaker is assumed to be one of the registered speakers, the
recognition task is a closed-set problem. If there is a possibility that the
target speaker is none of the registered speakers, the task is called an open-
set problem. In general, the open-set problem is much more challenging. In
the closed-set task, the system makes a forced decision simply by choosing
the best matching speaker from the speaker database - no matter how poor
this speaker matches. However, in the case of open-set identification, the
system must have a predefined tolerance level so that the similarity degree
between the unknown speaker and the best matching speaker is within this
tolerance. In this way, the verification task can be seen as a special case
of the open-set identification task, with only one speaker in the database
(N = 1).
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Text-Independent and Text-Dependent Tasks

Speaker recognition tasks can be further classified into text-dependent or
text-independent tasks. In the former case, the utterance presented to the
recognizer is known beforehand. In the latter case, no assumptions about the
text being spoken is made, but the system must model the general underlying
properties of the speaker’s vocal space.

In general, text-dependent systems are more accurate, since both the
content and voice can be compared. For instance, a speech recognizer can
be used in recognizing whether the user utters the sentence that the system
prompted to the the user. This is known as utterance verification, and it can
be efficiently combined with speaker verification [86].

In text-dependent speaker verification, the pass phrase presented to the
system is either the same always, or alternatively, it can be different for every
verification session. In the latter case, the system selects randomly a pass
phrase from its database and the user is prompted to utter this phrase. In
principle, the pass phrase can be stored as a whole word/utterance template,
but a more flexible way is to form it online by concatenating different words
(or other units such as diphones). This task is called text-prompted speaker
verification. The advantage of text prompting is that a possible intruder can-
not know beforehand what the phrase will be, and playback of pre-recorded
speech becomes difficult. Furthermore, the system can be made the user to
utter the pass phrase within a short time interval, which makes the intruder
harder to use a device or software that synthesizes the customer’s voice.

1.3.2 Types of Speaker Recognition

The discussion in the previous subsection was mainly from the viewpoint of
automatic speaker recognition. From a more general viewpoint, we can con-
sider also speaker recognition by humans (auditory recognition) and a com-
promise between the automatic and auditory recognition (semi-automatic
recognition).

Auditory Speaker Recognition

We perform auditory speaker recognition in our everyday life. Intuitively
we know that when we have heard a lot of speech from a close friend or
relative, we can easily recognize his/her voice. Even if we have not had
enough “training speech” we can still guess quite well some other attributes
of the speaker (gender and age).

In forensics, auditory speaker recognition might have usage, if there is an
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earwitness, i.e. a person who heard the voice of the criminal during the crime.
However, it is been observed that there are considerable differences between
individuals in the auditory speaker recognition task [143, 139]. Moreover,
as the time between listening the two voices increases, human performance
decreases [70]. These are the arguments why the earwitness method is not
generally considered a reliable from a forensic viewpoint.

Several studies have been conducted to compare human and machine per-
formance in speaker recognition [95, 143, 152]. Schmidt-Nielsen and Crystal
[143] have conducted a large-scale comparison in which nearly 50,000 listen-
ing judgments were performed by 65 listeners grouped in panels of 8 listeners.
The results were compared with the state-of-the-art computer algorithms. It
was observed that individual human listeners vary significantly in their abil-
ity to recognize speakers. More interestingly, different listeners seem to use
different decision thresholds. In other words, the balance between false ac-
ceptance (FA) errors and false rejection (FR) errors depends on the listener.
Regarding the comparison with the computer algorithms, Schmidt-Nielsen
and Crystal [143] observed that human performs better when the quality of
the speech samples is degraded by background noise, crosstalk, channel mis-
match, and other sources of noise. With matched acoustic conditions and
clean speech, the performance of the best algorithms was comparable with
the human listeners.

The study by Schmidt-Nielsen and Crystal was conducted on the NIST
1998 speaker evaluation data. However, since then, performance of computer
algorithms has been improved significantly, and the comparison may be al-
ready outdated. In recent years, the higher level cues have begun to interest
more and more researchers in automatic speaker recognition [29, 163, 135, 21].
For instance, recently automatic systems that use several low- and high-level
speaker cues have been introduced [135, 21]. The systems included, for in-
stance, prosodic statistics, phone N -grams, idiolectical features and pronun-
ciation modeling. Significant improvements in the recognition performance
over the baseline method was observed when different cues were used in com-
bition.

Semi-Automatic Speaker Recognition

The main conclusion of Rose [139] is that in forensic cases, different tech-
niques must be used jointly in voice comparisons, and specifically, the person
who does speech analysis should have a linguistic background. Two speech
samples that are compared must be comparable in respect to their linguis-
tic parameters. The selection of the units to be compared, e.g. phonemes
or words, must be carefully carried out. This requires an expert phoneti-

7



cian to segment the speech samples by hand. This includes using both aural
(listening) and visual information (spectrogram, waveform).

Examples of spectrograms are shown in Figures 1.2 and 1.3. At this stage,
the reader is encouraged to try recognizing which two of the spectrograms in
Fig. 1.2 belong to the same speaker. This example gives an idea about the
complexity associated with voice comparison. The correct answer is given in
the last page of this thesis.

Auditory comparison definitely helps in the segmentation and speech unit
selection process carried out by a linguistics expert. It is quite obvious that
semi-automatic tools must be used in forensic speech comparisons (if you
were the accused in the court of law, would you let a computer program to
give the judgment?). However, the final analysis should be carried out by
careful objective measurements, followed by appropriate statistical analysis.

1.4 Dimension of Difficulty

There are different sources of error in speaker recognition. Some of them are
related to the speaker itself, and some to the technical conditions.

1.4.1 Intra-Individual Variation

It is well known that physical (e.g. head cold) and mental states (e.g. de-
pression) of health affect the speaker’s voice [110]. Stimulants and drugs
also affect the voice. For instance, long-term smokers have often perceptu-
ally “rougher” voice quality than non-smokers [110]. If the speaker is under
stress, several acoustic parameters of the speaker are different from those
under relaxed state.

It is also known that speaker’s voice changes in long term due to aging,
weight changes, and other physiological changes. Actually, inter-session vari-
ability is probably the largest source of intra-speaker variation. According
to the authors personal experience, voice recorded even during the same day
with the same technical conditions might not be matched correctly! Some
speakers are also more difficult to model than others [30], especially if the
training material is poorly designed. In general, training data should be pho-
netically balanced so that it contains instances of all sounds of the language
in different contexts. This ensures that an arbitrary input can be presented
to the recognition system.
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Figure 1.2: Five different male speakers uttering “puhujantunnistus”
(speaker recognition). Two of the utterances are produced by the same
speaker. Can you detect which two? (the correct answer is given in the
last page of the thesis).

1.4.2 Voice Disguise and Mimicry

Voice disguise means deliberately changing one’s voice so that it could not
be matched with another sample produced by the same speaker. Disguise
may be common in forensic cases. For instance, when making a blackmail
call, the criminal may keep his nostrils closed, or he might alter his voice
in police investigations. Some amount of research has been conducted on
voice disguise. For instance, three different parameter sets were studied in
[96] in order to find out which of these are the most robust against different
types of disguise. The disguise modes included, for instance, talking with
a pencil between the front teeth and talking by whispering. However, they
studied only variation within speakers so they did not take into account the
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Figure 1.3: Six repetitions of the utterance “puhujantunnistus” (speaker
recognition) by the same male speaker with different styles.

inter-speaker variation. Even though a certain parameter would give small
intra-speaker variation in respect to disguise, it might be a poor parameter
otherwise for speaker recognition. It seems that there is room for studying
disguise-resilient parameters. Imitation (impersonation, mimicry) is a spe-
cial type of voice disguise where the speaker tends to map his voice to sound
like another speaker.

Disguise and imitation definitely degrade the performance of speaker
recognition systems. It has been demonstrated that voice mapping that
converts voice of another speaker to another speaker’s voice, can degrade the
performance of speaker recognition [45]. General discussion about security
concerns in speaker recognition is given in [155].
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1.4.3 Technical Error Sources

Several technical error sources may degrade the performance of speaker
recognition (both auditory and automatic). Some of the most commonly
recognized error sources are summarized in Fig. 1.4. Typical assumptions
made in noise suppression algorithms and noise-robust feature extraction are
the following [67, 58]: (1) noise is stationary in short term, (2) noise has zero
mean, and (3) noise is uncorrelated with the speech signal. In general, the
type and amount of the noise is unknown.

Figure 1.4: Technical error sources in speaker recognition.

First, speech is recorded with a microphone or telephone handset, and en-
vironmental noise (computer hum, car engine, door slams, keyboard clicks,
traffic noise, background babble, music) adds to the speech wave. Reverba-
tion adds delayed versions of the original signal to the recorded signal [58].

Poor-quality microphones introduce nonlinear distortion to the true speech
spectrum. Quatieri & al. [130] demonstrate, by comparing pairs of same
speech segment recorded with good- and poor-quality microphones, that
poor-quality microphones introduce several spectral artefacts, such as phan-
tom formants that occur at the sums, multiples and differences of the true
formants. Formant bandwidths are also widened and the overall spectral
shape is flattened.

The A/D converter adds its own distortion, and the recording device
might interfere with a mobile phone radio-waves. If the speech is transmitted
through a telephone network, it is compressed using lossy techniques which
might have added noise into the signal. Speech coding can degrade speaker
recognition performance significantly [123, 12].

To sum up, the speech wave seen by the recognition algorithm or human
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ear is not the same wave that was transmitted from the speaker’s lips and
nostrils, but it has gone through several transformations degrading its quality.

Mismatched conditions is recognized as the most serious error source in
speaker recognition [87, 100, 170, 116, 134, 149]. It means that the circum-
stances of the training and recognition phases are different. In addition to
intra-individual variation (such as pitch mismatch), technical mismatches
arise from one or several of the following factors:

• Environmental acoustics mismatch

• Mismatch in the type and amount of background noise

• Microphone type mismatch

• Recording quality mismatch

It is easy to imagine a situation where the user speaks training utterances
in a clean environment (home) but uses the recognition system in a noisy
environment (car, pub, street, office).

1.5 Motivation and Outline of the Thesis

Feature extraction is the first component in an automatic speaker recognition
system [20, 43]. Feature extraction transforms the raw speech signal into a
compact but effective representation that is more stable and discriminative
than the original signal. Since the front-end is the first component in the
chain, the quality of the later components (speaker modeling and pattern
matching) is strongly determined by the quality of the front-end. In other
words, classification can be at most as accurate as the features.

Several feature extraction methods have been proposed, and success-
fully exploited in the speaker recognition task. Very often, the methods
are adopted directly from the speech recognition task, which is somewhat
ironical considering the opposite nature of the two tasks. Also, sometimes
the feature extraction methods exploit directly psychoacoustical models, i.e.
how humans process auditory stimuli. By doing so, one implicitely assumes
that human listener is the optimal speaker discriminator. However, speech
signal might contain features that are not captured by the human ear, but
which are important for speaker discrimination.

Quite often the feature extraction methods adopted from speech recog-
nition are used as “black boxes” with fixed parameters. In other words, no
effort is put on optimizing the front end of the system. According to the
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Figure 1.5: Hierarchy of features for automatic speaker recognition.

author’s general impression of literature, it seems that currently, at the best
we are guessing what is the code in the signal that carries our individuality.

This thesis has two main purposes. On the one hand, we attempt to see
the feature extraction as a whole, starting from understanding the speech pro-
duction process, what is known about speaker individuality, and then going
into the details of the feature extraction methods. Although prosodics and
other high-level features have been recently exploited successfully in speaker
recognition (see Fig. 1.5), our attention is on the low-level spectral features
due to their text-independence, easy computation/modeling, widespread use
and the “black box” effect associated with these.

On the other hand, the second purpose of the thesis is to find out which of
the several spectral features are best suited for automatic speaker recognition
systems in terms of their reliability and computational efficiency. We aim
to find what are the critical parameters that affect the performance and try
to give some general guidelines about the analysis parameters. We conduct
experiments on two speech corpora using vector quantization (VQ) speaker
modeling. The corpora are an American English TIMIT corpus subset con-
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sisting of 100 speakers, and a Finnish corpus consisting of 110 speakers. Noise
robustness is definitely an important issue in realistic application, but it is
outside the scope of this thesis.

The rest of the thesis is organized as follows. Chapter 2 reviews shortly
the techniques used in automatic text-independent speaker recognition, with
a special focus on speaker modeling and pattern matching. Chapter 3 gives
a background of the speech production mechanism, and phonetic aspects of
speaker recognition. Chapter 4 reviews the signal processing background
needed in feature extraction. Chapter 5 gives an overview of the spectral
features used in automatic speaker recognition. Chapters 6 and 7 include the
description of the speech material, and the experimental results, respectively.
Finally, conclusions are drawn in Chapter 8.
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Chapter 2

AUTOMATIC SPEAKER
RECOGNITION

Figure 2.1 shows the abstraction of an automatic speaker recognition system.
Regardless of the type of the task (identification or verification), system
operates in two modes: training and recognition modes. In the training
mode, a new speaker (with known identity) is enrolled into the system’s
database. In the recognition mode, an unknown speaker gives a speech input
and the system makes a decision about the speaker’s identity.

Figure 2.1: Components of automatic speaker identification system.

Both the training and the recognition modes include feature extraction,
sometimes called the front-end of the system. The feature extractor con-
verts the digital speech signal into a sequence of numerical descriptors, called
feature vectors. The features1 provide a more stable, robust, and compact

1Elements of feature vector are called features. Alternative terms for feature are mea-
surement, attribute, quantity and parameter.
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representation than the raw input signal. Feature extraction can be con-
sidered as a data reduction process that attempts to capture the essential
characteristics of the speaker with a small data rate.

In the training phase, a speaker model is created from the feature vectors.
The aim is to model the speaker’s voice so that it generalizes beyond the
training material. In other words, unseen vectors can be classified correctly.
A recent overview of various modeling techniques is given in [132].

In the recognition phase, features are extracted from the unknown speaker’s
voice sample. Pattern matching refers to an algorithm, or several algorithms,
that compute a match score between the unknown speaker’s feature vectors
and the models stored in the database. The output of the pattern matching
module is a similarity score.

The last phase in the recognition chain is decision making. The decision
module takes the match scores as its input, and makes the final decision of
the speaker identity, possibly with a confidence value [47, 59]. The type of the
decision depends on the task. For the verification task, the binary decision
is either acceptance or rejection of the speaker. In the case of identification,
there are two possibilities. In the closed-set identification task, the decision
is the ID number of the most similar speaker to the unknown speaker. In
the open-set task, there is an additional decision that the speaker is none of
the registered speakers (“no decision”).

Figure 2.2: Examples of two-dimensional feature sets with poor and good
discrimination.
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2.1 Feature Extraction

Formally, feature extraction is understood as a process which transforms
originally high-dimensional vectors into lower dimensional vectors. So essen-
tially, it is a mapping f : RN → Rd, where d ¿ N . Feature extraction is
a necessary operation for two main reasons. First, in order the statistical
speaker models to be robust, the number of training samples must be large
enough compared to the dimensionality of the measurements. The amount
of needed training vectors grows exponentially with the dimensionality. This
phenomenon is known as curse of dimensionality [16, 64, 65]. The second
reason for performing feature extraction is the reduced computational com-
plexity.

For speaker recognition purposes, optimal feature has the following prop-
erties [139]:

1. high inter-speaker variation,

2. low intra-speaker variation,

3. easy to measure,

4. robust against disguise and mimicry,

5. robust against distortion and noise,

6. maximally independent of the other features.

The first two requirement require that features are as discriminative as pos-
sible. Examples of two-dimensional feature sets are shown in Fig. 2.2. From
the two candidate feature sets, the set 2 obviously discriminates better the
speakers. Notice, however, that even in the case of the feature set 1, the
feature 2 discriminates the speaker 3 from the two other speakers. Notice
also that neither one feature alone discriminates the speakers perfectly, but
both features are needed.

The features should be easily measurable. This includes two factors.
Firstly, the feature such occur frequently and naturally in speech so that
it could be extracted from short speech samples. Secondly, the feature ex-
traction itself should be easy. In automatic recognition, the features must be
measurable without the aid of a human expert.

A good feature is robust against several factors like voice disguise and
distortion/noise. Finally, different features extracted from the speech signal
should be maximally independent of each other. If two correlated features are
combined, nothing is gained, and in fact, this may even degrade recognition
results.
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No feature has all the requirements listed above, and we can relax some
of the requirements in automatic speaker recognition. Robustness against
disguise and mimicry is clearly beyond the scope of this thesis. By the nature
of our task, we can forget features that require a human expert involved. In
practise, the signal processing methods used in the feature extraction are
computationally efficient.

Some of the widely used feature sets, such as mel-cepstrum (MFCC)
and line spectrum pairs (LSP), have already rather uncorrelated features.
We would like to point out that there exists several general-purpose fea-
ture transformation methods that can be used to transform original features
into a new space where they are more discriminative and/or have smaller
inter-feature correlations. Some of these include linear discriminant analy-
sis (LDA) [41, 31], Karhunen-Loeve transform (KLT) [41], and independent
component analysis (ICA) [61].

Finally, we would like to point out the difference between feature ex-
traction and feature selection. In feature extraction, the new features are
a function of all of the original features. In contrast, in feature selection, a
subset of the original features are selected in a way that attempts to maxi-
mize some separability criterion. A good review of feature selection methods
is given in [65].

2.2 Speaker Modeling and Matching

There are two main approaches for estimating the class-conditional (speaker-
dependent) feature distributions: parametric (stochastic) and non-parametric
(template) approaches [31, 41, 20]. In the parametric approach, a certain
type of distribution is fitted to the training data by searching the parame-
ters of the distribution that maximize some criterion. The non-parametric
approach, on the other hand, makes minimal assumptions about the distri-
bution of the features.

The pattern matching phase consists of computing a similarity score for
the unknown speaker’s feature vectors and all speaker models. The similarity
(or dissimilarity) measure depends on the type of the speaker models. In the
next two subsections, we consider the two most popular approaches to text-
independent speaker recognition, vector quantization (VQ) approach and
Gaussian mixture model (GMM). VQ is a non-parametric method whereas
GMM is a parametric method. Figure 2.3 shows an example of VQ and
GMM-based modeling of the same data set with two different model sizes.
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Figure 2.3: Examples of VQ- and GMM-based modeling for different model
sizes (K = 5, 15).

2.2.1 VQ-Based Speaker Recognition

In VQ-based approach [148], the speaker models are formed by clustering
the speaker’s feature vectors in K non-overlapping clusters. Each cluster is
represented by a code vector ci, which is the centroid (average vector) of the
cluster. The resulting set of code vectors {c1, c2, · · · , cK} is called a codebook,
and it serves as the model of the speaker. The model size (number of code
vectors) is significantly smaller than the training set. The distribution of the
code vectors follows the same underlying distribution as the training vectors
[46]. Thus, the codebook effectively reduces the amount of data by preserving
the essential information of the original distribution.

There are two design issues in the codebook generation: (1) the method
for generating the codebook, and (2) the size of the codebook. Regarding the
codebook size, a general observation has been that increasing the codebook
size reduces recognition error rates [148, 38, 37, 54, 74, 75]. However, if
the codebook size is set too high, it learns the training samples but not
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the general distribution (this is called overfitting). The claim that the best
speaker model is the data itself [27], is not true in general according to
author’s experience.

Two classes of methods for codebook generation exist: unsupervised and
supervised learning algorithms. In unsupervised methods, each speaker’s
codebook is trained independent of each other, whereas in supervised train-
ing, the intercorrelations between the codebooks are taken into account so
that the codebooks have minimal overlap. Usually the unsupervised methods
are used since they have less user-adjustable control parameters. One super-
vised codebook training approach termed group vector quantization (GVQ)
has been proposed by He & al. [54]. The idea is to first train the codebook
individually, and then fine-tune them so that inter-speaker differences are
emphasized.

Of the unsupervised codebook training algorithms, the most popular and
one of the most simplest one is the generalized Lloyd algorithm (GLA) [89].
The algorithm is also known as Linde-Buzo-Gray algorithm (LBG) according
to its inventors2. The user must require the desired codebook size K. GLA
then starts from an initial codebook of size K (usually, randomly selected
vectors from the training set), which it iteratively refines in two successive
steps until the codebook does not change.

We studied the effect of unsupervised codebook training algorithms on
the speaker identification task in [74]. We observed that the choice of the
algorithm does not have much effect to the recognition performance. A
possible explanation is that the feature vectors obtained from overlapping
speech frames may not have a clustering structure, but they form less or
more a continuous density [76]. Therefore, the codebook training serves as
sub-sampling of the training data rather than finding a clustering structure.
The selection of the clustering algorithm is therefore not a vital issue. The
matching function in VQ-based speaker identification is typically defined as
the quantization distortion between two vector sets X = {x1, . . . , xT} and
C = {c1, . . . , cK}. Consider a feature vector xi generated by the unknown
speaker, and a codebook C. The quantization distortion dq of the vector xi

with respect to C is given by

dq(xi, C) = min
cj∈C

d(xi, cj), (2.1)

where d(·, ·) is a distance measure defined for the feature vectors. The code
vector cj∗ for which d(xi, cj∗) is minimum, is the nearest neighbor of xi in

2Although some authors make a difference between the K-means algorithm and the
GLA/LBG, we do not. Essentially they are the same algorithm.
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Figure 2.4: Illustration of VQ match score computation.

the codebook C. Most often, Euclidean or Euclidean squared distance mea-
sure is used due to the straightforward implementation and intuitive notion
(for instance, it can be shown that Euclidean distance between two cepstral
vectors measures the squared distance between the corresponding short-term
log spectra [131]). Sometimes Manhattan distance and Mahalanobis distance
[31] are used. Also, tailored distance measures for a certain feature set can
be used (see [131, 108]).

The average quantization distortion DQ is defined as the average of the
individual distortions:

DQ(X, C) =
1

T

T∑
i=1

dq(xi, C), (2.2)

Obviously, for X ⊆ C, DQ(X, C) = 0. The better the sets X and C match
to each other, the smaller the distortion is. The computation of the dis-
tortion is illustrated in Fig. 2.4. Notice that (2.2) is not symmetrical, i.e.
DQ(X,C) 6= DQ(C, X). We will assume that the first argument of DQ is the
sequence of the unknown speaker’s feature vectors, and the second argument
is a known speaker’s codebook. It is also worth noticing that multiplication
of DQ(X,Ci) by a constant factor does not affect the ordering of distortions
{DQ(X, C1), . . . , DQ(X, CN)}. It does not matter whether (2.2) is normal-
ized by T , since it is the same for all speakers.

Several modifications have been proposed to the baseline VQ distortion
matching [158, 104, 57, 72, 75, 35]. For instance, in [72, 75], we assign to each
VQ code vector a discriminative weight so that a code vector that is close to
some other speaker’s code vector is given a small contribution to the overall
distance. Some of the various improved VQ methods are compared in [35]. It
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was found out that the discriminative training [54] and partition-normalized
distance measure [158] were the most efficient methods, and they could be
efficiently combined.

2.2.2 GMM-Based Speaker Recognition

In GMM-based speaker recognition [137, 136], the speaker model consists
of K Gaussian distributions parametrized by their a priori probabilities Pj,
mean vectors µj and covariance matrices Σj. We denote this model by
λ = {λ1, λ2, . . . , λK}, where λj = (Pj,µj,Σj) are the parameters of the
jth component. The parameters of the model are typically estimated by
maximum likelihood estimation, using the Expectation-Maximization (EM)
algorithm [26, 16].

The matching function in GMM is defined in terms of likelihood. As-
suming that the observations {xi}T

i=1 are statistically independent, the log-
likelihood of the GMM is given by

L = log p(X|λ)

= log
T∏

i=1

p(xi|λ)

=
T∑

i=1

log p(xi|λ), (2.3)

where p(xi|λ) is the Gaussian mixture density:

p(xi|λ) =
K∑

j=1

Pj Nj(xi), (2.4)

with the mixing weights constrained by

K∑
j=1

Pj = 1. (2.5)

The component densities Nj(xi) are given by the multivariate Gaussian den-
sity [31]:

Nj(xi) = (
√

2π)−
d
2 |Σj|− 1

2 exp{−1

2
(xi − µj)

T Σj
−1(xi − µj)}. (2.6)

The determinant |Σj| and the inverse covariance matrix Σj
−1 can be pre-

computed in the training phase and stored. Depending on the type of the
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covariance matrix, the number of multiplications in (2.6) is approximately
d2+d and d for the full and diagonal matrices, respectively. If the feature vec-
tor components can be assumed uncorrelated, diagonal covariance matrices
can be used. The covariance matrix inversion in this case consist of simply
taking inverse values of the diagonal elements, and thus it is also numerically
more stable than the full covariance case. As an example, typically diago-
nal covariance matrices are used with the mel-frequency cepstral coefficients
(MFCC) [67] since the computation of these features includes as a last step
a decorrelating transform, the discrete cosine transform (DCT).

2.2.3 Discussion and Other Approaches

Although the concept of GMM is intuitive, the EM-algorithm is pretty com-
plex from the implementation point of view. It requires, for instance, set-
ting of the minimum allowed values for the components variances to avoid
numerical problems [137]. The computation of the multivariate Gaussian
density easily produces an overflow if the feature space has high dimension-
ality. This means that in practise there is an upper limit for the number of
features before numerical problems arise. The VQ approach does not have
these problems, but its basic deficiency is that the clusters cannot overlap,
and thus the density function the code vectors represent is not continuous.
It is useful to notice that GMM is an extension of the VQ in which clusters
are allowed to overlap.

The advantages of both methods are exploited in [79, 118, 144]3. First, the
feature space is partitioned into K disjoint clusters using the LBG algorithm.
Then, the covariance matrices of each cluster are computed from the vectors
that belong to that cluster. The mixing weight of each cluster is computed as
the proportion of vectors belonging to that cluster. All studies [79, 118, 144]
show that this simple algorithm gives comparable results with the GMM-
based speaker recognition with much simpler implementation.

Several other approaches to speaker modeling in text-independent speaker
recognition have been proposed, including for instance neural nets, mono-
gaussian models, support vector machines, and decision trees. Overview and
comparisons of some of the methods are given in [37, 132]. So-called classi-
fier ensembles (committee classifiers) have become also popular in the past
few years. The basic idea is to model each feature set with the modeling
technique best suited for it, and to combine the sub-scores of the classifiers
into the final score. An overview and comparison of several combinations
strategies for speaker recognition is given in [138].

3In all papers, essentially the same algorithm is presented.
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2.3 Decision Making

The final step in speaker recognition process is the decision. The feature
extraction and pattern matching are same for different speaker recognition
tasks, but the decision depends on the task. Let us denote generally a speaker
model of speaker i by Si, and let S = {S1, . . . , SN} be the speaker database
of N known speakers. Without assuming a specific speaker model/classifier,
let score(X, Si) be the match score between the unknown speaker’s feature
vectors X = {x1, . . . , xT} and the speaker model Si. We will assume that
a larger match score corresponds to better match. In the case of distance-
based classifiers, we can put a minus sign in front of the match score without
loosing generality.

In closed-set speaker identification task, the decision is simply the speaker
index i∗ that yields the maximum score:

i∗ = arg max
j

score(X,Sj), (2.7)

where the maximum is taken over the speaker database S. In the verification
task, the decision is given as follows:

score(X,Sj)

{ ≥ Θj, accept speaker j
< Θj, reject speaker j,

(2.8)

where Θj is the verification threshold. The verification threshold can be set
the same for all speakers, or it can be speaker-dependent. The threshold(s)
are determined so that a desired balance between the false acceptances (FA)
and false rejections is obtained (FR). The former means accepting an im-
postor speaker, and the latter means rejecting a true speaker. There is a
trade-off between the two errors: when the decision thresholds Θi are in-
creased, false acceptance error decreases but false rejection error increases,
and vice versa. The balance between the error depends on the application.
Different threshold setting methods can be found in [13].

In the open-set identification task, the decision is given as follows:

decide

{
i∗, if i∗ = arg maxj score(X,Sj) ∧ score(X, Si∗) ≥ Θi∗

no one, otherwise
(2.9)

In other words, we find the best matching speaker, and if the match score of
this speaker is above the decision threshold, we accept the speaker. Otherwise
we decide that the speaker is no one.

In practise, the score that we compare to threshold is not the raw out-
put score of the classifier, but instead, a normalized score is used [43]. The
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Figure 2.5: The problem without score normalization in the verification task.

motivation for score normalization is the following (see Fig. 2.5). Suppose
that the training material was recorded in clean environment, but the recog-
nition happens in noisy conditions (or otherwise acoustically mismatched
conditions). The match scores are expected to get worse, since the claimant
speaker’s feature vectors are different than in the training phase. If the raw
score is compared with the threshold, the false rejection rate increases. How-
ever, also the other speaker’s match match scores get worse, and therefore,
the score normalization attempts to transform the client speaker scores rela-
tive to the general score distribution. There are several approaches to score
normalization, and these can be found e.g. in [13].
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Chapter 3

PRODUCTION, ACOUSTICS
AND PERCEPTION OF
SPEECH

Spoken language is commonly categorized into three different perspectives:
articulatory, acoustic and perceptual perspectives. In the articulatory ap-
proach, one attempts to describe how humans produce speech sounds by
examining the anatomy and physiology of the voice production organs. In
the acoustic approach, the acoustic speech signal itself is the object of inter-
est. In the perceptual approach, one examines the anatomy and physiology
of the human hearing mechanism and tries to find models which relate the
objective acoustic measurements to subjective perceptual attributes.

3.1 Articulatory Approach

Speech production is a complex process which, in a simplified model, consists
of the following consecutive tasks [131]:

1. Message formulation,

2. Coding of the message into a language code,

3. Mapping of the language code into neuro-muscular commands,

4. Realization of the neuro-muscular commands

We are not interested in the details of these steps here. The end result of
the complex neuro-muscular commands is the physical movements of the
voice production organs, whose parts are shown in Fig. 3.1. In a common
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classification [88] three physiological components of speech production are
recognized: (1) subglottal component, which consists of the lungs and associ-
ated respiratory muscles, (2) the larynx, which includes the vocal folds and
(3) supralaryngeal vocal tract, which consists of the pharyngeal, oral, and
nasal cavities. All of the three components, especially the vocal tract, are
complex systems with inherently time-varying nature: during speaking, the
configuration of these components changes continuously.

Figure 3.1: Human voice production system [58].

3.1.1 The Subglottal Respiratory System

The subglottal component produces an airstream which powers the speech
production process. During inspiration, muscular force is used in filling the
lungs. The lungs will expand in their volume in the same way as what
happens to a rubber balloon when one blows air into it, and energy is stored
in the elastic expansions of each lung. During expiration, this energy will
be spontaneously released due to a so-called elastic recoil force [85, 88]. The
resulting airstream flows through the trachea (or windpipe) to the larynx.
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3.1.2 The Larynx

The larynx is responsible for different phonation mechanisms [85, 88]. This
refers to producing acoustic energy which serves as an input to the vocal
tract. More specifically, the vocal folds and glottis are the interesting parts
from a speech production viewpoint. The larynx has also an important life-
supporting function: during swallowing, it will block the trachea and open
the way to the esophagus. The glottis is a small, triangular-shaped space
between the vocal folds [85, 88]. The egressive airstream from the lungs
passes through the glottis to the vocal tract. The action of the vocal folds
determines the phonation type, whose major types are voicelessness, whisper
and voicing [85].

During whisper and voiceless phonation, the vocal folds are apart from
each other, and the airstream from the lungs will pass through the open
glottis. The difference between whisper and voiceless phonation is determined
by the degree of the glottal opening. In whisper, the glottal area is smaller.
This results in a turbulent airstream, generating the characteristic “hissing”
sound of whispering [85]. In voiceless phonation, the area of the glottis will
be larger and the airstream is only slightly turbulent when it enters the vocal
tract. An example of voiceless phonation is the initial [h] in the Finnish word
“hattu” (a hat).

Figure 3.2: Illustration of one glottal cycle [85].

Voicing is more complex mechanism than voiceless phonation and whis-
per. Voicing is a result of periodic repetitions of the vocal folds opening and
closing. This is depicted in Fig. 3.2. During the opening phase, the respira-
tory effort builds up the subglottal pressure until it overcomes the muscular
force which keeps the vocal folds together. The glottis opens, and the com-
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Figure 3.3: Examples of glottal airstreams and their spectra.

pressed airstream bursts into pharynx with a speed of 2-5 m/s [85]. This
relatively high speed causes a local drop of air pressure at the glottis, and as
a consequence of this so-called Bernoulli effect, the vocal folds start to close.
The combined effort of the Bernoulli effect and muscular tension overcomes
the force of respiratory pressure very quickly, and the vocal folds are pulled
together. The coupling of the opening and closing phases continues, and the
result is a periodic stream of air puffs which serves as the acoustic source sig-
nal for the voiced sounds. The opening-closing is not perfectly periodical in
the mathematical sense, and therefore the term quasi-periodic is sometimes
used in this context.

An illustration of hypothetical glottal flows1 and their spectra is shown in
Fig. 3.3. It can be seen that the shape of the glottal pulse affects the roll-off
in the high frequencies. This affects the overall voice quality. For instance,
in the bottom case, the glottis stays (almost) open. As a result, the spec-
trum rolls off rapidly and the perceived voice could be verbally characterized
perhaps as “breathy”.

The rate at which the vocal folds vibrate is referred to as fundamental fre-

1The waveforms are generated by so-called Liljencrants-Fant glottal model.
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quency and abbreviated F0. The inverse of F0 is referred to as fundamental
period, and it is the time which a single opening-closing cycle takes. Fun-
damental frequency differs between females, males and children [88]2. This
results from anatomical differences; usually females have smaller vocal folds
compared to males, and due to their higher tension, they vibrate at higher
rate. Children have even smaller vocal folds. The average F0 values in con-
versational speech in European languages for males, females and children are
approximately 120 Hz, 220 Hz, and 330 Hz, respectively [85]. It is important
to keep in mind that F0 is defined only for the voiced phonation, and it is
undefined for the other phonation types.

3.1.3 The Supralaryngeal Vocal Tract

The supralaryngeal vocal tract, or simply vocal tract, is the most important,
and also most complex system in the speech production process. Vocal tract
is a generic term which refers to the voice production organs above the larynx.
The main parts of the vocal tract are shown in a schematic drawing of Fig.
3.4. The three main cavities of the vocal tract are the pharyngeal, oral and
nasal cavities. The soft palate or velum controls the amount of airflow to the
nasal cavity.

The parts of the vocal tract, especially those of the oral cavity, serve as
articulators. Each articulatory gesture, e.g., a tongue movement, aims at a
certain ideal phonetic target. The realized acoustic event approximates the
phonetic target. Articulatory gestures in general overlap in time. In other
words, articulation of the preceding phonetic target affects the next target
(and therefore, its acoustic parameters also). The phenomenon is known as
coarticulation. Due to coarticulation, the phonetic targets are not coded in
the speech signal as simple linear segments following each other in time, such
as letters in written text. Coarticulation is one of the reasons why automatic
speech segmentation into phonetic events remains a difficult problem.

The most flexible articulator is the tongue, which can have various posi-
tions and orientations. It can be made, for instance, to form a narrow passage
(a so-called stricture) in the vocal tract, through which the airstream flows.
Due to the stricture, the airstream becomes turbulent and makes the charac-
teristic “hiss noise” of certain phonemes. An example of this is the voiceless
fricative [s] in the word “sade” (rain), where the stricture is formed by setting
the body of the tongue against the hard palate.

In the production of vowels, on the other hand, the airstream flows freely

2An interested reader may verify this easily by performing F0 shift using any speech
processing system, as Praat [127].
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Figure 3.4: A simplified model of the vocal tract.

through the vocal tract. However, also in this case, there is a constriction
in the oral cavity. The cross-sectional area of the constriction is significantly
larger compared to the fricatives, and therefore turbulence is not built up.
Instead, a standing wave arises. The place and cross-sectional area of the
oral constriction determines (mostly) which vowel is produced [18, 88]. For
this reason, vowels are often classified as front, back or mid vowels based on
the place of the oral constriction. For instance, [a] is a back vowel and [i] is a
front vowel. The roundness of lips also affects the phonetic quality of certain
vowels [85, 88].

Nasal sounds are produced by the nasal cavity with the velum open and
a closure in the oral cavity. One can consider the velum as a valve which
controls the amount of airstream to the nasal cavity. For instance, during the
production of the initial [m] in the word “mahtava” (great) one can notice
that one’s lips are closed. Consequently, the airstream flows via nasal cavity
and egresses from the nostrils. Another example of a nasal sound is the initial
[n] in the word “nainen” (woman). This sound is also produced by making a
complete closure, this time by the body of the tongue. So, the place of oral
constriction plays role in the phonetic quality of different nasal sounds.

3.2 Acoustic Approach

Articulatory phonetics attempts to describe how speech sounds are produced
in terms of articulatory gestures, whereas the acoustic approach aims at
finding acoustic correlates of the physiology and behavioral aspects of the
voice production organs. The acoustic speech signal does not carry an X-
ray image of the speaker’s vocal tract or a video clip of the lip movements.
However, certain acoustic parameters have more or less direct correlates with
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Figure 3.5: The waveform and spectrum of vowel [a] uttered by male speaker.

the anatomy and physiology of the voice production organs.
Speech signals can be analyzed either in the time domain or in the fre-

quency domain. An example of a time-domain waveform and the short-term
spectrum of the same segment is shown in Fig. 3.5.

3.2.1 Spectrographic Analysis of Speech

In acoustic phonetic research, two useful representations are the waveform
and a time-frequency plot called spectrogram. The waveform shows the air
pressure variations, whereas the spectrogram shows the magnitudes of differ-
ent frequencies as a function of time. Examples of spectrograms are shown
in Figures 3.6 and 3.7. The grey level in the position (t, f) shows the relative
magnitude of the frequency f at time t so that darker regions correspond to
higher magnitudes.
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Figure 3.6: An example of a wideband spectrogram.
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Figure 3.7: A narrowband spectrogram of the same utterance shown in Fig.
3.6. Notice the harmonics of F0 seen as dark horizontal bars in the voiced
portions.

There is a trade-off between the time and frequency resolutions. If the
time resolution is high, i.e., a short analysis window is used, the frequency
resolution gets worse and vice versa. The resolutions are approximately in-
versely proportional to each other. For instance, a time resolution of 20 mil-
liseconds (0.02 seconds) gives approximately a frequency spacing of 1/0.02 =
50 Hz. In signal processing and physics, the relationship between time- and
frequency resolutions is known as uncertainty principle [98, 129].

There are two types of spectrograms: wideband and narrowband spectro-
grams (see Figures 3.6 and 3.7. In wideband spectrograms, the bandwidth of
the analysis filter is around 300 Hz and thus the time spacing is approximately
1/300 s = 3.33 ms. For narrowband analysis, the bandwidth is around 50 Hz
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Figure 3.8: Examples of unvoiced and voiced sounds. The “saa” part of the
phrase “osaaminen” (know-how) uttered by female speaker.

and thus the time spacing is around 1/50 s = 20 ms [51]. Wideband spec-
trograms are suitable for tracking vowel formants whereas the narrowband
spectrograms can be used in F0 estimation [51].

3.2.2 The Source-Filter Model

Speech production can be modeled by so-called source-filter model [36]. As
the name suggests, the model considers the voice production mechanism as
a combination of two components: the voice source and the acoustic filter.
The “source” refers to the airstream generated by the larynx and the “filter”
refers to the vocal tract. Both of the components are inherently time-varying
and assumed to be independent of each other.

The Voice Source

Let us return to the phonation mechanism. According to the source-filter
model, there are two possible voice sources: (1) a periodic stream of air puffs
which emerges from the vibration of vocal folds as described in Section 3.1.2,
and (2) non-periodic turbulent airflow which results when vocal folds are
open. Periodic voice source is characteristic for all vowels and nasal. Non-
periodic turbulence, in turn, is the acoustic input for noise-like sounds such
as fricatives [f] and [s]. A coarse classification of speech sounds can be based
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on the phonation type, which is referred either to as voiced or unvoiced for
the two voice source types, respectively.

Examples of voiced and unvoiced sounds are shown in Fig. 3.8. For
voiced sounds, a quasi-periodic structure is apparently present in the wave-
form. The periodicity results in a harmonic spectrum, in which most of the
acoustic energy is distributed on the integer multiplies of the fundamental
frequency, i.e. kF0, k = 1, 2, 3, . . . For instance, the harmonics of F0 can be
seen clearly in the spectrum in Fig. 3.5. The unvoiced sounds do not have a
periodical structure, and their spectra is non-harmonic and often spread on
wider frequency range.

The Acoustic Filter

In the source filter model, the vocal tract is considered as an acoustic filter
which is characterized by its natural resonance frequencies [23, 67, 58, 85]. In
the neighborhood of the resonances, the frequencies of the source signal are
boosted. For voiced sounds, these local maxima of the spectrum are called
formants and they can be seen in spectrograms as dark areas. The formants
are numbered as F1, F2 and so on. For most of the vowel sounds, the first
two formants bear most of the phonetic information [23, 108].

Figure 3.9: Multitube model of the vocal tract.

Often the acoustic filter is modeled as a hard-walled tube resonator (see
Fig. 3.9). In this so-called lossless tube model, the vocal tract is considered
as a cascade of N lossless tubes with varying cross-sectional areas. For this
kind of resonator, the resonances can be computed analytically. In the case
of a single tube (N = 1), the resonances of the tube (formant frequencies)
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are given by the following equation [51]:

Fn =
(2n− 1)c

4l
, (3.1)

where Fn is the nth formant frequency [Hz], c is the speed of sound in air
[m/s], and l is the total length of the tube [m]. Actually the single-tube model
predicts fairly well the formant frequencies of the neutral vowel, since during
its articulation, the cross-sectional area along the vocal tract is approximately
constant. For an average adult male speaker (l=17.5 cm) the formants of the
neutral vowel would be predicted by the equation occurring at 500 Hz, 1500
Hz, 2500 Hz and so on.

Spectrogram and formant tracks of the neutral vowel in the word “bird”
uttered by the author are shown in the upper and lower panels of Fig. 3.10,
respectively. It can be seen that the tube model predicts the formant loca-
tions quite accurately, especially for the formants F1, F2 and F4 in this case.
The differences are due to assumption of lossless tube and the length of the
tube.
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Figure 3.10: Spectrogram and formant tracks of the neutral vowel in “heard”
uttered by the author.

The production of other vowels can be modeled by a three-tube model
[36], where the first tube from the glottis corresponds to the pharyngeal
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cavity, the last tube corresponds to the oral cavity, and the middle tube
represents the place of the major constriction. The place of the constriction
defines the phonetic quality of the vowel.

0 1000 2000 3000 4000 5000

−100

−50

0

Source spectrum (fine structure)

0 1000 2000 3000 4000 5000
−20

−10

0

10

M
ag

ni
tu

de
 [d

B
]

Vocal tract transfer function (envelope)

0 1000 2000 3000 4000 5000

−100

−50

0

Frequency [Hz]

Source + vocal tract combined

Figure 3.11: Example of the source filter model (F0 = 100 Hz, transfer
function of [i] estimated via linear prediction).

The the tube model of Fig. 3.9 is at the best a crude approximation of
the actual physiology of the vocal tract, since (1) vocal tract is not a cascade
of discrete hard-walled tubes but the cross-sectional areas vary continuously,
(2) there are energy losses in the vocal tract due to vibration of cavity walls,
friction and heat conduction [51]. Furthermore, (3) in nasal sounds, there
is a side tube (closed oral cavity) which is not taken into account in the
modeling.
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Spectra of the Source and the Filter

According to source-filter theory, the resulting spectrum of a cascade of
source and filter is the product of their spectra:

S(z) = U(z)H(z), (3.2)

where S(z) is the speech spectrum, U(z) is the source spectrum and H(z)
is the transfer function of the vocal tract filter. In other words, the filter
emphasizes the source frequencies around the vocal tract resonances. This
is illustrated in Fig. 3.11. Notice that the source spectrum is responsible
for generating the harmonic fine structure and spectrum roll-off (spectral
tilt), whereas the vocal tract transfer function modifies the overall spectral
envelope.

The key point in the source-filter model is that the source and filter
are independent of each other. The assumption of the uncoupling makes it
possible to separate the two components from each other. Although being a
reasonable assumption in some cases, this is not true in general [36, 88, 150].
During phonation, the output of the larynx is affected by the vocal tract,
and this interaction of the source and the filter can be seen especially in the
cases when the first formant is low [88]. Vowels that have a low F1 tend to
have higher fundamental frequency.

3.2.3 Segmentals and Suprasegmentals

The terms segmental and suprasegmental refer to the time span of the acous-
tic analysis. Segmental measurements are done for a short segment of speech,
e.g. for a single phoneme. The duration for typical segmental analysis is in
the order of milliseconds. An example of a segmental measurement is the
spectrum of a single phoneme.

Suprasegmental parameters, on the other hand, are spread over several
segments as the name suggests. Suprasegmental parameters are also called
prosodic parameters. Prosodics is responsible for controlling the intonation,
stress, and rhythmic organization of the speech [23, 85]. Typical acoustic
suprasegmental measurements are the intensity and F0 contours. An exam-
ple is shown in Fig. 3.12.
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Figure 3.12: Example of acoustic analysis of prosodic parameters. Waveform
(upper panel), intensity contour (middle panel) and F0 contour (bottom
panel).

Suprasegmentals in the spoken language have a somewhat different func-
tion in the spoken language compared to the segmentals. In our everyday life,
suprasegmental features are used, for instance, to signal our attitudes and
emotions to the listener. Suprasegmental features can also give a clue of the
speaker’s dialect, social status, and the language spoken. Also, in so-called
tonal languages, the pitch contour plays also role in defining the linguistic
message [85].

It is obvious that the prosodic strand of speech bears also information
about the speaker itself. However, the prosodic parameters can be quite
easily impersonated. For instance, in [4] a popular Israel imitator imitated
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three different politicians. Three different parameters were studied: pitch
contours, formant frequencies and cross-sectional tube areas derived from
the lossless tube model of the vocal tract. It was demonstrated that the
prosodic parameter, i.e. pitch contour of the imitator, matched very closely
to the original target pitch contour. Interestingly, also the second and third
formant of the imitator matched closely to the target speaker’s formants.
The first formant did not match as closely. Even the cross-sectional areas
were changed towards the target utterance, but not as much as the pitch
contour which was most easily modified. Although Ashour and Gath’s study
was a preliminary one (small number of speakers and parameters), it gives an
unfortunate example that even the vocal tract parameters can be modified.

The main motivation for using prosodics in speaker recognition systems is
their robustness against transmission channel [134]. This makes the features
attractive for telephone-based applications.

3.3 Perceptual Approach

The last viewpoint of speech communication considers the perception of
speech, i.e. how human listener’s auditory system processes speech sounds.
The discipline of sound perception in general is referred to as psychoacoustics.
Techniques adopted from psychoacoustics are extensively used in audio- and
speech processing systems for reducing the amount of perceptually irrelevant
data. Psychoacoustics aims at finding connections between the physical, ob-
jectively measurable auditory stimuli, and the subjective impression about
what the listener has about the stimuli. A few typical acoustic attributes and
their auditory counterparts are listed in Table 3.1. We will discuss the first
three attributes in more detail since the underlying psychoacoustic principles
of these are widely used in speaker recognition systems.

Table 3.1: Some physical attributes and their perceptual counterparts [58].
Physical attribute Perceptual attribute

Intensity Loudness
Fundamental frequency Pitch

Spectral shape Timbre
Onset/offset time Timing

Phase difference in binaural hearing Location

The loudness of a sound is not linearly proportional to the measured
sound intensity. For instance, if the sound intensity is doubled, it is not per-
ceived “twice as loud” in general. The decibel scale (dB) is a more convenient
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way of describing this relationship. Decibel scale is a means of comparing
intensities of two sounds [58]:

10 log10

( I

I0

)
, (3.3)

where I0 is the intensity of the reference sound being compared with. For
instance, if the intensity I is twice the reference intensity I0, its dB level is
approximately +3 dB.

Fundamental frequency (F0) is defined as the rate at which the vocal
folds vibrate during voiced phonation. Psychoacousticians call perceived F0
pitch. Even if a speech signal is filtered so that the frequency region of the
fundamental is not present in the signal, humans can perceive it [67].

The human ear processes fundamental frequency on a logarithmic scale
rather than a linear scale [67]. It has been observed that in the high frequen-
cies, the F0 must change more that a human listener can hear a difference
between two tones. Mel is a unit of perceived fundamental frequency. It was
originally determined by listening tests, and several analytic models have
been proposed for approximating the mel-scale. For instance, Fant [36] has
proposed the following mapping:

Fmel = 1000 log2

(
1 +

FHz

1000

)
. (3.4)

Although F0 and pitch are in principle different quantities, they are used
interchangeably in literature to refer to the frequency of vocal fold vibration.
We do not make a difference between them here either.

The relative amplitudes of different frequencies determine the overall spec-
tral shape. If the fundamental frequency is kept the same and the relative
amplitudes of the upper harmonics are changed, the sound will be perceived
as having different timbre. Thus, timbre is the perceptual attribute of the
spectral shape, which is known to be an important feature in speaker recog-
nition. For instance, the widely used mel-cepstrum feature set measures the
perceptual spectral shape.

Studies of the human hearing mechanism [124] show that in the early
phases of the human peripheral auditory system, the input stimulus is split
into several frequency bands within which two frequencies are not distin-
guishable. These frequency bands are referred to as critical bands. The ear
averages the energies of the frequencies within each critical band and thus
forms a compressed representation of the original stimulus. This observa-
tion has given impetus for designing perceptually motivated filter banks as
front-ends for speech and speaker recognition systems.
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Figure 3.13: Mel-, Bark- and ERB-scales.

Many approximations to the critical band scale have been proposed. A
well-known mapping is the Bark-scale [51]. For the Bark scale, several an-
alytical formulae have been proposed. One of them is the one proposed by
Zwicker and Terhardt [171]:

FBark = 13 tan−1
(0.76FHz

1000

)
+ 3.5 tan−1

( FHz

7500

)2

. (3.5)

Another example of Bark-scale approximation is the following:

FBark = 6 sinh−1
(FHz

600

)
. (3.6)
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In addition to the Bark-scale, another critical band scale is so-called ERB-
scale3 [51], which is defined as follows:

ERB = 21.4 log10

(
1 +

4.37FHz

1000

)
. (3.7)

Mel, Bark and ERB-scales are depicted in Fig. 3.13 for comparison. The
shapes of the curves are different, but the message of all three is the same. In
the higher frequency region, two different stimuli must have larger difference
in order the human ear to distinguish them. In the lower frequencies, the
spectral resolution of the human ear is higher.

Given the center frequency of a critical band, its bandwidth can be com-
puted as follows [125]:

BW = 25 + 75

(
1 + 1.4

( FHz

1000

)2
)

(3.8)

.
One should question the usefulness of perceptual frequency scales in

speaker recognition. Perceptually motivated representations have been used
successfully in speech recognition, and a little ironically, in speaker recogni-
tion as well, despite the opposite nature of the tasks. The implicit assump-
tion made when using psychoacoustical representations is that the human
ear is the optimal recognizer. If this is not true, then we are throwing useful
information away!

3.4 Speaker Individuality

Speaker individuality is a complex phenomenon which builds up from both
the anatomy of the speaker’s vocal organs, as well as learned traits. There
has been debate about the inadequateness of the binary division into physio-
logical (organic) and learned (functional) speaker cues [112, 139]. According
to Nolan [112], no acoustic feature escapes the plasticity of the vocal tract.
In other words, the vocal organs are not fixed but they can be altered in-
tentionally, and rather than being a static organ, there exists limits within
which the variation of the organs can take place. In this sense, voice is a
different biometric than fingerprint, for instance. Fingerprint4 remains the
same but the speech signal varies from time to time.

3ERB = equivalent rectangular bandwidth of the auditory filter
4The very famous and as much misleading term voiceprint coined by Kersta [69] is still

widely used in daily media. As Bonastre & al. [17] point out, a voiceprint is nothing but
a printed spectrogram, and it does not contain robust feature points as fingerprints.
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3.4.1 The Voice Source

The larynx is quite individual. It is a well-known fact that females and
children have smaller vocal folds, and as a result, their overall pitch is higher
than an adult male’s. There is also variation between individuals in the pitch
distributions of each gender. The long-term F0 statistics, especially its mean
[101, 112, 22] and median [63] values carry important speaker information.

The fundamental frequency alone carries only one source of individuality
in the voicing mechanism. Tension of the vocal folds affects directly the
glottal pulse parameters, such as the rate of the closing phase, and the degree
of the opening. For some speakers, there is a complete glottal closure in
the voicing. For some others, the glottis is never complete closed, and the
auditive impression is perhaps a “breathy” voice [85] (see Fig. 3.3). Due
to this intuitively appealing notion of speaker differences in voice quality, it
seems beneficial to exploit voice quality information in speaker recognition
systems. However, reliable measurement of voice quality is difficult [34].

The shape of the glottal pulse affects for instance spectral tilt, the overall
downward slope of the spectrum. Spectral tilt can be estimated from the
long-term spectrum as the ratio of the energy of the higher frequency band
to the energy of the lower frequency band [112].

Since the glottal flow is modified by the filtering effect of the vocal tract,
direct measurement of the glottal flow is not possible. Plumpe & al. [126]
used inverse filtering based on linear prediction in order to obtain an es-
timate of the glottal flow. Then, “coarse” structure of the glottal flow
derivative waveform was estimated by finding the parameters of the so-called
Liljencrants-Fant glottal model by an iterative gradient search procedure.
From the difference between the coarse model and the actual glottal wave-
form, “detail” features were then derived. It appeared that although the
glottal features were observed to contain useful speaker-related information,
their measurement is difficult, especially from noisy speech.

3.4.2 The Vocal tract

Vocal tracts of individuals differ, first of all, in their overall size [108]. This is
especially true between genres. Vocal tract sizes are progressively smaller for
male, female and children, respectively. If we assume that the articulatory
configurations of two speakers are the same and the only difference is the
length of the vocal tract (measured from glottis to lips), then the acoustic
theory predicts that the formant frequencies are inversely scaled by the ratio
of the speakers’ vocal tract lengths.

In addition to the overall size of the vocal tract, the relative sizes of
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the individual cavities differ between individuals [108]. Oral and pharyngeal
parts of the vocal tract are scaled differently from speaker to speaker. The
length of the mouth cavity does not vary as much as that of the pharyngeal
cavity between speakers. Also, the front and back cavities as defined by the
major constriction of articulation have been found to be correlated with the
“phonetic” and “speaker” features. Mokhtari [108] also cites a study where
it was found out that the regions of the vocal tract with larger cross-sectional
area are more individual than the places of lingual constriction. In summary,
both the length and the shape of the vocal tract are individual.

3.4.3 Segmental Differences

The discriminatory properties of different phonemes and phoneme groups
have been studied. Eatock and Mason [32] compared discrimination prop-
erties of phoneme groups and individual phonemes from a database of 125
speakers. The speech files were annotated by hand, and the extracted seg-
ments were parametrized using LPC-derived cepstral coefficients. They found
out that the nasals and vowels performed the best and stops the worst, and
this was in consensus with previous studies carried out by different authors.
The only exception was the unvoiced fricative [s], which Eatock and Mason
found to be comparable with the vowels and nasals, which was not the case
in the studies they cite.

Kajarekar and Hermansky [68] introduced an automatic speaker verifi-
cation system that segmented the input speech into four broad phone cate-
gories: (1) silence+stops, (2) glides+nasals, (3) vowels+diphtongs, and (4)
fricatives. They used two large corpora (539 and 1003 speakers) in their ex-
periments. The segmentation was carried out using Hidden Markov Model
(HMM) approach, and the spectral features were mel-cepstral coefficients.
The lowest equal error rate (EER) was obtained with the combination of
categories (3) and (4). The highest EER was obtained by using the category
(1) alone. When used individually, the fricative category gave lowest EER.
Although the studies [68, 32] are not directly comparable, the results are
consistent: vowels, nasals and fricatives have good discrimination properties,
whereas stops have small inter-speaker variation.

It has been reported in several studies that nasal sounds are an effective
speaker cue [142, 112, 32, 68, 139]. This can be partially explained by the
fact that the nasal cavity is both quite individual, and more importantly,
fixed in the sense that one cannot change its volume or shape. Therefore,
the measurement from the nasal sounds are expected to remain quite sta-
tionary in different recording sessions. However, since the pharyngeal and
oral cavities are part of the acoustic resonator in nasal production, there will
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necessary be some variation. Moreover, nasal sounds are easily affected by
e.g. head cold [142].

Vowels have been studied a lot due to their high occurrence in European
languages [85]. The general agreement is that the first two formants are
mostly responsible for the phonetic quality of vowels. In other words, a vowel
can be (almost) uniquely determined by only two acoustic parameters, F1
and F2. The third and higher formants, on the other hand, are assumed to be
more speaker-dependent. Both acoustic and perceptual studies have given
evidence for this hypothesis according to studies cited by Mokhtari [108].
This observation agrees with the claim regarding the speaker specificity of
the pharyngeal cavity: above larynx, there is so-called “larynx tube” that
generates a larynx resonance whose frequency is generally higher than those
of F1 and F2.

Absolute locations of lower formants are often not the same for different
speakers producing the same vowel. Instead, the relative locations (e.g. rel-
ative to neutral vowel or other reference sound) seem to have less variation
between speakers [108]. Thus, the lower vowel formants also carry informa-
tion about the speaker, although their inter-speaker variation is smaller than
those of the higher vowel formants. Also, the discrimination power of the
formants depend on the vowel: for instance, F2 of the front vowels carries
speaker information [108].

Several studies have indicated the middle- and high-frequency portions
of the spectrum to be important for speaker recognition [108, 10, 145]. Also,
the low end (approximately the region of F0) of the spectrum carries useful
information [10, 71]. The lower frequency portion of the spectrum roughly
carries most of the phonetic content, i.e. the message. However, phonetic
and speaker information are mixed in a complex way over the spectrum [165],
and the extraction of speaker information cannot not be done just by a simple
band-pass filtering. Also, the discriminative frequency regions depend on the
phoneme [10, 71]. See [108] for an extensive treatment of this speech-speaker
dichotomy.

3.4.4 Suprasegmental Differences

We know from our everyday life by intuition that prosodic parameters carry
speaker-related information: intonation, stress, timing and rhythm vary from
speaker to speaker. These parameters are not affected by noise and transmis-
sion line as much as the spectral parameters. However, their disadvantage is
that they depend on the speaker’s emotional state and the spoken utterance.
Furthermore, they can be more easily impersonated, and thus they are not
considered as reliable as the segmental cues.
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Yet another complication associated with the suprasegmentals is their
measurement and modeling. To be able to model a suprasegmental strand,
e.g. a pitch contour, it must be preceded by some sort of segmental measure-
ment (F0 estimation). Then, the time sequence obtained in this way must
be modeled somehow.

Historically, prosodic parameters were studied in early studies of auto-
matic speaker recognition [5, 140], but the interest has clearly grown in the
past few years [22, 147, 83, 160, 9, 21, 39, 135, 119, 2]. The reasons for
this might be the increased computing power of modern microprocessors,
and the increased need to develop more robust systems beyond laboratory
environments.
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Chapter 4

SIGNAL PROCESSING
BACKGROUND

This chapter gives a brief overview of the digital signal processing methods
used in feature extraction. A comprehensive treatment of the subject can be
found in general DSP books such as [114, 62, 129, 146].

4.1 A/D Conversion

A speech signal is a form of wave motion carried by a medium (e.g. air
particles) [18, 58], and it can be captured by a microphone, which converts
the continuous air pressure changes into continuous voltage changes. The
analog signal sa(t) is then sampled to a digital form s[n] by an analog-to-
digital converter (A/D converter). The A/D converter samples the analog
signal uniformly with the sampling period T :

s[n] = sa(nT ). (4.1)

The inverse of T is the sampling frequency (or sampling rate) and marked
here by Fs = 1/T . Given that the original signal sa(t) contains frequencies
only up to Fs/2, it can be fully reconstructed from the samples s[n] [114, 129].
The frequency Fs/2 is called the Nyquist rate [114] of the signal and it is the
upper limit for frequencies present in the digital signal. For instance, if one
wants to preserve frequencies up to 4 kHz, the sampling rate must be chosen
Fs > 8 kHz. In addition to the sampling, the ADC quantizes the samples
into a finite precision. The number of bits used per sample determines the
dynamic range of the signal. Adding one bit extends the dynamic range of
the signal rougly +6 dB [62].

48



4.2 Fourier Analysis

Fourier analysis provides a way of analyzing the spectral properties of a given
signal in the frequency domain. For instance, the spectrograms in Figures 3.6
and 3.7 were produced by computing windowed discrete Fourier Transform
of the speech signal.

The Fourier analysis tools consider a signal as being composed of a su-
perposition of sinusoidal basis functions of different frequencies, phases and
amplitudes. An example is shown in Fig. 4.1, which shows three sinusoids
and their superposition (sum). Fourier analysis provides a tool for finding the
parameters of the underlying sinusoids (forward transform) or for synthesiz-
ing the original time-domain signal from the frequency domain presentation
(inverse transform).
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Figure 4.1: Three sinusoids and their superposition.

4.2.1 The Discrete Fourier Transform (DFT)

Suppose that s[n], n = 0, 1, . . . , N − 1 is a discrete-time sequence of N sam-
ples. The discrete Fourier transform or DFT of s[n] is defined as follows
[67, 129]:

Ŝ[k] = F{s[n]} =
N−1∑
n=0

s[n]e−j2πnk/N , 0 ≤ k ≤ N − 1, (4.2)

where k represents the discrete frequency variable and j is the imaginary
unit. The result of the DFT is a complex-valued sequence of length N . The
value k = 0 (ωk = 0) corresponds to zero frequency or the DC component of
the signal and k = N/2 (ωk = π) corresponds to the Nyquist frequency.

The inverse DFT or IDFT is defined as
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s[n] = F−1{Ŝ[k]} =
1

N

N−1∑

k=0

Ŝ[k]ej2πnk/N , 0 ≤ n ≤ N − 1, (4.3)

where n represents the discrete time variable. In other words, the original sig-
nal can be reconstructed from its Fourier transform by the inverse transform.
Both DFT and IDFT are linear transformations, i.e.

F{αs1[n] + βs2[n]} = αF{s1[n]}+ βF{s2[n]}
F−1{αs1[n] + βs2[n]} = αF−1{s1[n]}+ βF−1{s2[n]}

for all constants α, β and sequences s1[n], s2[n].

4.2.2 The Magnitude and Phase Spectra

The kth harmonic component of the DFT is a complex number Ŝ[k] =

ŜRe[k] + j ŜIm[k]. It can be expressed in polar form as Ŝ[k] = |Ŝ[k]|ej\Ŝ[k],
where

|Ŝ[k]| =
√

ŜRe[k]
2
+ ŜIm[k]

2

∠Ŝ[k] = tan−1
( ŜIm[k]

ŜRe[k]

)
.

|Ŝ[k]| is the magnitude and ∠Ŝ[k] is the phase of the kth harmonic compo-
nent.

DFT is periodic with N , i.e. Ŝ[k + N ] = Ŝ[k]. For real signals such as
speech, the magnitude spectrum is symmetric with respect to the frequency
N/2. Furthermore, the phase spectrum for real signals is antisymmetric with
respect to the frequency N/2. Due to this redundancy, any real-valued signal
is fully represented by the harmonic components up to N/2.

In speech analysis, the phase spectrum is usually neglected, since it is
generally believed that it has little effect on the perception of speech [51, 44].
However, some studies have indicated that the phase actually is important
for perception of speech. For instance, recently Paliwal and Alsteris [117]
demonstrated that the phase spectrum is actually more important than the
magnitude spectrum for speech perception in certain conditions! This raises
a question whether phase information should be exploited for speech and
speaker recognition front-ends.
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4.2.3 Fast Fourier Transform (FFT)

From the definition (4.2) it is easy to see that the time complexity of DFT
is O(N2). However, DFT can be computed via a faster algorithm called
fast Fourier transform or FFT [62]. A requirement for FFT is that input
signal (vector) has a length of 2M for some M ∈ N+, i.e. a power of two. In
practice, the input signal is first zero-padded to the next highest power of two
and the zero-padded signal is given as an input for the FFT. For instance, if
the length of signal is 230 samples, it is zero padded to length N = 256 for
which the FFT can be computed. Zeros can be added to the beginning or
end of the signal, and it does not affect the result of the DFT [129]. Time
complexity of the FFT is O(N log2 N). The savings in computation time in
practise are on the order of hundred folds. For instance, for N = 1024, the
ratio of DFT multiplications to FFT multiplications is about 200 and the
ratio of additions about 100 [62].

4.3 Digital Filters

A filter is a system that modifies the input signal s[n] into output signal y[n]
[62, 129, 114]. There are several ways of specifying a digital filter. In the
time domain, filter is characterized by its impulse response h[n] that can be
finite (FIR-filter) or infinite (IIR-filter). In the frequency domain, filter can
be specified by its transfer function H(z), where z is a complex variable.

In the time domain, filtering is presented as a convolution between the
input signal and the impulse response h[n] [58, 62, 129, 114]:

y[n] = s[n] ? h[n] =
∞∑

k=−∞
s[k]h[n− k]. (4.4)

In practise, this is implemented using a recursive relationship [62]:

y[n] =
N∑

k=0

a[k]s[n− k]−
M∑

k=1

b[k]y[n− k], (4.5)

where the coefficients a[k], b[k] are determined from the filter specifications.
The latter sum in (4.5) represents the feedback part of the filter, and it
vanishes for FIR filters (b[k] = 0 for all k). The transfer function H(z)
of (4.5) is obtained by taking z-transforms of both sides and solving for
Y (z)/S(z):

H(z) =
Y (z)

S(z)
=

∑N
k=0 a[k]z−k

1 +
∑M

k=0 b[k]z−k
. (4.6)
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The roots of the numerator of (4.6) are called zeros of the system, and the
roots of the denominator are called poles of the system. A pole causes a res-
onance (peak) in the magnitude response of the filter, whereas a zero causes
an anti-resonance (valley). For instance, the vocal tract transfer function of
vowel sounds can be well characterized by its poles only, which correspond
to the formant locations. On the other hand, the nasal sounds such as [n]
have, in addition to resonances, anti-resonances in their spectrum, and both
the poles and zeros are needed in modeling [51].

In the frequency domain, filtering is performed by multiplying the DFT
of the input signal pointwise by the transfer function of the filter. According
to the convolution theorem [114], multiplication in the frequency domain
corresponds to convolution in the time domain, and vice versa:

s[n]? h[n] ←→ S(z)H(z) (4.7)

s[n]h[n] ←→ S(z) ? H(z). (4.8)

Figure 4.2: Short-term spectral analysis.

4.4 Short-Term Spectral Analysis

Since the speech signal changes continously due to the articulatory move-
ments of the vocal production organs, the signal must be processed in short
segments, within which the parameters remain quasi-stationary (see Fig.
4.2). Computing the DFT over the entire signal would discard the local
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spectral properties which emerge from the realizations of different phonemes.
Instead of performing DFT for the whole signal, a windowed DFT is com-
puted. A short frame, typically around 10-30 milliseconds, is multiplied by
a window function, and the DFT of the windowed frame is then computed.
This process is repeated over the entire speech signal so that the frame is
shifted forward by a fixed amount, typically around 30 to 75 % of the frame
length.

4.4.1 Window Functions

The purpose of the windowing is to reduce the effect of the spectral arte-
facts that result from the framing process [52, 67, 129, 114]. Windowing in
the time domain is a pointwise multiplication of the frame and the window
function. According to the convolution theorem [114], this corresponds to
convolution of the short-term spectrum with the window function magni-
tude response. In other words, the transfer function of the window will be
present in the observed spectrum. A good window function has a narrow
main lobe and low sidelobe levels [129, 52] in their transfer functions. There
is a trade-off between these two: making the main lobe narrower increases
the side-lobe levels, and vice versa. Harris [52] lists also several other de-
sirable properties of a good window function. In general, a proper window
function tapers smoothly down at the edges of the frame so that the effect
of the discontinuities is diminished.

The intuitively most simple windowing is “no windowing”, or rectangular
window defined as follows [58]:

w[n] =

{
1, 0 ≤ n ≤ N − 1
0, otherwise

(4.9)

Although rectangular window preserves the original waveform unchanged, it
is seldom used due to its poor spectral leakage effects. The most commonly
used window function in speech processing is the Hamming window defined
as follows [58]:

w[n] =

{
0.54− 0.46 cos 2πn

N
, 0 ≤ n ≤ N − 1

0, otherwise
(4.10)

The time-domain shapes and magnitude responses (computed using DFT)
of rectangular and Hamming windows are shown in Fig. 4.3.
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Figure 4.3: Waveforms and magnitude responses of rectangular and Ham-
ming windows estimated by the DFT.

Harris [52] has compared over 20 different window functions. One window
that has a good compromise between the main lobe width and the sidelobe
levels is the Kaiser-Bessel window defined as follows:

w[n] =





I0

[
πα

(
1−(2n/N)2

) 1
2
]

I0(πα)
, −N/2 ≤ n ≤ N/2

0, otherwise,

(4.11)

where

I0(x) =
∞∑

k=0

[(x/2)k

k!

]2

. (4.12)

Although the sum (4.12) is in theory infinite, in practise it converges very
fast. According to Ifeachor and Jervis [62] a 32-term partial sum is enough
to approximate (4.12). The parameter α controls the trade-off between the
main lobe width and the level of the sidelobes. For smaller α, the main lobe
is more narrow but the sidelobes levels are higher, and vice versa. Typical
values are from α = 2.0 to α = 3.5 [52].
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Figure 4.4: Voiced speech segment [i] windowed using rectangular (left) and
Hamming (right) windows. Notice the spectral leakage in the case of the
rectangular window.
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Figure 4.5: Unvoiced speech segment [s] windowed using rectangular (left)
and Hamming (right) windows.
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Examples of windowing are shown in Figures 4.4 and 4.5 which show a
voiced and an unvoiced speech segment spoken by the same male speaker. As
can be seen from the voiced speech segment, the Hamming window exhibits
less spectral leakage. The rectangular window causes the harmonics of F0 to
“leak” energy to the neighboring harmonics, and as the result, the individual
harmonics are smoothed away. For the Hamming window, the individual
harmonics can be seen. The unvoiced segment in Fig. 4.5 does not contain
any harmonics, but the spectral leakage can still be seen.

4.4.2 Frame Length and Overlap

The selection of the frame length is a crucial parameter for successful spectral
analysis, due to the trade-off between the time and frequency resolutions.
The window should be long enough for adequate frequency resolution, but
on the other hand, it should be short enough so that it would capture the
local spectral properties. Typically a frame length of 10-30 milliseconds is
used. For females and children, pitch tends to be higher, and a shorter frame
should be used than for low-pitched male speakers [58]. Usually adjacent
frames are overlapping by some amount. A typical frame overlap is around
30 to 50 % of the frame size. The purpose of the overlapping analysis is that
each speech sound of the input sequence would be approximately centered
at some frame.

4.4.3 Adaptive Framing

Typically, frames have a fixed length because of the straightforward imple-
mentation. However, fixed-length frame does not take into account neither
the natural variation in the durations of speech sounds, nor the coarticulation
effects. Methods that adapt the frame length according to the local pitch
period are known as pitch-synchronous analysis methods [58]. The motiva-
tion for pitch-synchronous analysis is the following. During the open phase
of voicing, the trachea, larynx, and the vocal tract are acoustically coupled,
and this is affects the resonances of the vocal tract [58, 150]. Therefore, the
assumption of the independence of the source and the filter is no longer valid.
During the closed phase of phonation, the resonances of the vocal tract are
less affected by the source. However, reliable closed-phase analysis, especially
in the presence of noise, is a demanding task.

Because the spectrum within the analysis frame should remain approx-
imately stationary, one could use a simple on-line segmentation algorithm
based on some acoustic features. This class of algorithms is known as vari-
able frame rate analysis (VFR) methods. For instance, in [168] a simple
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algorithm using VFR for speech recognition was proposed. The algorithm
computes weighted Euclidean distances between the adjacent frame parame-
ters computed with initially high frame rate. When the accumulated distance
exceeds a pre-determined threshold, a frame boundary is marked. Another
example is given by Adami and Hermansky [1]. They proposed a simple
segmentation method that utilizes dynamics of F0 and intensity in order to
locate the boundaries of broad phonetic categories.

More complex approaches to VFR have been proposed. For instance,
Nguyen & al. [109] proposed to use the temporal decomposition (TD) on the
line spectral frequency (LSF) parameters. The idea in TD [7] is to repre-
sent the original speech waveform as a weighted sum of event functions that
overlap in time with each other. The TD method finds the parameters of the
event functions, and the events itself present spectrally stable “phoneme-like”
events.
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Figure 4.6: Magnitude responses of pre-emphasis filter (4.13) for different
values of α.

4.5 Speech Pre-Emphasis

Usually speech is pre-emphasized before any further processing. Pre-emphasis
refers to filtering that emphasizes the higher frequencies. Its purpose is to
balance the spectrum of voiced sounds that have a steep roll-off in the high
frequency region. For voiced sounds, the glottal source has an approximately
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-12 dB/octave slope [51]. However, when the acoustic energy radiates from
the lips, this causes a roughly +6 dB/octave boost to the spectrum. As
a net result, a speech signal when recorded with a microphone from a dis-
tance, has approximately a -6 dB/octave slope downward compared to the
true spectrum (of the vocal tract). Therefore, pre-emphasis removes some
of the glottal effects from the vocal tract parameters. Because the spectrum
of unvoiced sounds is already flat, there is no reason to pre-emphasize them
[51, 125].
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Figure 4.7: Example of pre-emphasis of a single frame (40 ms Hamming
window).

Pre-emphasis has other advantages as well. Makhoul [97] shows that the
numerical stability of the linear predictive analysis (LP) is inversely pro-
portional to the dynamic range of the spectrum being analyzed by LPC.
Therefore, a filter that flattens the spectrum should be used prior to LPC to
avoid numerical problems, and this is what the pre-emphasis filter does.

The most commonly used pre-emphasis filter is given by the following
transfer function:

H(z) = 1− αz−1 (4.13)

where α > 0 controls the slope of the filter. The impulse response of the
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filter is h[n] = {1,−α} and the filter is simply implemented as a first order
differentiator:

y[n] = s[n]− αs[n− 1]. (4.14)

The frequency response of the filter is

H(ejω) = 1− α e−jω

= 1− α(cos ω − j sin ω).

Hence, the squared magnitude response is

|H(ejω)|2 = (1− α cos ω)2 + α2 sin2 ω

= 1− 2α cos ω + α2 cos2 ω + α2 sin2 ω

= 1− 2α cos ω + α2(cos2 ω + sin2 ω)

= 1− 2α cos ω + α2. (4.15)

The magnitude responses in dB scale1 for different values of α are shown
in Fig. 4.6. An example of pre-emphasized frame in time and frequency
domains is shown in Fig. 4.7. Notice that the pre-emphasis makes the upper
harmonics of F0 more distinct, and the distribution of energy across the
frequency range is more balanced.

4.6 Filterbanks

Filterbank is a generic term which refers to the class of methods that process
on multiple frequency bands of a given signal. Terms filterbank and subband
processing refer more or less to the same concept, and we will use them in-
terchangeably. Another branch of signal processing that parallels subband
processing closely is wavelet analysis [151, 98]. Wavelet-based feature ex-
traction has been experimented in speaker recognition also [122, 154, 162].
Although wavelets may provide a better signal representation compared to
the short-term DFT, there are several open questions regarding the selection
of the mother wavelet, wavelet decomposition structure, and the extraction
of features from the wavelet transform. All of the approaches [122, 154, 162]
are more or less heuristics, without theoretical background.

Examples of two different filterbank magnitude responses are shown in
Fig. 4.8. In both cases, the filters are linearly spaced on the frequency
range 0-4 kHz. In both figures, the filter that analyzes band 2000-2500 Hz
is emphasized to put explicit that a given filter in the filterbank has a zero
response outside of its passband.

1Magnitude response in dB: 10 log10 |H(ejω)|2 = 20 log10 |H(ejω)|
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Figure 4.8: Magnitude responses of rectangular- and triangular-shaped fil-
terbanks.

In designing a filterbank, one must decide whether filterbank is imple-
mented in the time domain by set of recursive equations (4.5) or in the fre-
quency domain by multiplying the signal spectrum with the filter magnitude
response. In the time-domain implementation [24], the feature extraction can
be done for each bandpass signal using the regular frame-by-frame processing
(see Fig. 4.9). One advantage of this is that each subband can be processed
by the same techniques as for the fullband signal. This has a practical con-
sequence that the resolution of each subband can be controlled more easily
than in the fullband processing.

Suppose that an N -point magnitude spectrum S[j], j = 1, . . . , N is pro-
duced by the short-term DFT. Suppose an M -channel filterbank, whose
sampled magnitude response is specified in arrays Hi[j], i = 1, . . . ,M ; j =
1, . . . , N . The output of the ith filter Y [i] is given by

Y [i] =
N∑

j=1

S[j]Hi[j]. (4.16)

In other words, the output of the ith channel is the output of the DFT
magnitudes in that frequency region weighted by the filter response. In this
way, filterbank provides a smoothed version of the original spectrum with
M < N components. Notice that while the DFT of the input frame must be
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Figure 4.9: Illustration of full-band and subband feature extraction.

computed online, the filterbank responses need to be computed only when
the recognition system is initialized. It is also worth noticing that only the
non-zero elements of the filter responses need to be stored in practise.
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Figure 4.10: Examples of filter banks with different filter shapes and fre-
quency warpings.
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Figure 4.11: Principle of frequency warping.

A desirable property of a filterbank is that its magnitude response sums
to unity at every frequency band, i.e.

M∑
i=1

Hi[j] = 1 (4.17)

for all j. This ensures that the whole frequency range of interest is processed
with equal significance. Due to the finite precision and finite number of
samples in the bank, (4.17) might be difficult to reach in practise. The filters
in the low- and high-ends of the frequency range may cause problems also.
For instance, the triangular filterbank in Fig. 4.8 has a response < 1 at both
ends.

Center frequencies of the filters are often evenly spaced on some frequency
axis. The axis can be linear as in Fig. 4.8, or warped according to some non-
linear function as the mel-, Bark- or ERB-scales shown in Fig. 3.13. By
frequency warping, one can adjust the amount of resolution that is desired
around a certain frequency. The idea in wavelet analysis [151] is somewhat
the same, but the terminology and formulations are different. There are two
approaches to utilize frequency warping into spectral analysis [49]: paramet-
ric and non-parametric approaches. In the former case, the warping function
is directly plugged into a parametric signal model such as generalized linear
prediction. In the latter case, the warping function is sampled in finitely
many points, and the sampled points represent the filter locations. This ap-
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proach is used with the DFT-implemented filterbanks. Examples of warped
filterbank magnitude responses are shown in Fig. 4.10 with different filter
shapes and warping functions.

The idea of non-parametric frequency warping in the design of a warped
filterbank is illustrated in Fig. 4.11. A desired number of filter center fre-
quencies are placed linearly on the ω′ axis (such as mel). Then, the inverse
mapping ω′ 7→ ω is used to resolve the center frequencies in the frequency
axis ω (Hz). Thus, the warping function must be a bijective mapping so
that it can be inverted uniquely. As a result of the warping, the axis ω is
stretched/shrinked.
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Chapter 5

FEATURE EXTRACTION

5.1 Filterbanks

Filterbanks have the advantage over the most of the other spectral represen-
tations that the features have a direct physical interpretation. This enables,
for instance, utilizing a priori knowledge of the discrimination powers of sub-
bands by appropriate subband weighting [145, 71, 115]. Also, if some of the
subbands are contaminated by noise, the uncontaminated subbands can still
be used [11, 105].

As in general data fusion [132, 73], we recognize from literature two main
approaches to utilize filterbanks in speaker recognition: (1) feature-level fu-
sion (input fusion) and (2) classifier fusion (output fusion). In the former
case, subbands outputs are combined into a single M -dimensional feature
vector and a single speaker model is trained. In the latter case, each sub-
band output is considered independently and for each subband, a separate
model is created.

5.1.1 Input Fusion

The simplest approach to subband-based feature extraction is to consider the
subband outputs (possibly compressed using logarithm or other nonlinearity)
directly as the features. The natural extension of this is to weight each
subband output by the discrimination power of that subband. In [115], the
subband weights were determined using F-ratio [161, 20] and a recognition
performance index called vector ranking.

The author has presented an extension of the simple subband weighting
[115] called adaptive discriminative filterbank (ADFB) [71]. The motivation
for this processing is that a single discrimination value for all speech sounds
might smooth out the effect of such subbands that are in general poor but
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Figure 5.1: Flowchart of the adaptive discriminative filter bank front-end
[71].

discriminative for a certain phone. The flowchart of the method is shown in
Fig. 5.1. The subband weights are adapted according to the coarse phone
class (“pseudo-phone”) of the input frame. In other words, there is a weight
for each phone-subband pair that is determined in the training phase. The
pseudo-phone templates are generated by clustering a large amount of speech
data from a variety of speakers. The pseudo-phone templates are presented
by the mel-frequency cepstral coefficients (MFCC) [131]. The subband pro-
cessing itself is similar to MFCC computation, but the mel-frequency filter-
bank is replaced by a linear frequency filterbank, and the filterbank outputs
are weighted by their discrimination values. As in MFCC, finally the filter
outputs are decorrelated using discrete cosine transform (DCT).
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Figure 5.2: Structure of a subband-based classifier output fusion system.

5.1.2 Output Fusion

Another approach to combining evidences of several subbands is to model
each subband independently and combine the scores of the subband classi-
fiers [11, 10, 145, 24, 105]. The principle is illustrated in Fig. 5.2. Score
combination on the classifier output level is flexible, since different classifier
architectures can be used for different frequency bands.

The design of such systems includes designing of the front-end (filter-
bank), the individual classifier architectures, and the score combination method
which is not a straightforward task. Some of the commonly used classifier
output score combining rules have been summarized by Kittler & al. [77].
They found out that simple sum rule, i.e. combining the individual classifier
outputs by summing them, gave the best recognition performance. They
found out theoretically that the sum rule was most resilient to estimation
errors.

The major drawbacks of the classifier output fusion systems are increased
time- and memory requirements. For each speaker-subband pair, a separate
model must be stored and in the recognition stage, each classifier must com-
pute its own match score. The overall time increases with the number of
subbands and the complexity of the subband classifiers.

The systems described in [145, 24] are text-dependent in which each
subband is modeled by the Hidden Markov Model (HMM). The systems
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[11, 10, 105] are text-independent. In [11, 10], each subband is modeled us-
ing a unimodal Gaussian distribution [14], and in [105] is the subband models
are Gaussian Mixture Models (GMM).

Damper and Higgins combine directly the subband classifier outputs (log-
probabilities) by the sum rule [77], whereas Sivakumaran & al. propose three
different weighting schemes for the subbands [145]. In the first approach, the
weight for the subband is determined by the empirical error rate of the sub-
band, similar to [115]. In the second approach, the segmental signal-to-noise
ratio (SNR) is estimated and a subband with higher SNR is associated with a
larger weight. In the third approach, they define the weight using a compet-
itive speaker model. The last approach is a well-known score normalization
technique in speaker verification [92, 8]. The competing speaker model ap-
proach performed the best.

The method proposed by Ming & al. [105] attempts to select only those
subbands that are less contamined by noise. This is based on maximizing
the a posterior probability of a given speaker model with respect to the
uncontaminated subbands; the underlying assumption is that a noisy channel
has a low probability, and will not be selected to the final scoring. What
makes their algorithm attractive is that they did not make any a priori
assumptions about neither the amount/type of noise, nor the number of
contaminated subbands. Furthermore, the algorithm itself is very simple.

5.1.3 Frequency-Warped Filterbanks

Using psychoacoustically motivated warping functions (especially the mel-
and Bark-scales) is common in speaker recognition. To the authors knowl-
edge, these scales were first applied in the speech recognition task and later
adopted to speaker recognition. However, it is likely that human ear is not
optimally designed to recognize speakers, and for this reason, one should
be cautious in using such transformations. In perceptually motivated signal
representations, one implicitely assumes that the information ignored by the
human peripheral auditory system is not important for the task at the hand,
which may not be the case with automatic speaker recognition.

For the reason explained, it is worthwhile to study other than perceptually-
motivated frequency warpings. Alternative frequency warpings have been
proposed for speaker recognition in [49, 106, 107]. For example, the warping
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function proposed by Gravier & al. [49] is1

ω′ = tan−1

∣∣∣∣
(1− α2) sin ω

(1 + α2) cos ω − 2α

∣∣∣∣, (5.1)

where ω and ω′ are the original and warped frequencies in radians, and
α ∈ [−1, 1] is a control parameter. Positive values of α provide better reso-
lution at low frequency region whereas negative values give emphasis to high
frequencies. The case α = 0 corresponds to linear frequency scale, i.e. no
warping.

Miyajima & al. [106, 107] have proposed a more general approach to fre-
quency warping, in which the warping function is specified by two parameters
α and θ:

ω′ = ω + tan−1

(
α sin(ω − θ)

1− α cos(ω − θ)

)

+ tan−1

(
α sin(ω + θ)

1− α cos(ω + θ)

)
. (5.2)

The parameter θ specifies the frequency around which more resolution is
desired, and α specifies the amount of resolution at that frequency. Examples
of these warping functions are shown in Fig. 5.3 for the sampling frequency
Fs = 8 kHz.
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Figure 5.3: Examples of warping function (5.2) with diffent parameters.

1The formula is probably incorrect. The author did not succeed to reproduce the figures
presented in the original paper using formula (5.1).
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According to Miyajima & al. [106, 107], linear-, mel- and Bark-scales
can be obtained as special cases of their warping function by selecting θ = 0
and α = 0, 0.42, 0.55 for the three cases, respectively. They optimized the
parameters of the warping function and GMM-based speaker model jointly
by using an iterative gradient search algorithm.

5.2 Linear Prediction

5.2.1 Time-Domain Interpretation

The rationale in linear prediction (LP) analysis is that adjacent samples of
the speech waveform are highly correlated and thus, the signal behaviour
can be predicted to certain extent based on the past samples. The LP model
assumes that each sample can be approximated by a linear combination of a
few past samples [58, 131]:

s[n] ≈
p∑

k=1

a[k]s[n− k], (5.3)

where p is the order of the predictor. The goal of the LP analysis is to
determine the predictor coefficients {a[k] | k = 1, . . . , p} so that the average
prediction error (or residual) is as small as possible. The prediction error
for nth sample is given by the difference between the actual sample and its
predicted value:

e[n] = s[n]−
p∑

k=1

a[k]s[n− k]. (5.4)

Equivalently,

s[n] =

p∑

k=1

a[k]s[n− k] + e[n]. (5.5)

When the prediction residual e[n] is small, predictor (5.3) approximates s[n]
well. The total squared prediction error is given by

E =
∑

n

e[n]2

=
∑

n

(
s[n]−

p∑

k=1

a[k]s[n− k]
)2

. (5.6)

To find the minimum value, partial derivatives of E with respect to the
model parameters {a[k]} are set to zero:

∂E

∂a[k]
= 0, k = 1, . . . , p. (5.7)
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By writing out the expressions (5.7) for k = 1, . . . , p, the problem of find-
ing the optimal predictor coefficients reduces in solving of so-called (Yule-
Walker) AR equations [58, 62, 97]. Depending on the choice of the error
minimization interval in (5.6), there are two methods for solving the AR
equations: covariance method and autocorrelation method [131]. According
to [58], for unvoiced speech, the two methods do not have large difference,
but for voiced speech, the covariance method can be more accurate. However,
according to [131, 67], the autocorrelation method is the preferred method
since it is computationally more efficient and guarantees always a stable filter.

The AR equations for the autocorrelation method are of the following
form:

Ra = r, (5.8)

where R is a special type of matrix called Toeplitz matrix, a is the vector
of the LPC coefficients and r is the autocorrelation (see [97, 131] for more
details). Both the matrix R and vector r are completely defined by p auto-
correlation samples. The autocorrelation sequence of s[n] is defined as [67]:

R[k] =
N−1−k∑

n=0

s[n]s[n− k]. (5.9)

Due to the redundancy in the AR equations, there exists an efficient algo-
rithm for finding the solution, known as Levinson-Durbin recursion [97, 131,
62]. The Levinson-Durbin procedure takes the autocorrelation sequence as
its input, and produces the coefficients a[k], k = 1, . . . , p. The time complex-
ity of the procedure is O(p2) as opposed to standard Gaussian elimination
method [159] whose complexity is O(p3). The steps in computing the pre-
dictor coefficient using the autocorrelation method are summarized in Fig.
5.4.

Figure 5.4: LPC coefficient computation using the autocorrelation method.

The Levinson-Durbin procedure produces predictors of order 1, 2, . . . p−1
as its side-product. Another side-product of the procedure are intermediate
variables called reflection coefficients k[i], i = 1, . . . , p, which are bounded
by |k[i]| ≤ 1. These are interpreted as the reflection coefficients between the
tubes in the lossless tube model of the vocal tract [67].
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Makhoul [97] has shown that if the original spectrum has a wide dynamic
range, the LP model becomes numerically instable. This justifies the use
of pre-emphasis filter prior to LP analysis: the spectrum of the signal is
whitened and the dynamic range is reduced. An adaptive formula for the
pre-emphasis can be used with LPC analysis [67, 97]:

α =
R[1]

R[0]
, (5.10)

where R[i] is the autocorrelation sequence as defined in (5.9). The criterion
(5.10) represents a simple voicing degree detector [67], that emphasizes more
the voiced segments. An example is shown in Fig. 5.5.
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Figure 5.5: Example of voicing degree detector (5.10) using a 30 ms Hamming
window.

Any signal can be approximated with the LP model with an arbitrary
small prediction error [97]. The optimal model order depends on what kind
of information one wants to extract from the spectrum. More insight into
this can be seen by considering the frequency-domain interpretation of the
LP. Makhoul [97] has proved that the minimization of (5.6) in equivalent to
minimizing the square error between the signal magnitude spectrum and the
model magnitude response. In other words, the LP model transfer function
is a least square approximation of the original magnitude spectrum.
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5.2.2 Frequency-Domain Interpretation

Equation (5.3) can be turned into equality as follows [131]:

s[n] =

p∑

k=1

a[k]s[n− k] + Gu[n], (5.11)

where u[n] represents excitation sequence and G is its gain. Considering
this as the recurrence equation of an IIR filter, the sum term presents the
feedback part, and Gu[n] represents the input signal. In other words, the
resulting signal s[n] is a result of convolving the scaled excitation signal with
the filter kernel.

The transfer function of the filter is given by:

H(z) =
S(z)

U(z)
=

G

1−∑p
k=1 a[k]z−k

. (5.12)

This filter has no zeros, and therefore, it is called an all-pole filter [97]. Since
a pole represents a local peak in the magnitude spectrum, the model is re-
stricted in the sense that it models only the peaks of the spectrum (resonances
of the vocal tract). Nasal sounds and nasalized vowels include, in addition to
the resonances, so-called antiresonances that result from the closed side-tube
formed by the oral cavity [51]. Modeling of these antiresonances requires ze-
ros in the filter [67, 100]. However, as the order p of the all-pole model is
sufficiently high, the nasal resonances are also modeled in arbitrary accuracy
[97]. This means that for a given error value, nasal sounds and nasalized
vowels require higher order predictor than non-nasal speech sounds.

If we compare Eqs. (5.5) and (5.11), we can see that when the actual
system that generated s[n] is close to model (5.11), e[n] ≈ Gu[n]. In other
words, the residual signal e[n] can be used in estimating the excitation sig-
nal. The poles of the transfer function (5.12), on the other hand, model
the envelope of the short-term spectrum. The poles of H(z) are expected to
be located at the formant frequencies when the all-pole assumption is valid.
This suggests that the smoothed spectral envelope obtained via LP analysis
can be used in formant estimation [58, 131].

An example of using LP analysis in the spectral envelope extraction is
shown in Fig. 5.6. The upper panel shows the original FFT spectrum, and
the lower panel shows three different order LPC envelopes. It can be seen
that p = 6 undersmooths the original spectrum. On the other hand, if the
predictor order is high (p = 100), the LP model starts to fit the individual
harmonics. A compromise (p = 15) gives the information about the spectral
structure generated by the vocal tract filter. The formants are visible in the
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smoothed spectrum, showing approximate locations F1=250 Hz, F2=2000
Hz and F3=2500 Hz for the first three formants.

0 500 1000 1500 2000 2500 3000 3500 4000
−80

−60

−40

−20

0

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Original spectrum

0 500 1000 1500 2000 2500 3000 3500 4000
−40

−30

−20

−10

0

10

20

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

LPC spectral envelope

p = 6
p = 15
p = 100

Figure 5.6: Estimation of the spectral envelope of vowel [i] by LP analysis
using different order predictors (p = 6, 15, 100).

A thumb rule for the order selection is to select one complex pole per
each kilohertz plus 2-4 poles to model the lip radiation and glottal effects
[58]. For instance, for telephone speech the effective frequency range is 0-4
kHz. We therefore need approximately 4 poles + 2-4 poles = 6-8 poles. Since
the complex poles must be real or occur in complex conjugate pairs to ensure
that the filter coefficients are real, the model order is twice the number of
poles. Thus, we would choose the order from p = 12 to p = 16. However,
again we must remember that this rule is designed for speech recognition
purposes, and we might have a different rule for speaker recognition.
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Figure 5.7: Example of the LPC poles on the complex plane and the corre-
sponding magnitude spectrum (LPC order p = 6).

5.2.3 Representations Computed from LPC

Several alternative representations can be derived from the LPC coefficients.
If the autocorrelation method is used, the Levinson-Durbin algorithm pro-
duces the reflection coefficients {k[i]}, i = 1, . . . , p as its side-product. They
are also called partial correlation coefficients. When the vocal tract is mod-
eled with the lossless tube model, at each tube junction, part of the wave is
transmitted at the remainder is reflected back [20]. The reflection coefficients
are the percantage of the reflection at these discontinuities.

Assuming the lossless tube model, ratio of the areas of the adjacent tubes
is given by [58]:

Ai+1

Ai

=
1− k[i]

1 + k[i]
. (5.13)

A new parameter set is obtained by taking the logarithm of the area ratio,
yielding log area ratios (LAR). Since the LARs are derived from the LP coef-
ficients, they are subject to the assumptions made in LP. To avoid singularity
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at |k[i]| = 1, an alternative for log area ratios are arcsin reflection coefficients
[20], simply computed as taking inverse sine of the reflection coefficients.

LPC analysis can be used in formant estimation also [67, 58]. Given the
transfer function (5.12), the roots of the denominator (i.e. the poles) can be
found by any numerical root-finding method. Let the poles be z1, z2, . . . , zp.
Each pole corresponds to a local peak in the spectrum, and therefore the
poles are assumed to be correlated with the formant structure. Estimates for
the formant frequencies and bandwidths are given by [67]:

F̂i =
Fs

2π
tan−1

(
Im zi

Re zi

)
(5.14)

B̂i = −Fs

π
ln |zi|. (5.15)

In practise, the prediction coefficients are highly correlated [141] and they
have poor quantization and interpolation properties [44]. This has motivated
to develop feature sets that are less correlated and more robust against quan-
tization. An equivalent presentation to LPCs are so-called line spectral fre-
quencies (or pairs) (LSF,LSP) [67, 58, 44]. The line spectral frequencies are
formed as follows [67]. The LPC inverse filter A(z) = 1−∑p

k=1 a[k]z−k is de-
composed into two (p + 1)-order polynomials P1,2(z) = A(z)± z−(p+1)A(z−1)
so that A(z) = 1

2
[P1(z) + P2(z)]. The roots of the polynomials P1,2(z) can

be shown to lie on the unit circle. Furthermore, they are interlaced with
each other. Since the roots lie on the unit circle, they can be specified by
a one parameter, the phase angle (argument) ωi. These angles are the line
spectral frequencies. The line spectral frequencies are ordered as follows [44]:
0 < ω1 < ω2 < . . . < ωp < π. An important property of LSF’s compared
to LPC coefficients is that in quantization, only the frequencies around the
quantized coefficient are affected. Therefore, LSF’s might be well-suited for
vector quantization based speaker recognition.

LSF’s are commonly used in speech coding, but they have been applied
with good results to speaker recognition also [93, 91, 20, 169, 109]. Liu &
al. [93] experimented mean and difference of adjacent LSF frequencies as
new features in VQ-based speaker recognition. These new feature sets were
abbreviated as MALS and DALS, respectively. According to Liu & al., these
correlate with formant frequencies and bandwidths, respectively. The DALS
feature set performed the best on their data set2, and the results using LSF-
based features were better than results obtained using the linear predictive
cepstral coefficients (LPCC) [6].

2Consisting unfortunately only of 20 speakers.
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Perceptual linear prediction (PLP) [55] is a form of generalized linear pre-
diction that exploits some of the psychoacoustics principles, including crit-
ical band analysis (Bark), equal loudness pre-emphasis, and the intensity-
loudness relationship. PLP and its variants have been used succesfully in
speaker recognition [164, 113, 133, 156, 50]. For instance, in [156] it was ob-
served that the PLP feature outperformed LPC coefficients in all conditions.
In general, it seems that conventional features like MFCC can outperform
PLP in clean environment, but PLP gives better results in noisy and mis-
matched conditions.

5.3 Cepstral Analysis

Linear prediction uses all-pole modeling of the spectrum. An alternative
method to LPC is the so-called cepstral analysis [67]. In cepstral analysis, the
magnitude spectrum is represented as a combination of cosine basis functions
with varying frequencies. The cepstral coefficients are the magnitudes of the
basis functions. Figure 5.8 shows a comparison of the spectral envelope
estimates using the LPC (all-pole model) and the cepstrum representation.
Notice that the peaks in the LPC model sharp, whereas the cepstrum presents
a smoother envelope. In this sense, the LPC model preserves more details
about the spectrum with the same number of coefficients.

Formally, the real cepstrum of digital signal s[n] is defined as the inverse
Fourier transform of the logarithm of the magnitude spectrum [58]:

c[n] =
1

2π

∫ π

−π

Cs(ω)ejωndω, (5.16)

where we have denoted the logarithm of the magnitude spectrum by Cs(ω) =
log |S(ejω)|.

It can be shown [67] that the coefficients c[n] are the Fourier series coef-
ficients of the log-spectrum and that the Fourier series presentation reduces
to cosine series. In other words, log spectrum is represented as an infinite
summation of cosines of different frequencies, and the cepstral coefficients are
the magnitudes of the basis functions. The lower cepstral coefficients repre-
sent the slow changes of the spectrum and the higher coefficients the rapidly
varying components of the spectrum. In voiced speech sounds, there is a
periodic component in the magnitude spectrum, the harmonic fine structure
that results from the vocal fold vibration. The slow variations are resulting
from the filtering effect of the vocal tract, and the spectral tilt of the voice
source. An example of spectrum modeling using real cepstrum is shown in
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Figure 5.8: Example of LPC- and FFT-cepstrum based spectral envelope
estimates.

Fig. 5.9. The log spectrum is reconstructed by setting the cepstral coef-
ficients after Nc to zero and taking the Fourier transform of this sequence.
Similar to LPC analysis, increasing the number of coefficients results in more
details.

The reason for taking logarithm of the spectrum can be explained as
follows [67]. According to source-filter theory, |S(ejω)| = |U(ejω)||H(ejω)|,
where S, U and H correspond to the speech signal, source and filter, respec-
tively. By taking the logarithm, the multiplicative components are converted
into additive components: log |S(ejω)| = log |U(ejω)| + log |H(ejω)|. Tak-
ing the logarithm corresponds to performing a homomorphic transformation
[114]: multiplicative sequences are converted into a new domain, where they
are additive. Therefore, the log-spectrum can be thought as a composition
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Figure 5.9: Example of spectrum reconstruction from cepstrum using differ-
ent number of coefficients (Nc = 5, 20, 100).

of additive components that have different base frequencies.
The practical formula for computing the real cepstrum is obtained by

using DFT and IDFT:

c[n] = F−1{log |F{frame}|}, (5.17)

where frame is the windowed analysis frame. In other words, the real cep-
strum is obtained by applying inverse DFT to the logarithm of the magnitude
of the DFT.

One should remember that the assumption of the harmonic component
(fast variations) are present only in voiced sounds. However, cepstrum is
used with both unvoiced and voiced segments since it has shown to be work
in practise.

78



5.3.1 LPC-Cepstrum

The LPC coefficients are seldom used as features themselves [67]. It is ob-
served in practice that adjacent predictor coefficients are highly correlated
[141], and therefore, representations with less correlated features would be
more efficient. A popular feature set is linear predictive cepstral coefficients.
Given the LP coefficients {a[k]}p

k=1, cepstral coefficients c[n] are computed
using the following recursive formula [58]:

c[n] =





a[n] +
∑n−1

k=1
k
n
c[k]a[n− k], 1 ≤ n ≤ p

∑n−1
k=n−p

k
n
c[k]a[n− k], n > p.

(5.18)

The relationship (5.18) was originally derived by Atal [6] as a new pa-
rameter set for speaker recognition. Since then, the LPC cepstrum has been
used succesfully in both speech and speaker recognition. A noticeable thing
is that although there are finite number (p) of LP coefficients, the LPC cep-
strum sequence c[n] is infinite. However, the magnitudes |c[n]| → 0 fast with
n, and thus a relatively small number of coefficients is needed to model the
spectrum.

There are two worth noting things that the author wants to emphasize.
First, it is important to notice that the LPC cepstral coefficients are derived
from the predictor coefficients, and thus they are subject to the all-pole
assumption of the LPC model. Therefore, in general the LPC cepstral coeffi-
cients are not the same as the cepstral coefficients derived from the magnitude
spectrum directly. Secondly, in literature, the formula (5.18) is often given
without reference to the used LPC model. Sometimes by convention there
is a minus sign in front of the LP equation (5.3). This changes the LPC
cepstrum equations to the following form3:

c[n] =





a[n]−∑n−1
k=1

k
n
c[k]a[n− k], 1 ≤ n ≤ p

−∑n−1
k=n−p

k
n
c[k]a[n− k], n > p.

(5.19)

Atal [6] has compared the performance of the LPCC parameters with
the following parameters for speaker recognition: LPC coefficients, impulse
response of the filter specified by the LPC coefficients, autocorrelation func-
tion, and area function. From these features, the LPC cepstral coefficients
performed the best. Unfortunately, Atal’s data consists only of 10 speakers.

3The author spent several frustrating weeks in trying to find a bug from the LPC
cepstrum computation, until it turned out that the used software (Matlab) assumed a
minus sign in the front of the predictor (5.3).
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5.3.2 Mel-Cepstrum

Maybe the most commonly used feature in speech recognition is mel-cepstrum
[25]. Somewhat ironically, mel-cepstrum is one of the most commonly used
parameters in speaker recognition. Computation of mel-cepstrum is similar
as described in the previous Section. However, mel-warped (or any other)
filterbank is applied in the frequency domain before the logarithm and inverse
DFT. The purpose of the mel-bank is to simulate the critical band filters
of the hearing mechanism. The filters are evenly spaced on the mel-scale,
and usually they are triangular shaped [25, 67, 58]. The triangular filter
outputs Y (i), i = 1, . . . , M are compressed using logarithm, and discrete
cosine transform (DCT) is applied [58]:

c[n] =
M∑
i=1

log Y (i) cos

[
πn

M

(
i− 1

2

)]
. (5.20)

Notice that c[0] presents the log magnitude, and therefore it depends on
the intensity. Typically c[0] is excluded for this reason. Important property
of cepstral coefficients is that they are fairly uncorrelated with each other.
This property has some important practical consequences. For instance, if
a Mahalanobis distance is used as the metric in a classifier, there is little
gain in using full covariance matrix in the Mahalanobis distance. Since the
off-diagonals of the covariance matrix are close to zero, a diagonal covariance
matrix is a good choice4. This leads to both savings in computation time
and numerically more stable distance calculations.

5.4 Spectral Dynamics

In the previous sections we have assumed that each spectral parameter vector
represents a “snapshot” of the continuously evolving spectrum at a certain
time instant. Each spectral vector is assumed to be a representation of a
short-term stationary signal; there is no time information encoded in these
features.

While speaking, the articulators are continuously changing their posi-
tions with a certain rate. The articulatory movements are then reflected in
the measured spectrum as, for instance, changes in formant frequencies and
bandwidths. The rate of these spectral changes depends on the speaking

4Actually the Mahalanobis distance with diagonal covariance matrix is equal of first
weighting the coefficients by their inverse variances and then computing Euclidean dis-
tance.
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style, speaking rate and speech context. Some of these dynamic spectral pa-
rameters are clearly indicators of the speaker itself. Also, dynamic changes
contain information of the message spoken (for instance, formant changes in
diphthongs).

5.4.1 Delta- and Delta-Delta Features

A widely method to encode some of the dynamic information of spectral fea-
tures is the following, known as delta-features [58, 131]. The time derivatives
of the features are estimated by some method, and then the estimate of the
derivative is appended to the feature vectors, yielding a higher-dimensional
feature vector. As an example, if 12 mel-frequency cepstral coefficients are
appended with their time derivative estimates, the dimensionality of the new
feature vectors is 12 + 12 = 24.

It might be argued that the feature space formed by concatenating static
and dynamic features does not have an interpretation [73]. Also, since the
dimensionality of the space is increased, more training data is required for
reliable model estimates. Instead of concatenation in the feature level, Soong
and Rosenberg [149] combined the static and dynamic feature classifier out-
put scores, in their case VQ distortions.

Often, the time derivatives of the delta features are estimated also, yield-
ing so-called delta-delta parameters. These are again appended to the delta-
appended feature vectors, resulting in a higher dimensional feature space.

Sometimes delta-features and delta-delta-features are termed as velocity-
and acceleration-coefficients, respectively [103]. This is due to the physical
phenomena, i.e. velocity is the time derivative of displacement, and accel-
eration is the time derivative of velocity. Since the mass of the vocal tract
does not change, according to the Newton’s second law, the acceleration is
proportional to the force and therefore the delta-delta parameters might be
interpreted as descriptors of the force applied for moving the vocal tract. Al-
though this kind of analogies can be made to give a “physical interpretation”
for the dynamic parameters, they are only loosely connected with the real
phenomena and caution should be made in doing inferences of the physical
properties of the speaker’s vocal tract. Naturally the selection of the original
static features affect this “interpretation” strongly.

Delta- and delta-delta-parameters are used with several forms of param-
eters, especially the cepstrum and its variants [3, 42, 60, 149]. We do not fix
the static parameter set here; as long as the parameter set is a short-term
spectrum descriptor, the dynamic parameters represent spectral changes over
time. An example of delta- and delta-delta features is shown in Fig. 5.10.
The uppermost panel shows the time trajectory of a single mel-cepstral co-

81



0 50 100 150 200 250 300
−0.2

0

0.2
c[

1]

0 50 100 150 200 250 300
−0.2

0

0.2

∆−
c[

1]

0 50 100 150 200 250 300
−0.5

0

0.5

Frame number

∆∆
−

c[
1]

Figure 5.10: Time trajectories of mel-cepstral coefficient c[1] and its ∆- and
∆∆-trajectories computed using linear regression with M=2.

efficient c[1] over time. The middle and bottom panels show the estimate of
the first and second derivative.

There are two general principles to estimate the derivatives [67, 42, 60,
149]: (1) differentiating, and (2) fitting a polynomial expansion. Let fk[i]
denote the ith feature in the kth time frame. In differentiating, the delta-
parameter of the ith feature is defined as

∆fk[i] = fk+M [i]− fk−M [i], (5.21)

where M is typically 2-3 frames. The differentiation is done separately for
each feature i, resulting in a delta feature vector.

The differentiating method is simple, but since it acts as a high-pass
filtering operation on the parameter domain, it tends to amplify noise [149,
42]. For this reason, fitting a polynomial curve to the time trajectory of the
parameter may result in better estimates. In statistics, this fitting problem
is called regression analysis. Fitting a polynomial curve over several samples
represents derivative estimate of a low-pass filtered time trajectory.

Similarly as with the linear prediction discussed in Section 5.2, the order
of the polynomial is first fixed. Then, the least squares solution for the
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polynomial coefficients is obtained. As an example, for linear regression, i.e.
first-order polynomial, the least squares solution is easily shown to be of the
following form [131]:

∆fk[i] =

∑M
m=−M mfk+m[i]∑M

m=−M m2
. (5.22)

Notice that the denominator is constant and can be interpreted merely as
a scaling factor that can be replaced by another constant. Higher-order
polynomials can be used to obtain smoother estimates, but in practise the
first order polynomial is adequate according to [42, 149].

Figure 5.11 shows a comparison between the differentiator and linear
regression methods for the c[1] trajectory of Fig. 5.10. It can be seen that
increasing the number of frames (M) smoothes the estimates with both meth-
ods, and the regression method generates smoother estimates.
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Figure 5.11: Comparison of derivative estimation using differentiator and
linear regression with different orders.
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In both methods, computation of ∆fk[i] requires M frames from past
and future. Therefore, the utterance endpoints need to be treated as special
cases. Simple methods include padding of the M extra frames in both ends
with zeroes, random numbers, or copies of the adjacent frames [60]. If the
delta-deltas or higher order derivatives are estimated, the boundaries should
be handled with more care since the error accumulates each time the deltas
are computed from the previous deltas. Hume [60] compared a few padding
methods, and the zero padding gave the best results.

For a given static feature, there is an optimum length for the regression
window size M [3, 149, 103]. As seen already, too short a window leads to
noisy estimates. If the window is too long, the temporal resolution decreases.
Furthermore, it has been demonstrated with cepstrum that different coeffi-
cients should have a different regression window length, simply due to the
fact that the dynamics of the coefficients are different [60]. Hume [60] found
out that for the higher order cepstral coefficients, smaller regression windows
should be used since these coefficients vary more rapidly. Motivated by this,
Hume suggested the following simple algorithm. First, the regression win-
dow sizes of the first and last coefficients are specified. Then, the window
lengths for the middle coefficients are linearly interpolated between these two
values. The nearest odd window lengths to the interpolated values are used
as window lengths.

5.4.2 Alternatives to Delta Processing

A few alternatives to dynamic feature extraction beyond the delta process-
ing have been proposed. The RASTA processing [56] is one of the most
well-known methods. RASTA is based on the model of human hearing mech-
anism. Human ear is more sensitive to certain modulation frequencies, and
the RASTA processing attempts to filter out unimportant modulation fre-
quencies. The importance of modulation frequencies for speaker recognition
have been studied in [157]. RASTA and related methods have been used for
speaker recognition in [133, 50, 113].

A somewhat different approach for speech dynamics estimation has been
presented by Petry and Barone [120, 121]. The approach is based on non-
linear chaos-theoretic approach called largest Lyapunov exponent. In [121],
improvement was obtained by adding the Lyapunov exponents along with
the cepstrum and delta-cepstrum.
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5.5 Alternative Spectral Representations

A large number of methods have been proposed for spectral feature extrac-
tion. One approach [48] attempts to use, instead of sines and cosines, a
better set of basis functions called Fourier-Bessel functions. The Fourier-
Bessel functions are decaying with time, and therefore they might be more
better suited for the physics of sounds. However, the results obtained by
Gopalan & al. [48] were not as promising as expected, and the selection of
the final features was somewhat an ad hoc approach.

To the author’s opinion, a very interesting work has been carried out by
Jang & al. [66]. They use a data-driven approach to the feature extraction by
finding for each speaker his/her personal basis functions by using independent
component analysis (ICA) [61].

Artifical neural networks [53, 16] have also been used for feature extrac-
tion. For instance, Konig & al. [80] used a multilayer perceptron (MLP)
in transforming a large-dimensional feature space (162 features) into low-
dimensional representation (34 features). They had three hidden layers in
their MLP. The middle hidden layer had a small number of neurons. After
training the network, they removed the output layer and last hidden layer,
and the remaining network was used to project the high-dimensional features
into low-dimensional space.
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Chapter 6

EXPERIMENTAL SETUP

6.1 Speech Material

Two speech corpora are evaluated in this thesis, a Finnish corpus collected by
University of Helsinki [63], and a standard American English TIMIT corpus
provided by Linguistic Data Consortium [90].

6.1.1 Corpus 1: Helsinki Corpus

The first corpus, denoted as Helsinki corpus, was collected by Päivikki Eskelinen-
Rönkä at the Department of Phonetics of the University of Helsinki [33]. The
author acknowledges the Department of Phonetics for providing this corpus
for the experiments.

The Helsinki corpus consists of 110 native Finnish speakers from various
dialect regions of Finland. There are 57 males and 53 females. All speak-
ers were prompted to read the same material. The recordings were done in
a silent environment with a professional reporter C-cassette recorder. The
data was digitized using a sampling frequency of 44.1 kHz and a quantization
resolution of 16 bits per sample. For our experiments, we downsampled and
re-quantized the files in order to simulate better telephone line quality. The
new sampling rate was set to Fs = 11.025 kHz, thus giving an effective band-
width of about 5.5 kHz. Anti-aliasing FIR filtering was performed prior to
downsampling. The files were stored in 8-bit µ-law compressed NeXT/SUN
“au”-files. The duration of a file is 20 seconds per speaker. Each file was di-
vided into disjoint training and evaluation files, both 10 seconds in duration.
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6.1.2 Corpus 2: TIMIT Corpus

The second corpus is an American English TIMIT corpus [90]. The corpus
consists of native American English speakers from 8 dialect regions. The
corpus contains in total 630 speakers, of which 438 are males (70 %) and
192 females (30 %). There are 10 speech files for each speaker. Two of the
files have the same linguistic content for all speakers, whereas the remaining
8 files are phonetically diverse. The corpus has been recorded in a sound-
proof environment with a high-quality microphone. Speech files are stored
in NIST/Sphere “wav”-file format with a sampling frequency of 16 kHz and
a quantization resolution of 16 bits per sample. As with the Helsinki corpus,
the files were downsampled and re-quantized to Fs = 11.025 kHz at 8 bps.
The files were stored in µ-law compressed NeXT/SUN “au”-files.

In order to speed up simulations and in order to be more comparable
with the Helsinki corpus, we selected a smaller subset of the TIMIT. We
decided to use the speakers from the dialect region DR7 (western dialect).
The selection of the subset was arbitrary. This subset contains 100 speakers
(74 males and 26 females). We notice that the proportion of male speakers
is higher than in the case of the Helsinki corpus. Majority of speakers in
TIMIT are males.

We selected 6 files for training and 4 files for evaluation for each speaker.
The two phonetically identical files (“sa” and “sx” sentences) were included
in the training set. The training and testing files were concatenated into
a single file for each speaker. The average durations of the training and
evaluation data are 19.1 and 11.6 seconds, respectively. The attributes of
both corpora are summarized in Table 6.1.

Table 6.1: Summary of the evaluated corpora.
Helsinki TIMIT (subset DR7)

Language Finnish American English
Speakers 110 (57 M + 53 F) 100 (74 M + 26 F)
Speech type Read speech Read speech
Recording conditions Clean Clean
Sampling frequency 11.025 kHz 11.025 kHz
Resolution 8 bps (µ-law) 8 bps (µ-law)
Training speech 10 sec. 19.1 sec.
Evaluation speech 10 sec. 11.6 sec.
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6.2 Measuring the Performance

In all experiments, the performance evaluation is carried out by dividing the
extracted feature vectors into two disjoint sets, one for modeling (training
set) and another for recognition (evaluation set).

6.2.1 Individual Features

The effectiveness of the individual features is measured by the Fisher’s F -
ratio defined as [161, 20]

Fi =
Variance of speaker means of feature i

Average intraspeaker variance of feature i
. (6.1)

The F -ratio compares two variances, the variance of the feature between
different speakers and the variance within speakers. A good feature has a
large variance between speakers, but a small variance within a speaker (see
Section 2.1). Thus, high F -ratios are desirable. However, the F -ratio does
not take into account possible correlations between different features, and it
has other limitations also [20]. In this work, we do not use the F -ratio to
measure absolute performance of a given feature. We use it in comparing the
effectiveness of different features of the same feature set, e.g. different MFCC
coefficients. This information can be directly exploited in the classification
phase by giving more weight to those features that are more discriminative.

6.2.2 Classification Experiments

The absolute performance of the different feature sets is measured by classifi-
cation experiments. We use vector quantization based classification [148, 75].
From each speaker’s training set, a fixed-sized codebook is generated using
the Randomized Local Search (RLS) algorithm [40]1. This iterative algorithm
is similar to the famous GLA (K-means) algorithm [89], and it is very simple
to implement. RLS is less sensitive to the initial solution (codebook), and it
is guaranteed to give always better quality codebook than the GLA. Running
times are longer than for GLA, but this is not a problem in practise since
the speaker models are created off-line.

The speaker models are trained independently of each other, and therefore
the recognition rates might not be as high as they would be if a discriminative
training algorithm was used instead [54]. However, our main goal here is

1This method is documented also in ftp://ftp.cs.joensuu.fi/pub/Reports/
A-1999-5.ps.gz
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not to optimize the classifier, but to compare different feature sets. Thus,
the selection of the training and classification algorithms are of secondary
interest. The author is aware that these two are interrelated - a certain
modeling technique might be better for a certain feature set but not good for
some other. However, since the VQ is a non-parametric modeling approach,
we make minimal assumptions about the underlying feature distribution. We
believe that the results generalize to other modeling techniques such as the
GMM modeling.

The evaluation sets are matched against the speaker models in the database.
As the matching function, we use the average quantization distortion (2.1)
with the Euclidean distance metric unless otherwise mentioned. We assume
a closed speaker database, and therefore the speaker whose codebook yields
the smallest distortion for the test sequence is selected as the identification
decision. The type of the recognition task (closed-set identification, open-set
identification, verification) is not considered here, since it only affects the
type of the decision. In other words, if a certain feature set gives good per-
formance in the closed-set identification task, it is expected to generalize to
the other two tasks also. Several optimization tricks (e.g. score normaliza-
tion [13, 8]) could be applied in order to get better absolute performance.
We emphasize that we are not seeking for an optimal classification system,
but instead, attempt to compare different feature sets.

The performance of the classification is measured by the identification
error rate:

Error =
(Ne

N

)
× 100%, (6.2)

where Ne is the number of incorrectly classified test sequences, and N is
the total number of sequences. In preliminary experiments, we classified full

Figure 6.1: Blocking of the evaluation data in segments .
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test sequences. However, it turned out quickly that the error rates were
zero in many cases and therefore it was hard to observe any differences.
For this reason, we decided to split the test sequences into smaller segments
that are classified one by one. The process is illustrated in Fig. 6.1. This
procedure enables better comparison between different features. Notice that
this method is purely for improving the resolution of the test results. The
recognition rates for full test sequences are slightly better.

6.3 Outline of the Experimental Setup

Since there is a large number of different feature sets to be evaluated, and
each of these has many adjustable parameters, the evaluation of all possible
parameter combinations is not possible. We apply simple line search strat-
egy, that is, we vary one parameter at a time while keeping the rest of the
parameters fixed. Although this procedure does not guarantee a globally
optimal parameter combination, it gives an idea what are the most critical
parameters that we should focus on.

6.3.1 Comparison of Different Feature Sets

First, we seek for the most promising feature sets from a large number of
candidates. The preprocessing steps preceding feature extraction are fixed
as follows. The DC offset is removed from the input signal by subtracting
its mean value from it. Pre-emphasis is carried out using the differentiator
specified in (4.14), where the filter coefficient is computed adaptively for
each frame using the formula (5.10). Silence detection is not carried out.
The window function is a 30 ms Hamming window, shifted forward by 20
ms.

After the general preprocessing step, several feature candidate sets are
computed. We selected the most commonly used features in speaker recog-
nition, that we classify into following categories:

1. Filterbanks

2. FFT-cepstral features

3. LPC-derived features

4. Delta features

We use mainly classification in optimizing the parameters of the different fea-
ture sets. We also apply the F -ratio analysis of individual features when we
feel that it might bring some insight into understanding better the features.
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For the filterbank feature set, we use FFT-based implementation with
linearly spaced filter center frequencies on the interval [0, 5512] Hz (see Fig.
6.2). The first and the last filters are lowpass and highpass type, respec-
tively, whereas the middle filters are bandpass type. The passband of i:th
filter begins from the center frequency of (i − 1):th filter and ends to the
center frequency of (i + 1):th filter. The adjacent filters cross at the point
where their magnitudes are 1

2
. This design ensures that the total response

of the filterbank is close to 1 at all frequencies (requirement (4.17)). The
filter shape and the number of filters affects how well the requirement is
satisfied. We made a few experiments with some of the well-known window
function [62] and decided to select the following: (1) rectangular window, (2)
triangular window, and (3) Hanning window. For other window types like
Gaussian and Hamming windows, requirement (4.17) was harder to satisfy.
We believe that the shape of the filter is not an important parameter as long
as we use the short-term DFT, whose spectral estimation errors and resolu-
tion are governed by the time-domain window shape and the frame length,
respectively.
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Figure 6.2: Examples of designed filterbanks.

In addition to using filter bank outputs directly as the features, we com-
press them by using logarithm and cube root. Logarithmic compression was
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selected since it is widely used in the mel-frequency cepstral coefficient cal-
culation. In order to avoid numerical problems, we added constant 1 to the
filter outputs before taking the logarithm. This was found experimentally to
give better results than adding a small constant that is sometimes used. The
cube root compression, on the other hand, exploits the intensity-loudness law
of hearing [55] and it has reported to give better results in some cases. With
all three functions, each filter output is further normalized by the sum of all
filter outputs to ensure that the feature vector is independent of the input
signal intensity.

By FFT-cepstral features we mean the cepstral parameters that are de-
rived from the FFT-implemented filterbank analysis. The processing is very
similar to subband processing described above. The difference is that the
(compressed) filter outputs are further decorrelated using DCT. This is rea-
sonable, since adjacent frequency bands are very likely to be highly correlated
for most speech sounds.

In addition to linear frequency spacing, we apply mel-, Bark-, and ERB-
warped filterbanks. In each case, the filter center frequencies are linearly
spaced on this frequency scale, and the true filter center frequencies are
computed by the corresponding one-to-one inverse mapping. For mel-, Bark-
and ERB-scales, we used the formulae (3.4), (3.6) and (3.7), respectively.

We study the following LPC-derived features :

• LPC coefficients themselves (LPC)

• Linear predictive cepstral coefficients (LPCC)

• Line spectral frequencies (LSF)

• Reflection coefficients (REFL)

• Log area ratios (LAR)

• Arcus sine coefficients (ARCSIN)

All of these feature sets present somewhat the same information, but some
of them might be more robust to quantization and better suited for the
Euclidean distance classifier that we use. Two of the feature sets are of
special interest: LPCC and LSF. The LPCC feature set is widely used in
speaker recognition. The LSF feature set is not as popular, but it has good
quantization properties, and therefore it might suit well for the VQ-based
modeling.

We also study formant estimates computed from the LPC poles (Equa-
tions (5.14) and (5.15)). This formant estimation certainly produces spurious
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formants since the formant trajectories are not smoothed. However, from the
viewpoint of automatic speaker recognition, it does not matter if a feature
has no phonetic interpretation, if it gives good results.

The delta features depend on the selected static features and their pa-
rameters. Therefore, this feature set is evaluated after the individual static
features have been compared and their parameters have been optimized. We
limit ourselves to the delta parameters of those static features that give the
most promising results. One might argue that a poor performance of a static
feature does not necessary imply that its dynamics would not be discrimina-
tive. However, considering a practical viewpoint, a system that uses a static
feature and its corresponding delta features is easy to implement as opposed
to a system that uses delta parameters of some other parameter. Also, the
computational complexity is smaller since only one static feature set needs
to be computed.

6.4 Test Hypotheses

6.4.1 Performance of the Feature Sets

The subband-based representations (filterbanks) are expected to give good
recognition rates and to give a good ground for the FFT-based cepstral fea-
tures. We hypothesize that in general, a high number of subbands should
be used. However, if we use too many subbands, the results are expected
to get worse since the features do not anymore describe neither the spectral
envelope, nor the harmonic structure. High-dimensional presentations also
require a lot of training data (see Section 2.1).

FFT-based cepstral features are expected to give good results, since they
are based on the subband presentation, and they have been reported consis-
tently to give good results. Based on the author’s previous experience, it is
expected that a rather small number of cepstral coefficients (10-20) is enough
to describe the speaker characteristics.

The mel-cepstrum [25] is probably the most commonly used feature in
speaker recognition. However, we hypothesize that this might not be the best
cepstrum representation. The mel-scale simulates human hearing, but there
is no reason to assume that the human ear resolves frequency bands optimally
in respect to the speaker recognition task. Furthermore, several studies have
indicated that mid- and high-frequencies are more important for speaker
recognition than low-frequencies (see e.g. [108, 145]). This is in contradiction
with the definition of mel-cepstrum that emphasizes low frequencies. In
general, we believe that any auditory-based spectral presentation should not
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be used as a black box, but instead, we should focus on understanding where
in the spectrum we have relevant information for speaker discrimination.

Regarding the LPC-based representations, we expect slightly worse re-
sults than the subband- and FFT-cepstral features give. Throughout all
experiments, we use the VQ-classifier with Euclidean distance measure, but
this might not be the best distance measure. For instance, for the LPC fea-
tures and LPC cepstrum, several alternative distance measures have been
proposed (see [131]).

However, two of the LPC-derived feature sets are expected to give good
results. These are the linear predictive cepstral coefficients (LPCC) and the
line spectral frequencies (LSF). Both of these have been reported to give
good results. There has been a great deal of debate whether the FFT- or
the LPC-based cepstral coefficients are better features. It is often stated that
the LPC-cepstrum is computationally more efficient, but the FFT-based cep-
strum is more accurate. However, these two feature sets are often compared
with parameters that are not comparable. For instance, if the conventional
LPCC feature set is used, then the FFT-cepstrum should be based on linear
frequency scale and not on the mel scale as it is often done.

Based on the author’s experience and on literature, we expect that the
dynamic parameters give slightly worse results than any of the static parame-
ters. We hypothesize that the regression method gives a better representation
than the differentiator method. The optimal regression (or differentiator) or-
der depends both on the frame overlap, the number of frames used in the
derivative estimation, as well as the original static feature set. If the order
is high (long temporal span), rapid spectral changes that might be speaker-
dependent, are smoothed out. On the other hand, if the order is low (short
temporal span), it is likely that the feature trajectories become noisy.

6.4.2 Classifier Parameters

Based on the author’s previous experience, we expect that VQ-based speaker
modeling works well for most of the features. The Euclidean distance for
subbands and cepstral features has a well-established theoretical background
[131], and more importantly, it has been found to work in practise. We do
not have previous experience with the LPC-derived features, and therefore
we do not make any hypotheses about them.

In general, we expect that using larger codebooks improves recognition
performance. For the minimum size, we expect a number between 16-64,
depending on the feature set, the dimensionality, and the amount of training
data.
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Chapter 7

RESULTS AND DISCUSSION

7.1 Filterbanks

7.1.1 Subband Discrimination

First, individual subbands were investigated using the F -ratio measure. Fil-
ter outputs were compressed using three different functions: linear (no com-
pression), logarithm and cube root. The 30 triangular filters were linearly
spaced over the Nyquist range of the signal, which is 5.5 kHz. Therefore,
each filter covers approximately a 5500/30 = 183 Hz frequency range. On
average, the first two subbands contain the region of the first harmonic of
F0.

The discrimination results of the individual frequency bands are shown
in Figures 7.1 and 7.2 for the Helsinki and TIMIT corpora, respectively.

We observe from both figures that the two nonlinearities give, on average,
slightly higher F -ratios for the subbands than the linear processing. The
cube root gives highest values on average. The three methods follow the
same trend over different frequencies. An exception occurs with the TIMIT
corpus on the lowest frequency band where the cube root indicates good
discrimination, while the other two methods indicate poor discrimination.

Both corpora show a “peaking” behaviour on the curves. We can see that
the middle frequency range (about 2-3 kHz and 2.5-4 kHz for the Helsinki and
TIMIT corpora, respectively) has higher discrimination compared to other
frequencies. The lowest band (0-183 Hz) also seem to have good discrimina-
tion in both corpora when the cube root is applied. This might be due to the
fact that on average, the first F0 harmonic falls in this region (notice that
on both corpora majority of the speakers are male). The strength of the first
harmonic correlates to some extent with the spectral tilt (and therefore, the
voice quality) which is very likely speaker-specific. The author does not know
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if there is a systematic and large-scale study on the spectral tilt measures for
speaker recognition.
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Figure 7.1: Discrimination of individual subbands of the Helsinki corpus.
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Figure 7.2: Discrimination of individual subbands of the TIMIT corpus.

The TIMIT corpus indicates unimportance of the frequency range 0.2-2
kHz, which is consistent with other studies [108, 115, 145]. The Helsinki

96



corpus indicates similar behaviour, but not as clearly and uniformly as the
TIMIT corpus. Since the analysis procedures were identical, the differences
can be attributed to the differences in language and speaker population.

The observations suggest that, instead of using a critical band filter bank,
a better one could be the one that places a lot of filters in the important
middle- and high-frequency regions. In [115] the mel-cepstrum filterbank was
replaced by a new filter bank where the emphasis was on middle frequencies.
Orman & Arslan [115] reported identification error rate of 17 % using the
mel-cepstrum, which was dropped down to 11 % with the tailored filter bank.
Although this kind of filterbanks certainly need to be tailored separately for
a given population and language, it shows the potential of a very simple
and intuitive subband processing. The author has proposed an adaptive
subband weighting method that takes into account the rough phoneme class
of the input frame [71]. This method is a generalization of the simple static
subband weighting.

7.1.2 Classification Results

Next, we conducted classification experiments using a segment size of 350
vectors for both corpora. This corresponds approximately to 7 seconds of
speech with the current frame rate (a 30 ms frame, shifted forward by 20
ms).

First, we fixed the number of subbands to 30 and compared the nonlin-
earities. The classification error rates for codebook size K = 64 are listed
in Tables 7.1 and 7.2. Several observations can be made from these results.
First of all, subband processing works well, and is worth further studies. An
error rate of 0 % can be reached with this very simple processing, without
any weighting of the subbands.

The classification results agree with the F -ratios obtained in the previous
experiment: the cube root gives systematically the lowest error rates while
the linear processing gives the highest error rates. In general, the classifica-
tion accuracy improves with increasing codebook size, as expected. Of the
two data sets, the Helsinki corpus gives better results even though it has
more speakers than the TIMIT subset. This signifies the importance of the
language. At this stage, we are not going to make a detailed comparisons
between the two languages.
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Table 7.1: Subband classification error rates (%) on the Helsinki corpus using
different dynamic range compressions.

Codebook Nonlinearity
size None Logarithm Cube root

1 16.83 11.27 7.35
2 20.06 5.24 4.74
4 5.06 2.43 1.22
8 1.81 1.42 0.00
16 0.74 0.02 0.00
32 0.57 0.00 0.00
64 0.73 0.00 0.00
128 0.45 0.00 0.00

Table 7.2: Subband classification error rates (%) on the TIMIT corpus using
different dynamic range compressions.

Codebook Nonlinearity
size None Logarithm Cube root

1 52.83 52.46 49.49
2 48.16 42.63 30.60
4 36.32 27.65 22.53
8 17.32 11.55 3.85
16 8.46 5.44 0.65
32 6.25 4.84 0.50
64 5.84 4.84 0.81
128 5.78 4.86 1.56

7.1.3 The Shape of the Filters

In the previous experiments, the shape of the filters was fixed to rectangular.
Next, we studied the effect of the filter shape. In addition to the rectangular
shape, we studied triangular (Bartlett) and Hanning windows (see the pre-
vious Chapter for details). Notice that the bandwidths of the triangular and
Hanning filters are about twice the bandwidth of the rectangular filter (see
Fig. 6.2).
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Table 7.3: Subband classification error rates (%) on the Helsinki corpus using
different filters.

Codebook Filter shape
size Rectangular Triangular Hanning

1 7.35 10.20 9.14
2 4.74 8.03 6.62
4 1.22 1.40 1.16
8 0.00 0.02 0.00
16 0.00 0.00 0.00
32 0.00 0.00 0.00
64 0.00 0.00 0.00
128 0.00 0.00 0.00

Table 7.4: Subband classification error rates (%) on the TIMIT corpus using
different filters.

Codebook Filter shape
size Rectangular Triangular Hanning

1 49.49 52.98 51.89
2 30.60 33.15 32.55
4 22.53 20.86 22.56
8 3.85 4.52 4.46
16 0.65 1.20 0.67
32 0.50 0.50 0.56
64 0.81 0.86 0.80
128 1.56 1.99 1.73

The classification results are shown in Tables 7.3 and 7.4. We observe
that the rectangular filter gives the best results on average. The triangular
and Hanning filters give similar results, the Hanning being slightly better.
However, the results here are not perfectly comparable since the bandwidth
of the rectangular filter is half of the triangular and Hanning filters. In
other words, the rectangular filter has higher spectral resolution. On the
other hand, the number of filters is the same in all three cases. We conclude
that the filter shape itself does not play a critical role, as long as there are
“enough” filters, 30 or more according to our experiments. The filter shape
and the number of filters controls the smoothness of the spectral estimate.
By decreasing the number of filters, or by using tapered and overlapping
filters, the spectrum can be smoothened if so desired. The author’s personal
preference is the triangular-shaped filterbank for two reasons. First, it is easy
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to satisfy the desired property (4.17). Second, the triangular filter shape is
the most commonly used in the mel-frequency cepstral coefficient (MFCC)
computation [25, 58, 67]. By using the standard approach, we can more easily
compare the subband processing and the corresponding FFT-cepstrum.

7.1.4 The Number of Subbands

The number of subbands affects the spectral resolution and therefore it is
expected to be a very important parameter. In this experiment, we fixed
the filter shape to triangular. Although the cube root seems to be the best
nonlinearity, it is not significantly better than the logarithmic nonlinearity.
Since the computation of the mel-cepstrum includes a logarithmic compres-
sion, we fix the nonlinearity here to logarithm. In this way, we can reduce the
number of test runs since the subband processing of FFT-based cepstrum has
already been partly tested. In general, one classification experiment requires
a lot of CPU time.

In summary, in the next experiment the filter shape was triangular, the
output nonlinearity was logarithm, and the filters were linearly spaced on
frequency axis (no frequency warping). We varied the number of subbands
from M = 5 to M = 50 with steps of 5, and the speaker codebook size was
varied from K = 1 to 128. Selected results are shown in Figures 7.3 and 7.4.
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Figure 7.3: The effect of the number of subbands on the Helsinki corpus with
different codebook sizes (K = 4, 16, 64) .
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Figure 7.4: The effect of the number of subbands on the TIMIT corpus with
different codebook sizes (K = 4, 16, 64).

As in previous experiments, larger speaker codebooks give consistently
better results. A more interesting observation is that the number of subbands
should be as high as possible. By increasing the number of subbands with
any codebook size, we can reduce the error rate. This is an unexpected
result. We hypothesized that the performance would degrade with too many
subbands since the features do not anymore describe the spectral shape which
is assumed to be more speaker dependent than the harmonic structure (of
voiced sounds). Also, a high number of subbands results in highly correlated
features which gives reason to expect that the performance would degrade.
Furthermore, high-dimensional features require more training data in order
to give a good estimate of the underlying feature distribution. Since we
do not have any better explanation, we conclude that the fine structure of
the spectrum contains significant amount of speaker information. Obviously,
the number of subbands must be considerably higher than in the speech
recognition task.

We conducted one more experiment by varying the number of subbands
from 50 to 250 by steps of 50. These experiments are very time-consuming
due to high dimensionality, and therefore we fixed the codebook size as low
as 16. Note also that there are only 512 points in the zero-padded frame with
these parameters, and thus the maximum number of points in the magnitude
spectrum is 256. In the case of 256 filters, we would be using the (compressed)
DFT output bins directly as the features. The classification results are given
in Table 7.5. We observe that the TIMIT corpus shows monotonous increase
in the error rate when the number of subbands increases. The Helsinki
corpus also shows some oscillation in the error rates, but the increase is not
monotonous.
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Based on the corpora that we have used, we conclude that the number
of subbands should be “high enough”, and it depends on the corpora used.
For the Helsinki corpus, any number of subbands is good, but for the TIMIT
corpus, the optimum number seems to be around 30-50. Therefore, for the
TIMIT corpus, the optimum filter bandwidth is 110-183 Hz. Interestingly,
this range is close to the average F0 values (majority of speakers on the
TIMIT subset are males). The number of subbands should be significantly
higher than in speech recognition [125, 131]. Roughly speaking, this indi-
cates that the “linguistic features” are in the smoothed spectrum whereas
the “speaker features” are both in the smoothed spectrum and in the fine
structure of the spectrum.

Running time is an important practical consideration in automatic speaker
recognition. If the number of subbands is high, the running times easily be-
come impractically high. Therefore, other spectral representations such as
FFT-cepstrum can be considered. The main advantage of “raw” subband
processing is that the features have a direct physical interpretation, and
emphasizing/de-emphasizing certain frequency bands is easy.

Table 7.5: Classification error rates (%) using a high number of subbands
(codebook size K = 16).

Number of Corpus
subbands Helsinki TIMIT

50 0.00 5.58
100 0.00 8.97
150 0.34 7.00
200 0.51 10.65
250 0.00 10.80

7.2 FFT-Based Cepstral Features

The previous results with the filterbanks demonstrated the effectiveness of
subband-based representations. The computation of the FFT-cepstrum in-
cludes subband analysis, followed by filter output decorrelation using the
DCT. In the next experiment, the number of filters was fixed to 30, the
filters were triangular-shaped and their outputs were compressed using the
logarithm. The selected cepstral coefficients included c[1], c[2], . . . , c[15]. The
zeroth coefficient was excluded since it depends on the frame intensity. It is
worth noting that the dimensionality of the feature space is half of the one
used with the raw filterbank outputs.
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The classification results using the FFT-cepstral parameters are presented
in Tables 7.6 and 7.7. With small codebook sizes, the differences between
different frequency warpings are larger and the differences become smaller
with increasing codebook size. Interestingly, for the Helsinki corpus the mel-
scale gives the best results on average, whereas the linear frequency scale
seems to be the best for the TIMIT corpus. The difference can be understood
from the discrimination values of individual subbands (see Figures 7.1 and
7.2). The discriminative frequency bands are located in different frequencies
for the two corpora. For the TIMIT corpus the higher frequencies are more
important, but the mel-warping de-emphasizes the spectral detail of these
frequencies.

Table 7.6: Classification error rates (%) on the Helsinki corpus by using
FFT-cepstrum with different frequency warpings.

Codebook Frequency warping
size Linear Mel Bark ERB

1 24.71 24.67 25.19 27.79
2 15.65 13.31 13.64 16.30
4 6.05 2.84 2.88 4.83
8 3.90 3.17 3.47 3.54
16 0.32 0.27 1.88 0.59
32 0.52 0.03 0.02 0.12
64 0.35 0.20 0.01 0.63
128 0.16 0.00 0.07 0.00

Table 7.7: Classification error rates (%) on the TIMIT corpus by using FFT-
cepstrum with different frequency warpings.

Codebook Frequency warping
size Linear Mel Bark ERB

1 60.18 60.65 63.56 80.51
2 47.17 40.32 38.17 42.97
4 40.50 38.61 38.18 37.87
8 12.67 13.60 13.56 17.28
16 5.88 6.77 6.24 7.04
32 5.16 5.85 5.76 6.12
64 4.84 5.36 4.92 5.30
128 5.09 4.84 4.84 5.11
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Both the number of filters and the number of cepstral coefficients af-
fects the spectral resolution, and we therefore consider these two as the most
crucial parameters. We selected the mel-frequency warping due to its pop-
ularity and the results obtained in the previous experiment. The number
of subbands was fixed (30,40,50) while the number of coefficients was varied
from 1 to 20, starting from the coefficient c[1]. The classification results for
codebook size K = 64 are shown in Figures 7.5 and 7.6.
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Figure 7.5: Classification results on the Helsinki corpus using mel-cepstral
coefficients (codebook size K = 64).

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of coefficients

E
rr

o
r 

ra
te

 (
%

)

30 filters

40 filters

50 filters

Figure 7.6: Classification results on the Helsinki corpus using mel-cepstral
coefficients (codebook size K = 64).
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With both corpora, the error rate decreases and stabilizes with the in-
creasing number of coefficients. The error rate of Helsinki corpus reaches
zero error rate with approximately 12 coefficients. The TIMIT corpus, in
turn, stabilizes approximately with 9 coefficients, but the error rate does not
drop to zero. An unexpected result is that in the case of 40 filters the error
rates are clearly higher than with 30 and 50 filters. This is likely due to the
specific populations we chose for our experiments. It seems in general that
the TIMIT speakers are more difficult to model than the Helsinki speakers.

When the frequency axis is warped nonlinearly, the control over differ-
ent frequency bands becomes difficult. Therefore, a methodologically more
sound protocol is to study how the number of filters effects the results if
the frequency warping is linear instead of the mel-scale. By using a linear
frequency scale, each frequency band gets equal importance. In the following
experiment, we fixed the number of coefficients to 15 and the speaker model
size 64, while the number of filters was varied from 20 to 50 with steps of
5. The classification results are shown in Table 7.8. It can be seen that the
number of filters does not have much effect. We conclude that the number
of cepstral coefficients is the most critical parameter. Based on our results,
about 15 coefficients seems to be enough for a fixed number of subbands.
This is supported by the known property of the cepstral coefficients: the
magnitude of the coefficients decays fast (∼ 1/n2) with increasing coefficient
index, and therefore the higher coefficients have only a minor contribution
to the distance or likelihood values.

Table 7.8: Classification error rates (%) using linear frequency scale (15
cepstral coefficients, codebook size K = 64).

Subbands Corpus
Helsinki TIMIT

20 0.11 4.84
25 0.09 4.86
30 0.49 4.96
35 0.53 4.84
40 1.22 4.86
45 0.00 4.95
50 0.23 4.85
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7.3 Linear Prediction Based Features

7.3.1 LPC Coefficients

Since all of the LPC-derived features are based upon the all-pole model speci-
fied by the predictor polynomial, it is natural to start by studying the perfor-
mance of the LPC coefficients themselves. It is often stated that LPC coeffi-
cients should not be used directly, and there have been several propositions
for the distortion measures between two LPC vectors [131, 67]. However,
these statements are often done regarding the speech recognition task. For
this reason, and due to very simple implementation, we apply the Euclidean
distance in both the codebook generation (training) and in the recognition
phase as previously. The pre-processing parameters are the same as be-
fore (a 30 ms Hamming window, shifted by 20 ms, adaptive pre-emphasis).
The predictor coefficients are computed from the autocorrelation sequence
using the Levinson-Durbin procedure. We vary the LPC predictor order
(p = 5, 6, . . . , 30) and the codebook size (K = 16, 32, 64). The results are
shown in Figures 7.7 and 7.8.
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Figure 7.7: Performance of the LPC coefficients on the Helsinki corpus for
different codebook sizes (K = 16, 32, 64).
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Figure 7.8: Performance of the LPC coefficients on the TIMIT corpus for
different codebook sizes (K = 16, 32, 64).

We observe that the LPC coefficients give good results. The result is
somewhat unexpected due to all warnings in literature to not to use LPC
coefficients directly. However, the result is consistent with Reynolds’ results
who used Gaussian mixture modeling of the LPC coefficients [133]. The re-
sults here show that for the speaker recognition task, the LPC coefficients are
potentially a good feature set even without any normalization and with the
simplest distance measure. Increasing the codebook size reduces error rates
as previously, although the results are not consistent for all predictor orders.
The performance improves when more coefficients (higher order predictors)
are used. Both corpora reach their minimum error rates around p = 15 coef-
ficients. Whereas the Helsinki corpus shows saturation after this, the TIMIT
corpus shows a slight increase in the error rate after this.

In literature, it is said that voiced speech sounds have approximately one
complex pole per kilohertz and that 1-2 complex poles should be allocated to
account for the glottal and lip radiation effects [58]. In our case (Fs = 11.025
kHz → 11 poles), this rule would suggest using about 12-13 poles, in other
words, a linear predictor of order p = 12−13. Although the rules is heuristic,
it gives a rough idea for the needed predictor order. In our case, the rule
seems to give the minimum number of coefficients.
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7.3.2 LPC-Derived Feature Sets

Based on the previous experiment, we fixed the predictor order to p = 15,
and computed the other LPC-derived feature sets using this predictor. First,
we fixed the codebook size to K = 64 and varied the number of coefficients.
In each case, we selected the lowest coefficients as the features. The classi-
fication results are shown in Figures 7.9 and 7.10. For the TIMIT corpus,
we decided to leave out the REFL feature set curve for clarity since it pro-
duced extremely poor results (error rate > 60 %). In general, we faced more
numerical problems with the TIMIT corpus.
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Figure 7.9: Performance of the LPC-derived features using the Helsinki cor-
pus (predictor order p = 15, codebook size K=64).

We observe that all tested LPC-derived features outperform the raw LPC
coefficients, provided that the number of coefficients is high enough. For
the Helsinki corpus, we observe that the LSF coefficients give poor results
for a small number of coefficients. The rest of the features (LPCC, LAR,
ARCSIN, REFL) give better results in general. However, when the number
of coefficients is increased, the LSF features perform equally well. For the
TIMIT corpus, similar behavior can be seen. For the TIMIT corpus, LPCC
and ARCSIN perform the best with a small number of coefficients, but the
other feature sets give equal performance when the number of coefficients
is increased. For these two corpora, the alternative LPC-derived features
give approximately equally good results given that the LPC predictor order

108



0

2

4

6

8

10

12

14

16

18

5 6 7 8 9 10 11 12 13 14 15
Number of coefficients

E
rr

o
r 

ra
te

 (
%

)
LPC

LPCC

LAR

ARCSIN

LSF

Figure 7.10: Performance of LPC-derived features using the TIMIT corpus
(predictor order p = 15, codebook size K=64).

(≥ 15) and number of coefficients (≥ 10− 12) are sufficiently high. The only
exception is the REFL feature set, which gives an error rate > 60 % for the
TIMIT corpus. The reason is unknown.

Next we fixed the predictor order to p = 15 and varied the codebook
size from K = 16 to K = 256 with powers of two. The results are given in
Tables 7.9 and 7.10. As a general conclusion we can say that most of the
LPC-derived features give good results when the codebook size is increased.
For the corpora used herein, a zero error rate can be reached with almost all
feature sets. The raw LPC coefficients give most often the worst results.

Two negative observations can be made from Tables 7.9 and 7.10. The
first one is the poor performance of the REFL feature set on the TIMIT
corpus. However, for the Helsinki corpus this feature set gives very good
results! The other observation is that the LPCC feature set gives good results
otherwise, but for the codebook size K = 64 on the TIMIT corpus the
error rate is almost 100 %! These inconsistencies give rise to two possible
explanations. First, the Euclidean distance measure might not be good for
some features. Second, the possibility of a programming bug is not excluded.
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Table 7.9: Performance of the LPC-derived features (p = 15) on the Helsinki
corpus with different codebook sizes.

Codebook Feature set
size LPC LPCC LAR ARCSIN REFL LSF

16 3.57 0.36 0.33 1.29 1.00 0.12
32 2.15 0.26 0.00 0.01 0.25 1.11
64 3.77 0.00 0.00 0.00 0.00 0.00
128 1.43 0.00 0.00 0.00 0.00 0.00
256 1.59 0.00 0.00 0.00 0.00 0.00

Table 7.10: Performance of the LPC-derived features (p = 15) on the TIMIT
corpus with different codebook sizes.

Codebook Feature set
size LPC LPCC LAR ARCSIN REFL LSF

16 2.85 0.39 0.43 0.00 61.61 0.11
32 2.04 0.00 0.76 0.00 60.77 0.36
64 2.05 97.26 0.90 0.00 62.14 0.05
128 1.96 0.00 0.50 0.00 63.17 0.00
256 3.20 0.00 0.94 0.00 64.10 0.00

We studied also the means and differences of adjacent line spectral pairs
(MALS and DALS, respectively) as suggested by Liu & al. [93]. The MALS
feature set gave systematically worse results than the original LSF param-
eters, whereas DALS feature set outperformed LSF in some cases. In the
original paper, DALS feature set was reported to give good results, and in
this sense the results are consistent. The results on Helsinki corpus were
good, but for TIMIT the performance was very poor in all cases (error rates
≥ 60 %). It seems that the TIMIT corpus yields occassionally very poor
results with the LPC-derived features.

7.3.3 LPC-Derived Formants

Next, we studied LPC-derived formant frequencies and their bandwidths.
We varied the number of LPC coefficients from p = 5 to p = 15, fixing the
codebook size to K = 64. Given a fixed predictor order p, we selected the
minimum number of poles in the Nyquist range1. Visual inspection of the

1The number of complex poles in the Nyquist range can vary from frame to frame. The
number of LPC poles Np in the upper half plane is at least p/2 and (p− 1)/2 + 1 for even
and odd p, respectively. Thus, for p = 15 we have 8 formants.
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formant tracks showed that the analysis procedure worked reasonably well.
We noticed that for several frames, especially higher order predictors, two of
the poles were very close to the frequencies 0 and Fs/2, which raises a doubt
that these are LPC analysis artefacts. However, we did not make attempts
to remove these since we wanted to keep the test protocol simple.
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Figure 7.11: Performance of LPC-derived formants on the Helsinki corpus,
compared with LPC and LPCC (codebook size K=64).
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Figure 7.12: Performance of LPC-derived formants on the TIMIT corpus,
compared with LPC and LPCC (codebook size K=64).
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We noticed that increasing the analysis order decreased error rates as
before, for both the formant frequencies and their bandwidths. The formant
bandwidths gave very poor results for both corpora (error rates ≥ 80 %).
However, the formant frequencies gave surprisingly good results. The com-
parison of the formant frequencies with the LPC and LPCC feature sets are
shown in Figures 7.11 and 7.12. We observe that the formants give worse
results than the LPC coefficients in general. Therefore, the formants have
poorest discrimination properties of all LPC-derived features. Nevertheless,
when the LPC order is high, formants give good results. Although the for-
mant estimation procedure is the most simple one and produces a lot of
spurious formants, it shows that a considerable amount of speaker informa-
tion might be included only in the formant frequency locations.
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Figure 7.13: Discrimination of formant frequencies (LPC order p = 10).
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Figure 7.14: Discrimination of formant frequencies (LPC order p = 30).
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An interesting question is whether the higher formant frequencies are
more discriminative as it is generally believed. In particular, it is stated in
many textbooks that the two lowest vowel formants (F1, F2) contain roughly
most of the phonetic information, whereas F3 and higher formants are more
speaker-specific. We computed the F -ratios of each formant for several LPC
orders. The results for orders p = 10 and p = 30 are shown in Figures 7.13
and 7.14, respectively2. It seems that the higher formants indeed are more
discriminative, especially for the TIMIT corpus. The Helsinki corpus shows
more uniform discrimination over the different formants.

We must be cautious in making any “phonetic interpretation” of the
results of Figures 7.13 and 7.14, since we did not segment the data. In other
words, only the average discrimination values over all different phonemes are
taken into consideration. This procedure averages out the effect of phonemes
that are discriminative but infrequent. Also, the analysis procedure produces
probably a lot of spurious formants. However, reliable formant estimation is
a research topic on its own right and is not in the scope of this thesis.

Some similarity of the formant F -ratios with the subband discrimination
values of Figures 7.1 and 7.2 can be observed. In particular, the TIMIT cor-
pus shows a peak in high frequencies and higher formants. Although both
the subband features and formants suggests that certain frequencies are bet-
ter than some others, they contain somewhat different information. The
subband feature set contains relative magnitudes of given frequency band(s),
whereas the formant feature set includes the locations of high-magnitude fre-
quency regions (resonances). This raises a question whether we could com-
bine these two different information sources somehow. The first idea that
comes to mind is to use formant estimation in the selection of the subbands
for subband-based features. In other words, the frequency bands whose rela-
tive magnitude is high (indicated by the formant locations) would be selected
as a basis for the subband processing, or for the FFT-cepstrum. This kind of
procedure might be good for noise-corrupted speech, since perceptually more
noise can be tolerated around the spectral peaks [100].

7.3.4 LSF Parameters Revisited

Although not showing consistently better results in the previous experiments,
the LSF parameters have many attractive properties which gave us motiva-
tion to study them in more detail. First, the LSF parameters are known to
have good quantization properties, and consequently, they might be suited

2Notice that the number of formants is half of the predictor order since the complex
conjugate pairs of the LPC polynomial roots represent the mirror image of the spectrum
around the Nyquist frequency.
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well for VQ-based speaker recognition. Second, LSF’s have more direct inter-
pretation than, for instance, the LPC coefficients or the LPCC coefficients.
The lower order LSF coefficients correspond to lower frequencies, and LSF’s
are closely related to the formant structure [93]. This allows easy control of
weights given to certain frequency bands in the distance or likelihood calcu-
lations. Third, high recognition rates have been reported in several studies
[93, 91, 20, 169, 109].

We studied the effects of the LPC analysis order (p = 10, 20, 30) and the
codebook size (K = 8, 16, . . . , 256) to the performance of the LSF param-
eters. For comparison, we selected the ARCSIN feature set, since it gave
good results on both corpora (see Tables 7.11 and 7.12). We can see that
both feature sets behave nicely on both corpora, and as expected, increased
analysis order and model size decreases error rates. Both representations
seem to be very effective in that they converge near the zero error rate with
a small number of coefficients and a small number of code vectors. From the
two feature sets, the ARCSIN seems to outperform LSF in most cases, but
the difference is small. From a practical viewpoint, ARCSIN computation is
simpler to implement and computationally more efficient.

Table 7.11: Comparison of ARCSIN and LSF feature sets for different LPC
model order and codebook sizes on the Helsinki corpus.

Codebook p = 10 p = 20 p = 30
size ARCSIN LSF ARCSIN LSF ARCSIN LSF

8 4.96 4.58 0.13 2.02 0.00 0.26
16 2.74 3.86 0.75 0.51 0.27 0.19
32 0.87 0.55 0.00 0.23 0.00 0.06
64 0.13 0.99 0.00 0.32 0.00 0.64
128 0.60 0.11 0.00 0.30 0.00 0.28
256 0.98 0.18 0.00 0.00 0.00 0.56
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Table 7.12: Comparison of ARCSIN and LSF feature sets for different LPC
model order and codebook sizes on the TIMIT corpus.

Codebook p = 10 p = 20 p = 30
size ARCSIN LSF ARCSIN LSF ARCSIN LSF

8 3.76 3.81 2.13 0.58 1.98 1.96
16 0.26 0.97 0.00 0.82 0.30 0.36
32 0.05 0.34 0.00 0.40 0.07 0.03
64 0.17 0.86 0.00 0.54 0.00 0.00
128 0.00 0.21 0.00 0.00 0.00 0.00
256 0.00 0.51 0.00 0.25 0.00 0.00

7.4 Delta Parameters

In this section, we study the delta features. Based on the previous experi-
ments with the static features, we consider the delta parameters of the fol-
lowing feature sets:

• Log-compressed triangular filterbank outputs (FB)

• Linear frequency FFT-cepstrum (FFT-cep)

• Linear predictive cepstral coefficients (LPCC)

• Arcus sine coefficients (ARCSIN)

• Line spectral frequencies (LSF)

We fixed the parameters as follows. A 30 milliseconds Hamming window
with 25 % (7.5 milliseconds) overlap between adjacent frames was used. The
filterbank consisted of 30 filters. The FFT-cepstrum was computed using
the same filterbank, and 15 lowest cepstral coefficients (excluding c[0]) were
retained. A linear predictor of order p = 15 was used in computing the
LPCC, ARCSIN and LSF parameters. We studied both the differentiator
and the linear regression method for the delta feature computation. The
feature streams were augmented with zero vectors from both ends.
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Figure 7.15: Performance of the delta features on the Helsinki corpus using
the differentiator method (codebook size K = 64).
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Figure 7.16: Performance of the delta features on the TIMIT corpus using
the differentiator method (codebook size K = 64).

First, we studied the differentiator method by varying the differentiator
order M from M = ±1 to ±10 frames. The results for codebook size K = 64
are shown in Figures 7.15 and 7.15. We have marked the optimum point
for each delta feature set with circles. For the Helsinki corpus, increasing
the differentiator order tends to increases the error rates. The optimum
differentiator order is 1-3 frames for all feature sets. The delta-LSF parameter
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with M = 1 gives the lowest error rate (7.0 %), whereas the delta-cepstrum
(FFT) gives the highest error on average. The delta parameters of LPC-
derived feature sets give the lowest error rates. The TIMIT corpus shows
also increase in error rates with increasing differentiator order, but not as
clearly as the Helsinki corpus. For the TIMIT corpus, the optimum order is
between 2-6. The lowest error rate (8.1 %) is obtained using delta-ARCSIN
with M = 4. Consistent with the Helsinki corpus, the LPC-derived delta
features outperform the subband-based delta parameters (filterbank, FFT-
cepstrum).
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Figure 7.17: Performance of the delta features on the Helsinki corpus using
the linear regression method (codebook size K = 64).
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Figure 7.18: Performance of the delta features on the TIMIT corpus using
the linear regression method (codebook size K = 64).
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Next, we studied the linear regression method by varying the regression
order M from M = ±1 to ±10 frames. The results for codebook size K = 64
are shown in Figures 7.17 and 7.17. For both corpora, the optimum regression
order is between 1-2 frames. This makes setting the control parameters more
easier than for the differentiator method. Also, for both corpora the delta-
LSF parameter set gives the smallest error rate (10.6 and 14.0 % for the
Helsinki and TIMIT corpus, respectively).

Next, we study the differences between the two delta computation meth-
ods. For this, we selected the delta-LSF and delta-ARCSIN methods from
the previous figures since these gave the best results. The comparison of
the methods is shown in Figures 7.19 and 7.20 for codebook size K = 64.
Both corpora and both feature sets show that the differentiator method gives
smaller error rates when the order is selected correctly. This is a pretty sur-
prising result, and we are forced to conclude that our test hypothesis was
wrong. The regression method probably oversmooths the parameter trajec-
tories, discarding rapid spectral changes that the differentiator method is able
to capture. The ordering of the methods may be opposite in noisy conditions,
but for clean speech our results suggest quite clearly that the differentiator
method is better. The advantage of the regression method based on these
results is that its parameters are more easier to set - the optimal regression
order is 1 or 2 frames for all feature sets and both corpora with the frame
rate used here.
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Figure 7.19: Comparison of the differentiator and regression method on the
Helsinki corpus.
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Figure 7.20: Comparison of the differentiator and regression method on the
TIMIT corpus.

Next, we compared the static and dynamic features by selecting the best
results for the codebook size K = 64. The results are given in Table 7.13.
We observe that the dynamic features give higher error rates, which was ex-
pected. The delta parameters of the LPC-derived features (LPCC, ARCSIN,
LSF) outperform the delta parameters of the subband-based features (filter-
bank, FFT-cepstrum). Based on these results, the LPC-derived feature sets
along with their delta-parameters seem to be the best choice.

Higher order delta parameters (delta-deltas) are sometimes also used.
They should not be ignored even though we have excluded them from our
experiments because of lack of time. In fact, joint optimization of the delta-
and delta-delta orders would be an interesting additional test to carry out in
future in order to evaluate their usefulness in practice.

Since the static and dynamic features encode different information, it is
expected that they could be efficiently combined [149]. However, we did
not study the joint performance of static and dynamic features, since this
raises new design issues that are out of the scope of this thesis. First, we
should decide the fusion method: (1) input fusion (vector concatenation) or
(2) classifier fusion (separate codebooks for static and dynamic features as in
[149]). For the input fusion, we should do some feature normalization since
the dynamic features have different range than the original features. For
the classifier fusion, we should decide the method of combining the classifier
output scores, as well as to give the combination weights for each classifier
output.
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Table 7.13: Comparison of static and dynamic features (codebook size K =
64).

Corpus Feature Feature set
type FB FFT-cep LPCC ARCSIN LSF

Helsinki Static 0.00 0.35 0.06 0.00 0.00
Dynamic 14.35 27.90 10.05 10.23 6.99

TIMIT Static 4.84 4.84 0.25 0.00 0.05
Dynamic 30.08 25.98 21.88 8.12 10.49

7.5 Concluding Remarks

7.5.1 Cepstrum Revisited

The previous experiments have shown that different forms of cepstrum are
a powerful presentation. Throughout the experiments, we have used a lin-
ear scale and logarithmic filter output compression in the FFT-cepstrum
computation. The linear frequency scales was selected since we felt that con-
trolling the parameters was easier than for the nonlinear frequency scales.
The logarithmic compression was selected since it is typically used in the
mel-cesptrum computation. However, the cube root compression gave good
results with the filterbank presentation. For this reason, we wanted to make
a comparison between the logarithmic and cubic nonlinearities. The follow-
ing parameters were fixed: frame length 30 milliseconds, frame overlap 25 %,
and Hamming window function. We used the lowest 15 cepstral coefficients,
excluding c[0] as before. We varied the codebook size from K = 16 to 256.
After some experimenting, we decided to use a test segment length of 100
vectors in the classification experiments so that differences between methods
could be seen (for the previously used 350 vector segment, majority of the
error rates were already 0.00 %).
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Table 7.14: Classification error rates (%) for different FFT-cepstrum presen-
tations on the Helsinki corpus (segment length = 100 vectors, codebook size
K = 64).

Codebook Non- Frequency warping
size linearity Linear Mel

16 log 10.29 6.85
cube root 8.17 6.85

32 log 7.86 6.44
cube root 7.27 6.44

64 log 6.55 5.75
cube root 5.71 5.75

128 log 6.15 5.26
cube root 8.28 5.26

256 log 6.06 5.68
cube root 4.45 4.68

The classification results are shown in Tables 7.14 and 7.15. We observe
that using the cubic compression decreases error rates in all cases. We con-
clude that if the raw subband outputs or subband-based cepstrum is used,
then the filter outputs should be compressed using cube root instead of log-
arithm. Regarding the frequency warping, we observe that the linear scale
is better for the TIMIT corpus, whereas the opposite is true for the Helsinki
corpus. This is explained by the differences in the relative importances of
different subbands as discussed before. We conclude that there is no globally
optimal frequency warping method, but it must be tailored for each corpus.

Although the results show that the mel-scale is better than linear scale
in some cases, the author prefers to use a linear-frequency filterbank. In this
way, controlling of the important frequency bands is more easy and the im-
plementation is also more simple. The problem reduces then to estimating
the importances of the individual subbands, which can be done for instance
using the F -ratio or other separability criterion. These values can then be
used as weights in the distance or likelihood function. An interesting research
topic would be to establish a connection between the linear and warped filter-
banks. For instance, if we are using a linear frequency scale, how should be
the filter outputs weighted so that the resulting outputs would approximate
close to the outputs of the mel-frequency filterbank.
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Table 7.15: Classification error rates (%) for different FFT-cepstrum presen-
tations on the TIMIT corpus (segment length = 100 vectors, codebook size
K = 64).

Codebook Non- Frequency warping
size linearity Linear Mel

16 log 20.31 26.60
cube root 14.18 17.49

32 log 14.56 22.35
cube root 10.61 12.28

64 log 12.28 17.47
cube root 8.38 10.61

128 log 10.74 16.69
cube root 8.28 10.53

256 log 9.69 15.96
cube root 7.59 8.89

Table 7.16: Classification error rates (%) for different FFT-cepstrum presen-
tations on the Helsinki corpus (segment length = 100 vectors, codebook size
K = 64).

Codebook Non- Frequency warping
size linearity Linear Mel

16 log 20.31 26.60
cube root 14.18 17.49

32 log 14.56 22.35
cube root 10.61 12.28

64 log 12.28 17.47
cube root 8.38 10.61

128 log 10.74 16.69
cube root 8.28 10.53

256 log 9.69 15.96
cube root 7.59 8.89

Finally, we compared the FFT- and LPC-based cepstral representations.
It is often stated that the FFT-cepstrum is more accurate but the LPC-
cepstrum is computationally more efficient. Since the main focus of this thesis
is not the time complexity3, we are interested in the recognition accuracy

3Besides, most of the computation time is not spent on the feature extraction but
distance computations in the recognition phase.
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only.
As before, the frame length and overlap were set to 30 milliseconds and

25 %, and the Hamming window was used as the window function. Since
the FFT-cepstrum is based on non-parametric spectrum modeling, and the
LPC-cepstrum is based on parametric (all-pole) modeling, it is hard to set
parameters that are perfectly comparable. For the FFT-cepstrum, we chose
to use 30 and 50 subbands, and both the log and cube root compressions.
For the LPC-cepstrum, we used LPC-predictors of orders p = 15 and 30.
For both feature sets, the frequency axis was linear (no warping), and the
number of cepstral coefficients was set to 15. The test segment length was
fixed to 100 vectors, and the codebook size was varied from K = 15 to 256.
The results are shown in Figures 7.21 and 7.22.

We observe that for correct parameter selection, both methods give good
results. However, a pretty surprising observation is that the LPC-cepstrum
seems to outperform the FFT-cepstrum. This can be seen clearly in the
case of the TIMIT corpus, and the Helsinki corpus also shows the same
tendency. The performance of the FFT-cepstrum can be improved by using
more subbands. However, notice that this applies only to the cube root
compression - for the logarithm, increasing subbands increases errors in most
cases. The performance of the LPC-cepstrum can be improved by increasing
the LPC analysis order, but not in all cases.

For the codebook size K = 256, both corpora show the same grouping of
the performances: the log FFT-cepstrum gives the poorest results and the
LPC-cepstrum the best results, the cube root FFT-cepstrum being between
these two. Since the ordering is consistent for both corpora, we conclude
that the LPC cepstrum should be used. If the FFT-cepstrum is used, then
the cube root should be used as already indicated clearly before. The results
of this thesis do not show that the FFT-cepstrum would be more accurate.
However, the advantage of FFT-cepstrum is that it is more simple to imple-
ment4.

4The author faced several problems with the Levinson-Durbin recursion and the LPC
→ LPCC formula (5.19). On the other hand, this was the first the the author was working
with the LPC model - next time the programming might be more easy.

123



4

5

6

7

8

9

10

16 32 64 128 256

Codebook size 

E
rr

o
r 

ra
te

 (
%

)

FFT-log (30 bands) FFT-cube root (30 bands)

FFT-log (50 bands) FFT-cube root (50 bands)

LPCC (p=15) LPCC (p=30)

Figure 7.21: Comparison of the FFT- and LPC-cepstral presentations on the
Helsinki corpus (segment length = 100 vectors) .
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Figure 7.22: Comparison of the FFT- and LPC-cepstral presentations on the
TIMIT corpus (segment length = 100 vectors).
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7.5.2 Implementation Viewpoint

We have been able to show that the commonly used feature sets differ in
their performance. Specifically, and somewhat surprisingly, the LPC-based
features seem to be competitive with the FFT-based features, and in many
cases they seem to give clearly better performance. However, the recognition
accuracy is only one issue in the selection of the feature extraction method
for a specific applications. Other issues include the time- and memory con-
sumption and ease of implementation.

We have not made a detailed time complexity analysis of the feature
extraction methods since all of these include several steps that can be im-
plemented in different ways. Summary of the computation steps of some
of the methods are summarized in Table 7.17. The filterbank and FFT-
cepstrum are straightforward to implement. Of the LPC-based features, the
ARCSIN feature is the simplest one to implement, since the features are
computed directly from the reflection coefficients that are a side product of
the Levinson-Durbin recursion. The LPCC parameter set is also straightfor-
ward to compute from the predictor coefficients using the Atal’s recursion
formula [6]. Computation of the LSF feature set includes finding the roots
of two complex polynomials. For this, there are very likely efficient algo-
rithms since the roots of the two polynomials lie on the unit circle and they
are interlaced with each other. The author used the Matlab software where
computation of LSF parameters is a built-in procedure.

Table 7.17: Summary of steps needed in extraction some of the features
evaluated in this thesis.

Feature set Steps

Filterbank FFT
subband analysis

FFT-cepstrum FFT
subband analysis
DCT

ARCSIN Autocorrelation computation
Levinson-Durbin recursion

LSF Autocorrelation computation
Levinson-Durbin recursion
Finding the roots of two complex polynomials

LPCC Autocorrelation computation
Levinson-Durbin recursion
Conversion of LPC’s to LPCC’s
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Chapter 8

CONCLUSIONS AND
FUTURE WORK

8.1 Discussion About Feature Extraction

This thesis presented a learning-by-doing project for the author. The main
contribution of this thesis is that it summarizes, or at least tries to summarize,
several different viewpoints to speaker recognition into one package. We have
made an extensive literature review of the most commonly used (and some
not so commonly used) feature extraction methods in speaker recognition.
Understanding what the features measure necessary requires understanding
the way the speech spectrum is composed from the interaction of various
articulators articulatory movements.

The term feature extraction is a widely used expression, although it is
somewhat misleading in the context of speech processing. As pointed out
by Picone [125], it somehow implies that we know what we are looking for
in the signal. Let us compare speaker (or speech) recognition to fingerprint
recognition [99], since the term voiceprint [69] remains to stay so popular.
The history of fingerprints starts from the 17th century (1684), when first
scientific studies about the ridge, furrow, and pore structures were reported
by Nehemiah Grew [99]. In current state-of-the-art fingerprint recognition
systems, it is actually quite well known what features should be measured
from the fingerprints1. On the other hand, the sound spectrograph that
enabled for the first time systematic study of the acoustic features, wasn’t
invented until the year 1946 [67]! In this sense, the fingerprint features have
been studied almost 300 years longer than speech features. The author does

1This is the author’s general image, and a fingerprint expert might have a different
opinion.
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not believe that the human speech production organs would be any less
individual than fingerprints. The voice production system is a very complex
time-varying system, but after all, the acoustic speech signal is a reflection
of the dimensions of the articulators. With the current knowledge, we do not
know what to measure and how to measure.

8.2 Experiments

Based on our experiments, we can make a one general conclusion. Our results
indicate that in addition to the smooth spectral shape, a significant amount
of speaker information is included in the spectral details, as opposed to speech
recognition where the smooth spectral shape plays more important role. This
was indicated indirectly by the following observations:

1. The number of subbands should be high (around 30-50 for the corpora
used in this thesis)

2. Increasing the number of cepstral coefficients does not degrade recog-
nition. The number of coefficients should be clearly higher than for
speech recognition (at least 15-20, depending on the type of the cep-
strum).

3. The LPC analysis order should be clearly higher than in speech recog-
nition. The results did not degrade even for order 30.

4. For the LPC-derived formants, the results did not degrade even for 15
formants.

5. The differentiator method outperformed the linear regression method
in delta feature computation, indicating that the fast spectral changes
are more important than the smoothly varying spectral features.

This observation is consistent with intuition. In speech recognition, the vocal
tract parameters that are mostly coded in the spectral envelope, are the in-
formation one wants to extract. However, for speaker recognition we want to
take advantage of all of the parts of the speech production organs, especially
including the voice source.

Regarding the different feature sets that we evaluated, we conclude that
the differences between the best candidates are after all pretty small. By
adjusting the parameters correctly, we can reach the error rate of 0.00 %
for the most promising features on both corpora (filterbanks, FFT-cepstrum,
LPCC, ARCSIN, LSF), given that there is enough training material and that
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the length of the test sequence is long enough. For a few of the experiments,
we made the test segment shorter in order to see better differences between
the different feature sets and the effect of adjustable parameters. If we use
the full test sequence and correctly selected parameters, we can reach the
zero error rate easily with any of the features listed above. Therefore, the
method of choice depends on other factors like the ease of implementation
and the time consumption.

Regarding both the filterbank and FFT-cepstrum, we recommend to use
the cube root compression instead of the logarithm in all cases. Since these
two methods give essentially the same performance, we recommend to use
the cepstrum, since it is needs less features. For the LPC-based features, we
recommend the ARCSIN feature set due to its simple implementation and
virtually as good performance as the other LPC-based features. However,
the LSF and LPCC features give also very good results, and selection of the
method seems to depend also on the implementer’s personal preference.

8.3 Future Work

8.3.1 Short-Term Goals

A few important issues had to be left out from this thesis due to lack of time
and space. Originally, we planned to include testing of the features with
degraded speech and mismatched acoustical conditions. We also planned to
evaluate the simple feature compensation methods such as the widely used
cepstral mean subtraction (CMS). Robustness against noise and distortion is
the hottest topic in speaker recognition research currently. This is due to the
growing demands to get working applications outside of laboratory environ-
ments. We consider testing of the most promising features in noise the most
important future work in short term. Specifically, the simple noise compen-
sation methods reviewed by Mammone & al. [100] should be systematically
tested.

Throughout the experiments, we have used the vector quantization (VQ)
based speaker modeling. The features that we have evaluated here, should
be tested using other modeling techniques as well, specifically the Gaussian
mixture model (GMM) [137, 136] since it is considered the state-of-the-art
modeling technique. We believe that the results obtained using the VQ
approach generalize to the GMM approach.

One noticeable thing is that throughout all experiments, we did not apply
any weighting or normalization of the coefficients, but we used the most
simple Euclidean distance measure. However, for instance the F -ratios of the
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subbands indicate clearly that certain subbands could be given larger/smaller
weight. We have shown previously that subband weighting based on F -ratios
improves recognition accuracy [71]. We either did not apply weighting of the
cepstral coefficients (termed cepstral liftering) which might improve accuracy
in some cases [167].

8.3.2 Long-Term Goals

Because of lack of time, we did not consider the correlations between the
feature sets. If the different feature sets provide uncorrelated information,
they can be combined in order to give a joint decision [73]. For instance,
some feature set might discriminate good on average but might be poor for
a certain speaker. For this pathological speaker, a different feature set that
is in general non-discriminative, might be good. As an analogue, consider a
person’s hair color as a feature for person authentication. While on average
this feature might not be very discriminative, for a neon-yellow haired person
this feature is very discriminative (assuming artificial hair coloring is not
possible).

Figure 8.1: Idea of the multiresolution filterbank.

In long term, combination of several supplementary feature sets should be
used, including spectral features as well as phonetical, prosodic, and lexical
features. This includes several research topics:

• What feature sets to use?

• What modeling technique to use for each feature set?

• How to combine the cues from different feature sets?
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Figure 8.2: Example of multiresolution spectra of [i:] in the word “kiivasta”
spoken by two males.

Story Will Continue

In order to end this thesis into an exciting point that requires a sequel, we
sketch the idea of a new spectral feature set. The idea is illustrated in Fig.
8.1. Since it seems that the spectrum contains speaker information in several
levels of resolutions (for instance, spectral tilt and formants represent the
smooth changes, whereas F0 harmonics the fast varying details), we might
want to decompose the spectrum into different levels and to model each level
individually. For this, we might use a similar concept than in the case of the
Haar wavelet [151]. The FFT output bins would be considered as the signal
that we want to decompose. Then, the next (a coarser) level is formed by
averaging the adjacent FFT bins, and this process is repeated recursively. In
addition to averaging, we might want to use the differences of the adjacent
bins. We could use the different resolution levels directly (with cubic root
compression), or we could parametrisize them, for instance applying the DCT
as in the case of cepstrum. At different levels of resolution, we might want to
use different parametrizations. For the most coarse levels, we need a smaller
number of cepstral coefficients, or coefficients with different indices than for
the more detailed levels.

Figure 8.2 shows an example of the proposed idea applied to vowel [i:]
in the word “kiivasta” spoken by two low-pitched male speakers. The first
5 decomposition levels are shown. We can see that the speakers differ in
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all resolution levels. The differences are smallest on the third level, which
probably represents most of the phonetic information, i.e. the information
that the vowel is [i:].

A classifier fusion approach that we have presented in [73] could be then
applied so that the different levels of resolutions are considered as different
feature sets. The combination weights of the individual feature sets can be
estimated for instance from the individual classification error rates of the
different resolution levels. Furthermore, it would be very interesting to see
what levels are most robust against noise, voice disguise, mimicry, and other
error sources. We believe that the multiresolution spectrum approach we
have sketched here is potentially a promising approach for speaker recogni-
tion, since it is both intuitive, very simple to implement, and the control over
different information in the spectrum is easy. This is the end of this thesis,
but the story will continue in other occasions.

131



Bibliography

[1] Adami, A., and Hermansky, H. Segmentation of speech for speaker and language
recognition conditions. In Proc. 8th European Conference on Speech Communication
and Technology (Eurospeech 2003) (Geneva, Switzerland, 2003), pp. 841–844.

[2] Adami, A., Mihaescu, R., Reynolds, D., and Godfrey, J. Modeling prosodic
dynamics for speaker recognition. In Proc. Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP 2003) (Hong Kong, 2003), pp. 788–791.

[3] Ariyaeeinia, A., and Sivakumaran, P. Effectiveness of orthogonal instanta-
neous and transitional feature parameters for speaker verification. In Proc. IEEE
Int. Conf. on Security Technology (1995), pp. 79–84.

[4] Ashour, G., and Gath, I. Characterization of speech during imitation. In Proc.
6th European Conference on Speech Communication and Technology (Eurospeech
1999) (Budapest, Hungary, 1999), pp. 1187–1190.

[5] Atal, B. Automatic speaker recognition based on pitch contours. Journal of the
Acoustic Society of America 52, 6 (1972), 1687–1697.

[6] Atal, B. Effectiveness of linear prediction characteristics of the speech wave for
automatic speaker identification and verification. Journal of the Acoustic Society of
America 55, 6 (1974), 1304–1312.

[7] Atal, B. Efficient coding of lpc parameters by temporal decomposition. In Proc. Int.
Conf. on Acoustics, Speech, and Signal Processing (ICASSP 1983) (1993), pp. 81–
84.

[8] Auckenthaler, R., Carey, M., and Lloyd-Thomas, H. Score normaliza-
tion for text-independent speaker verification systems. Digital Signal Processing 10
(2000), 42–54.

[9] Bartkova, K., D.L.Gac, Charlet, D., and Jouvet, D. Prosodic parameter for
speaker identification. In Proc. Int. Conf. on Spoken Language Processing (ICSLP
2002) (Denver, Colorado, USA, 2002), pp. 1197–1200.

[10] Besacier, L., Bonastre, J., and Fredouille, C. Localization and selection of
speaker-specific information with statistical modeling. Speech Communications 31
(2000), 89–106.

132



[11] Besacier, L., and Bonastre, J.-F. Subband architecture for automatic speaker
recognition. Signal Processing 80 (2000), 1245–1259.

[12] Besacier, L., Grassi, S., Dufaux, A., Ansorge, M., and Pellandini, F.
GSM speech coding and speaker recognition. In Proc. Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP 2000) (Istanbul, Turkey, 2000), pp. 1085–
1088.

[13] Bimbot, F., Blomberg, M., Boves, L., Genoud, D., Hutter, H.-P.,
Jaboulet, C., Koolwaaij, J., Lindberg, J., and Pierrot, J.-B. An overview
of the CAVE project research activities in speaker verification. Speech Communica-
tions 31 (2000), 155–180.

[14] Bimbot, F., Magrin-Chagnolleau, I., and Mathan, L. Second-order statis-
tical measures for text-independent speaker identification. Speech Communications
17 (1995), 177–192.

[15] the Biometric Consortium. WWW page, December 2003. http://www.biometrics.
org/.

[16] Bishop, C. Neural Networks for Pattern Recognition. Oxford University Press,
New York, 1996.
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