Digital Color

Lecture 6 Spectral image analysis

Spectral component images

Spectral Image

Algorithm PCA

- 1. Calculate correlation matrix for the data set
- 2. Calculate eigenvalues and eigenvectors for the correlation matrix
- 3. Select eigenvectors corresponding to the largest eigenvalues as a new basis for the data set
- 4. Calculate principal components between eigenvectors and the data set
- Applications: compression, pattern recognition etc. Frequently used for spectral image data

Spectral Images & Principal Component Analysis (PCA)

spectrum

$$\mathbf{s}(\boldsymbol{\lambda}) = (s(\boldsymbol{\lambda}_1) \ s(\boldsymbol{\lambda}_2) \ \dots \ s(\boldsymbol{\lambda}_n))^T$$

2-D spectral image

$$\mathbf{S} = \left(\begin{array}{cccc} s_1(\lambda_1) & \cdots & s_m(\lambda_1) \\ \vdots & \ddots & \vdots \\ s_1(\lambda_n) & \cdots & s_m(\lambda_n) \end{array}\right)$$

1. calculating correlation matrix and eigenvectors, selecting base vectors

$$\mathbf{R} = \frac{1}{m} \mathbf{S} \mathbf{S}^{T} \qquad \mathbf{R} \Phi = \sigma \Phi$$
$$\mathbf{B} = \begin{pmatrix} b_{1}(\lambda_{1}) & \cdots & b_{1}(\lambda_{n}) \\ \vdots & \ddots & \vdots \\ b_{m}(\lambda_{1}) & \cdots & b_{m}(\lambda_{n}) \end{pmatrix}$$

Matrix B needs to be transposed

- 2. calculating inner product images $\mathbf{P} = \mathbf{B}^T \mathbf{S}$
- 3. reconstructing spectral image

$$\tilde{\mathbf{S}} = \mathbf{B}\mathbf{B}^T\mathbf{S} = \mathbf{B}\mathbf{P}$$

Illustration of PCA

Illustration of PCA

Reconstruction of a spectrum

Component images of a spectral image

Spectral image as RGB-image

Inner-product images between the spectral image and eigenvectors:

4 Principal Component Analysis

File Help

🗾 Principal Component Analysis

File Help

Spectral image compression

Original PCA 1D PCA 3D PCA 4D

Spectral image databases

 \Rightarrow fast methods for searching images will be needed in the future

Experimental data 76 real-world spectral images

Algorithm of the SOM

- Let L be a discrete lattice of units x_i , where i is the index of the unit.
- Each unit x_i is assigned a weight vector w_i .
- A point s from the input space S is mapped to a best matching unit x_i for which

$$||s - w_j|| = min_i ||s - w_i||$$

- A self-organizing procedure:
 - 1. Draw a sample s from S and find the best matching unit x_j .
 - 2. Adjust the weights w_i of all units x_i in the neighborhood of x_j by

$$w_i^{new} = w_i^{old} + l\left(s - w_i^{old}\right),$$

where l is the learning parameter.

3. Repeat points 1. and 2. *l* times. *l* is the number of learning steps.

Self Organizing Map

SOM-units in CIELAB

Example of BMU-image

Example of BMU-histogram

Example of Search

Histogram Differences

Principle of SOM: finding the BMU

Mathematically the BMU is defined for input data vector, *x*, as follows:

$$||x - w_{BMU}|| = \min_i ||x - w_i||$$

Euclidean distance is a typically used distance measure.

Principle of SOM: updating the weight vectors

$$w_i(t+1) = \begin{cases} w_i(t) + \alpha(t)[x(t) - w_i(t)], & \text{if } i \in N_{\text{BMU}}(t) \\ w_i(t), & \text{otherwise} \end{cases}$$

Learning rate: product of learning rate parameter & neighborhood function:

$$\alpha(t) = \eta(t)h(t)$$

Principle of SOM: Lattice structure

Lattice structures: hexagonal & rectangular

Connections between images and histograms:

non-weighted

weighted

Ordering of Color Spectra

Spectral Image Filtering

Non-negative Matrix Factorization

F = WH,

where the elements in W and H are all positive values and the goal is to minimize the reconstruction error $Min ||F - WH||; W, H \ge 0$

Results

r = 2;

r = 3;

r = 81;

original

Problems

- NMF don't care about image content information. Only color.
- NMF is iterative method and number of iterations and rank of factorization *r* is not clear
- Initial state is random and process can converge to a local minimum.

Non-negative Tensor Factorization

Image $G = \{G_{rst}\}$ can be expressed as $G = \sum_{j=1}^{k} U_1^{j} \otimes U_2^{j} \otimes ... \otimes U_n^{j}$

Solution and Update rules

It was considered the following least-square problem:

$$\min_{u^{m}, v^{m}, w^{m}} \frac{1}{2} \left\| G - \sum_{m=1}^{k} u^{m} \otimes v^{m} \otimes w^{m} \right\|_{2}^{2}$$
subject to : $u^{m}, v^{m}, w^{m} \ge 0$

It was used a gradient decent scheme with a mixture of Jacobi and Gauss-Seidel update scheme and positive preserving update rule.

The update rule provided by Lee and Seung preserves non-negatively provided that the initial guess for the vectors are non-negative:

$$u^m, v^m, w^r$$

$$v_i^j \leftarrow \frac{v_i^j \sum_{r,t} G_{r,i,t} u_r^j w_t^j}{\sum_{m=1}^k v_i^m < u^m, u^j > w^m, w^j > w^m$$

$$w_i^j \leftarrow \frac{w_i^j \sum_{r,s} G_{r,s,i} u_r^j v_r^j}{\sum_{m=1}^k w_i^m < u^m, u^j > < v^m, v^j >}$$

Results

m = 1;

m = 5;

m = 50;

m = 100;

m = 10;

original

Problems

- NTF is iterative method and number of iterations and rank of factorization is not clear as well as in NMF.
- The converge process has not been studied yet by me.