
Extending the Engagement Taxonomy:
Software Visualization and
Collaborative Learning

NIKO MYLLER, ROMAN BEDNARIK, and ERKKI SUTINEN
University of Joensuu
and
MORDECHAI BEN-ARI
Weizmann Institute of Science

As collaborative learning in general, and pair programming in particular, has become widely
adopted in computer science education, so has the use of pedagogical visualization tools for facil-
itating collaboration. However, there is little theory on collaborative learning with visualization,
and few studies on their effect on each other. We build on the concept of the engagement taxonomy

and extend it to classify finer variations in the engagement that result from the use of a visual-
ization tool. We analyze the applicability of the taxonomy to the description of the differences in
the collaboration process when visualization is used. Our hypothesis is that increasing the level
of engagement between learners and the visualization tool results in a higher positive impact of
the visualization on the collaboration process. This article describes an empirical investigation
designed to test the hypothesis. The results provide support for our extended engagement
taxonomy and hypothesis by showing that the collaborative activities of the students and the
engagement levels are correlated.
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1. INTRODUCTION

When algorithm visualization (AV) and program visualization (PV)1 were first
introduced more than two decades ago, they seemed to be a silver bullet that
could solve difficult problems related to the teaching and learning of program-
ming, data structures and algorithms. However, the mixed results of empiri-
cal evaluations have made the benefits of visualization tools as teaching and
learning aids questionable [Hundhausen et al. 2002]. Therefore, researchers
have begun to seek explanations for the mixed results in order to discover the
conditions under which visualization tools can actually achieve improvements
in learning.

In a meta-analysis of the research on AV, Hundhausen et al. [2002] con-
cluded that the activities performed by students and their engagement seem
to be more important than the subject content or the graphic elements of the
visualization. The findings led to the analysis of different engagement lev-
els between the user and the visualization tool, resulting in the engagement

taxonomy (ET) described by Naps et al. [2002]. The main assumption of the
taxonomy is that the level of engagement between the user and the visualiza-
tion affects the learning of the individual student. Since its introduction, the
ET has guided the research and development of SV tools, and several studies
have utilized the framework [Grissom et al. 2003; Naps and Grissom 2002].

Collaborative learning and pair programming have become accepted
and popular methods in computer science education [Hundhausen and
Brown 2008; McDowell et al. 2006; Simon et al. 2004; Nagappan et al. 2003;
Hundhausen 2002; Williams et al. 2000]; as the use of visualization tools
increases [Naps et al. 2002], they appear more and more often in situations of
collaborative learning. This combination introduces new challenges and pos-
sibilities that are different from the ones related to individual learning with
visualization. On the one hand, successful collaboration requires the commu-
nication of knowledge and new ideas between group members, as well as the
coordination of joint work, but it is not clear how visualization affects these
issues [Suthers and Hundhausen 2003]. On the other hand, visualization tools
themselves can create a context for collaboration by providing a shared exter-
nal representation that can initiate negotiations of meanings; they can also
become a reference point for explaining ideas or resolving misunderstandings.
The mutual influence of visualization and collaboration on each other is likely
to be relevant for their joint analysis through means such as the engagement

1We will use software visualization (SV) to refer to both of these subfields.
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taxonomy; therefore, it is unlikely that the ET for collaborative learning will
be same as it is for individual learning.

Visualization tools that are used during collaboration can be divided
into two categories: information visualization such as concept maps or SV tools
that visualize programs or data structures, and augmenting visualization such
as social and group awareness software. Augmenting visualization tools are
known to enhance the process and the outcomes of the collaboration [Janssen
et al. 2007]. In this article, we concentrate on information visualization,
particularly on SV, because the effects of its content and form on collabora-
tion have not been investigated in depth. There are few theories of collab-
orative learning that apply to information visualizations and few tools that
support the collaborative learning [Suthers and Hundhausen 2003; Suthers
et al. 2003]. Thus, users have little guidance from the research literature as to
how to adjust the use of a tool meant for an individual to the different needs of
collaborative settings [Bryant et al. 2005].

In this paper, we first review literature related to the collaborative use of
visualization tools (Section 2). We then extend the engagement taxonomy with
1) new levels to an extended engagement taxonomy (EET) that identifies finer
levels of distinctions in the engagement in both individual and collaborative
learning (Section 3.1) and 2) a hypothesis that takes into account aspects of
collaborative learning process (Section 3.2).

Our hypothesis is that the higher the level of engagement between learners
and the visualization tool, the higher is the positive impact of the visualization
on the collaboration process. To test this hypothesis, we present an empirical
study, in which we investigated the activities of groups of students at differ-
ent engagement levels as supported by two visualization tools (Section 4). In
the study, we analyzed the interactions between students, and between the
students and a visualization. Section 5 presents the results and provides ev-
idence for our hypothesis. In the final section, we discuss the implications of
our findings on the future research and development of collaborative learning
with software visualization.

2. RELATED WORK

This section is an integrated survey of the relevant previous work on visual-
ization, collaborative learning and the engagement taxonomy.

2.1 Software Visualization and the Engagement Taxonomy

In an attempt to describe the mixed results of previous research on SV in
education, the engagement taxonomy was introduced by Naps et al. [2002]. Its
purpose is to describe the different forms of engagement that a visualization
tool can promote, and to provide testable hypotheses about the use of visual-
izations in the teaching and learning of computer science. The central idea
of the taxonomy is that higher-level engagement between learner and the vi-
sualization results in better learning outcomes. The ET consists six levels of
engagement between the user and the visualization (see Table I).
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Table I. The Engagement Taxonomy

No viewing There is no visualization to be viewed.
Viewing The visualization is only looked at without any other form of engagement.

Responding Learners are presented with questions related to the visualization.
Changing Modification of the visualization is allowed, for example, by varying the input

data set.
Constructing Learners are expected to create their own visualization of a program or

an algorithm.
Presenting Learners present visualizations to others for feedback and discussion.

When there is no visualization to look at, the engagement is, of course, at
its lowest level. Passive viewing of a visualization seems to improve learning
outcomes very little, if at all, even when compared with the no viewing level
[Hundhausen et al. 2002; Naps et al. 2002; Naps 2005]. One can conclude
that there should be an active component in the learning process in order
to enhance learning with visualization. That is, the viewing of a visualiza-
tion should be combined with activities at the higher levels of engagement:
responding, changing, constructing or presenting. To our knowledge, there
are few empirical comparisons between these forms of active engagement on
learning outcomes [Naps et al. 2002; Naps 2005]. In light of current research,
the taxonomy forms a three-level hierarchy: no engagement, passive engage-
ment, and active engagement [Naps 2005].

The ET has been used in the development of AV tools, and studies have
validated its applicability [Grissom et al. 2003; Naps and Grissom 2002; Myller
et al. 2007b].

Other studies—although not using the ET—have shown that visualizations
enhance learning; for example, Ben-Bassat Levy et al. [2003] found that
students who actively used the Jeliot program animation system improved
their learning results compared with a control group that did not use Jeliot.
Also relevant is the research in educational psychology and multimedia learn-
ing, which has found a positive effect of the interactivity in multimedia on
learning outcomes [Evans and Gibbons 2007]. These studies have concentrated
on changes in the learning outcomes when visualization is used. In this article,
we extend the scope of such research in order to investigate the impact of the
engagement with visualization tools on the learning process.

The effects of visualization on the learning process have been also re-
searched, although not in a collaborative environment. For example, Ebel and
Ben-Ari [2006] showed that program visualization increases the attention of
students to the material being taught. We believe that this could also hold in a
collaborative environment: as students’ attention increases, they will be able
to concentrate better on the collaborative activities, but it should be tested in
the future experiments.

2.2 Use of Visualizations in Collaborative Learning

The work of Roschelle [1996] is considered seminal for the whole field of
computer-supported collaborative learning (CSCL). Roschelle developed the
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envisioning machine, a software tool for studying mechanics that students use
to manipulate simple diagrams related to velocity and acceleration. He inves-
tigated how pairs of students used the tool, and he analyzed the learning out-
comes as well as the processes that led to those outcomes. He recognized that
learning tools for collaboration should be designed to support communication,
rather than merely to present the underlying model as accurately as possible.
Roschelle [1996] gives a number of guidelines in order to achieve this goal;
the final one is “one should design activities which actively engage students in
doing and encounter [sic] meaningful experiential feedback as a consequence
of their actions” (p. 14). The analysis of the interaction between the external
presentation and users was also identified as a key research area by Scaife
and Rogers [1996]. The work of Roschelle [1996] and Scaife and Rogers [1996]
reflects the idea that the engagement with visualizations affects collaborative
learning, and we build on this in the article.

Suthers and Hundhausen [2003] compared the effects of different represen-
tations (matrices, graphs, text) when students collect and analyze data, form
hypotheses and investigate their evidential relations, both in a face-to-face and
in a distance context [Suthers et al. 2003]. They found that there were differ-
ences in the guidance that different representations give to the collaboration,
especially to discussions, and that the different learning situations (face-to-
face or distance) affect the usage of the representations [Suthers et al. 2003].
However, they did not find differences in the performance of the students, but
only in the way the students used and discussed the representations. It could
be argued that the differences in the study process should have an effect on
students’ learning only in a long run, and therefore were not detectable in the
laboratory setting.

The research described in this section shows that visualization and the
kinds of interactions it drives have an effect on the collaboration process and
could affect the collaboration outcomes.

2.3 Research on Software Visualization in Collaborative Learning

Although a plethora of software visualization tools have been developed and
empirical studies carried out, there have been only a few tools and studies
relating to the collaborative use of SV.

Myller et al. [2007b] studied learning outcomes after students had collab-
oratively learned about the concept of binary heap with the help of either
animation (ET level: viewing) or algorithm simulation (ET level: changing).
Although they did not find statistically significant differences in the per-
formance between the groups, the groups that used algorithm simulations
performed consistently better in a post-test, compared with the groups that
viewed just the animations. In a replication of the study, a statistically signifi-
cant difference was found in favor of the algorithm simulation group, a finding
that supports the applicability of ET in the context of collaborative learning
with visualization [Laakso et al. 2008].

Hundhausen [2002] studied the collaborative aspects of AV construction and
presentation, and concluded—as did Roschelle [1996]—that the fidelity of the
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visualization can be compromised in favor of meaningful interactions between
students. This led into the development of ALVIS, a visualization tool that
supports construction and presentation of AVs [Hundhausen and Brown 2007].
In an experiment, they compared ALVIS as a tool to writing programs for
algorithms to a text editor, and then the use of ALVIS for visualization con-
struction and presentation to simple art supplies [Hundhausen and Brown
2008, 2005]. Students worked in pairs and were asked to write an algorithm
in the SALSA language supported by ALVIS, construct a visualization of that
algorithm, and present it to the instructor and the other students. It was found
that pairs of students who used ALVIS (EET level: viewing, constructing)
concentrated more on the solution, spent less time unproductively, and needed
less help from the teaching assistant; in addition, they developed better code
than pairs of students who used a text editor (EET level: no viewing).

Hübscher-Younger and Narayanan [2003] developed a Web-based system
that allowed students to publish their own algorithm representations (text,
pictures, animations, multimedia) and discuss them on the Web. They con-
cluded that students who actively participated in this activity achieved higher
grades than the passive students who might have only viewed and commented
the other students’ presentations.

Jehng and Chan [1998] designed and evaluated a distributed visual learn-
ing environment for LISP-LOGO that supported collaborative learning. The
results showed that students who learned collaboratively, either face-to-face or
at a distance, outperformed individual learners in program generation tasks,
but that all groups performed equally well in program evaluation and comple-
tion tasks. This shows that while collaborative visual learning can be more
beneficial compared to individual learning, the improvement can depend on
the specific learning task.

Hundhausen [2005] proposed the communicative dimensions (CD) frame-
work as a theory on the use of visualizations as communication tools.2 CD
describes the aspects of visualization environments that have an effect on
communication between its users in six dimensions: programming salience,
provisionality, story content, modifiability, controllability, referencability.
While the CD framework is concerned solely with the properties of a visual-
ization tool, the ET framework concerns itself with the interaction between
users and visualizations. We think it is very important to understand this in-
teraction and its different levels in order to make tools that support successful
collaboration.

2.4 Successful Collaboration Processes

The notion of a successful collaboration process is controversial and not easy
to define.

Meier et al. [2007] used a combination of top-down and bottom-up
approaches in order to form a description of a successful collaboration. They
carried out a comprehensive review of literature, focusing on the aspects of

2CD was inspired by the Cognitive Dimensions framework for analyzing individual user interac-
tion with software tools [Green and Petre 1996].
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Table II. Aspects and Dimensions of a Successful Collaboration Process [Meier et al. 2007]

Aspect Dimension

Communication 1) Sustaining mutual understanding
Communication 2) Dialogue management
Joint information processing 3) Information pooling
Joint information processing 4) Reaching consensus
Coordination 5) Task division
Coordination 6) Time management
Coordination 7) Technical coordination
Interpersonal relationship 8) Reciprocal interaction
Motivation 9) Individual task orientation

a successful collaboration (top-down). In addition, they used a data-driven
approach to create dimensions from empirical data under each aspect
(bottom-up) [Spada et al. 2005]. The study identified five aspects and under
them nine dimensions that describe various perspectives of a successful
collaboration (see Table II). Furthermore, Meier et al. [2007] used these di-
mensions in a rating scheme, which they validated with empirical data. The
results showed that the high scores on the dimensions of the collaboration
process correlate strongly with good results of the collaboration.

The problem with their rating scheme is the difficulty of achieving high
inter-rater reliabilities in the ratings. However, this does not mean that the
dimensions and aspects of the successful collaboration are not reasonable, and
do not reflect the qualities of a successful collaboration. It just means that it is
difficult to judge how they appear in the collaboration process.

Teasley [1997] investigated the importance of discussions during collabora-
tion and showed that the amount of discussion is an important part of success-
ful collaboration. However, the amount of transactive reasoning in discussions
seems to be an even stronger factor for successful collaboration. Transactive
reasoning means talking about one’s own thinking process (i.e., reasoning) or
one’s understanding of the partners’ thinking processes [Berkowitz and Gibbs
1983]. In our context, this would mean, for example, that a student talks
about what different components of the visualizations mean to him/her or what
will happen next in the visualization. Teasley [1997] also showed that a part-
ner is not necessary for transactive reasoning to happen, although the likeli-
hood for it to happen increases when a partner with similar knowledge level is
available.

We can summarize these results as showing that successful collaboration re-
quires interaction (dimensions: 1, 2, 4, 8 and Teasley’s research), coordination
(dimensions: 3, 5, 6, 7) and motivation (dimension: 9).

As discussed in the previous section, Ebel and Ben-Ari [2006] have shown
that program visualizations have positive affective effects (i.e., lengthened
attention) and anecdotal evidence exists that animation increases students’
motivation [Naps et al. 2002]. In addition, Janssen et al. [2007] have showed
that augmenting visualizations support the coordination of the collaboration.
In this article, we will study how visualization tools affect the interactions in
collaboration.
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Table III. The Extended Engagement Taxonomy

No viewing (*) There is no visualization to be viewed but only material in textual
format. For example, the students are reviewing the source code

without modifying it or they are looking at the learning materials.
Viewing (*) The visualization is viewed with no interaction. For example, the

students are looking at the visualization or the program output.
Controlled viewing The visualization is viewed and the students control the visualization,

for example by selecting objects to inspect or by changing the speed
of the animation. This has been deemed important, for instance by
Rößling and Naps [2002].

Entering input The student enters input to a program or parameters to a method
before or during their execution.

Responding (*) The visualization is accompanied by questions which are related to
its content.

Changing (*) Changing of the visualization is allowed during the visualization, for
instance, by direct manipulation.

Modifying Modification of the visualization is carried out before it is viewed,
for example, by changing source code or an input set.

Constructing (*) The visualization is created interactively by the student by construction
from components such as text and geometric shapes.

Presenting (*) Visualizations are presented and explained to others for feedback
and discussion.

Reviewing Visualizations are viewed for the purpose of providing comments,
suggestions and feedback on the visualization itself or on the program
or algorithm.

3. EXTENDING THE ENGAGEMENT TAXONOMY

3.1 Engagement Levels

The categories of the ET are primarily based on work in AV research, and thus
reflect the types of engagement support that are found in AV tools. However,
other types of engagement are supported in PV tools, and we find it necessary
to extend the ET framework in order to capture these differences. Whereas in
AV the interaction of the student with the software is more or less restricted
to modifications of the visualization itself to the extent allowed by the tool,
in PV the opportunities for engagement include both interactive input and,
more importantly, the ability to modify the source code that is the basis for
the visualization. Consider the software tools we used (see below): In Jeliot,
dynamic animations are generated automatically whenever the source code is
changed, and BlueJ is based upon interactive calls of methods of a Java class
that are regenerated immediately upon modification of a program.

These considerations guided the development of our extended engagement

taxonomy (EET) shown in Table III. The levels marked with (*) belong to the
original ET, although some definitions were slightly modified. Note, in partic-
ular, that changing in the ET has been divided into two categories, changing

and modifying. We have added new categories: controlled viewing, entering

input, and reviewing. Reviewing is different from presenting in that there is
not a specific presenter of the visualization; this category (based on a proposal
of Oechsle and Morth [2007]) was added for completeness, although it did not
occur in our experimental data.
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3.2 Linking Engagement to Collaboration Process

Currently, the ET and EET can be used to generate testable hypotheses only
about learning outcomes in individual learning. Based on the evidence from
Hundhausen and Brown [2008], Myller et al. [2007b] and Laakso et al. [2008],
the learning outcome predictions hold also in collaborative learning with
visualization. Although the learning results are important, the process lead-
ing to them needs to be studied as well, especially in collaborative learning,
because in that context, visualization can affect both inter- and intrapersonal
learning.

Our goal is to describe how the engagement level affects the (collaborative)
learning process. We propose a hypothesis that extends the applicability of
EET to collaborative learning with visualizations, with a special emphasis on
the collaboration process: the higher the level of engagement between the col-
laborators and the visualization, the higher the increase in communication and
collaboration during the collaborative learning process. This hypothesis builds
on the work of Roschelle [1996], Naps et al. [2002], Suthers and Hundhausen
[2003], and Hundhausen [2005] as discussed in Section 2, by explicating the
connection between engagement and collaboration.

Although there is no previous research that investigated the same hy-
pothesis, there is indirect supporting evidence that was obtained in ano-
ther study. In the experiment described in Hundhausen and Brown [2008]
(see Section 2.3), the collaborative use of visualization at the higher engage-
ment level enhanced the learning process, because pairs of students working
with ALVIS held more discussions with each other and less with the teaching
assistant (i.e., they needed less help from outside the group), they worked more
on the solution, and they had fewer unproductive periods. This provides initial
support for our hypothesis by showing in what ways the higher engagement
level might enhance collaboration. In order to further evaluate the validity and
applicability of the hypothesis, we carried out an empirical study that tests it
explicitly.

4. RESEARCH METHODOLOGY

4.1 The Research Setting

In order to verify the hypothesis, we carried out a causal-comparative
study in order to understand how the use of visualization tools at different
levels of engagement and the collaboration process are correlated. The causal-

comparative method [Gall et al. 2006] was selected because in the study we
are observing both the dependent and independent variables, and could not
control the independent variable, because we wanted to maintain the high eco-
logical validity. This method is used when the independent variable cannot
be controlled (e.g., independent variable is gender or in our case the observed
engagement level of the visualization). A causal-comparative study cannot
prove causality, but it can show that correlation between the dependent and in-
dependent variables exists. Because our hypothesis is about finding a positive
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correlation between the engagement levels and students collaborative
activities, this is a reasonable methodology to be used in the study.

The study was carried out in an introductory programming course at the
University of Joensuu during the autumn of 2005. The course contained
40 hours of lectures (two-hour lectures twice a week for ten weeks), and two-
hour recitation sessions every week, where students presented their solutions
to the assignments. Every week students took part in a compulsory two-hour
computer laboratory session, where they solved exercises with the help of an
instructor. Three of the sessions each week were taught by one instructor (I1)
and two sessions by another (I2). One of the instructors was the course lec-
turer. Neither the lecturer nor the other instructor knew the purpose of the
study and were not associated with it in any way.

We investigated the use of the BlueJ [Kölling et al. 2003], an educational
development environment, and Jeliot 3 [Moreno et al. 2004], a program an-
imation tool, on different levels of engagement during those laboratory ses-
sions. We were not trying to compare the tools, but rather to analyze how the
differing levels of engagement promoted by the tools affected the collaboration.

Initially, we planned to use a between-subject design, and, therefore, one
of the sessions of each instructor was randomly selected to belong to a control
condition using only BlueJ, while the other three sessions formed the treat-
ment groups using both Jeliot 3 and BlueJ. We needed to abandon this design
because a large number of students dropped the course a few weeks before
the final exam; as a result, the groups became biased and we could not make
a proper comparison of the learning processes and learning outcomes. Thus,
we decided to use the the level of engagement as the independent variable—
regardless of which tool was being used—and the original division into treat-
ment and control groups became superfluous. We used data only from the
treatment groups in order to get data when both Jeliot 3 and BlueJ were used
by the same groups.

In order to control for the differences between the two instructors, we
analyzed only those groups that were taught by a single instructor (i.e., I1). To
control for a learning effect (where the behavior of the students would change
as they became more familiar with the tools), we analyzed data from a single
week near the beginning of the course.

4.2 Participants

There were a total of five sessions of 20 students each participating in the com-
pulsory laboratory sessions weekly. The total number of the students who gave
their consent to participate in the research was 89. Those who did not agree to
participate in the study worked in small groups where no data collection was
carried out.

The programming course was primarily taught to first year computer
science majors. However, a significant proportion (about 60%) of the students
taking the course were students majoring in other subjects who studied com-
puter science as a minor. Additionally, there were major students from previ-
ous years who had not yet passed the course. Since the current study is not a
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controlled experiment, randomization is not necessary. We excluded two stu-
dents who had very extensive programming experience. Otherwise, a post-hoc
analysis showed that the remaining students had similar background knowl-
edge and relatively little previous experience in programming.

Because we only analyzed sessions taught by instructor (I1) and excluded
the original control session, we, altogether, analyzed data from two sessions,
otherwise, ten groups of 3–4 students each, a total of 39 students.

4.3 Materials

During the laboratory sessions students were presented with exercises related
to the topics of the course. There were no mini-lectures in the beginning of the
session, but the exercises were related to the lectures that were given during
the same or previous week to the whole course. The teacher handed out the
exercises at the beginning of the session and circled around to help out the
students. Only if the instructor spotted that several groups had the same mis-
conception or were stuck on the same issue, the teacher went to the front of the
class and announced the issue to all the groups and briefly explained it. When
the students thought that they were ready with an exercise, they summoned
the teacher to check it.

The exercises varied from program construction and modification to debug-
ging. For example, students were given a program code and told what it was
supposed to do and they needed to check if the program did what was expected
and if it did not, they needed to correct the program. In another exercise, the
students were given a skeleton of a program and asked to fill in the missing
parts or to create an accompanying class that enabled the program to work
as expected. The exercises that were solved in groups were purposefully more
difficult than the ones solved individually, because pilot studies indicated that
if one of the students could solve the exercise independently, there was neither
collaboration nor communication between the students.

4.4 Visualization Tools

Students used both BlueJ and Jeliot during the laboratory sessions. Both tools
have proved to be effective in improving the learning of elementary computer
science and programming [Ben-Bassat Levy et al. 2003; Haaster and Hagan
2004; Ragonis and Ben-Ari 2005].

The user interface of Jeliot 3 is illustrated in Figure 1. The source code
editor is in the left-hand pane, while the right-hand pane is used to display
the visualization. VCR-like buttons to control the visualization are located in
the lower left corner. Fully dynamic animation of the data and control flow
of the program is displayed, including method calls, object construction, and
expression evaluation. The animation is created automatically from the source
code, so that the student needs only to learn to use the control buttons for the
visualization.

Figure 2 shows the user interface of BlueJ. The class diagram is shown in
the middle of the window. The student can interactively instantiate an object of
a class by right-clicking on the class and selecting the constructor from a popup
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Fig. 1. User interface of Jeliot 3.

menu. The objects are then shown at the bottom of the screen as red icons,
and the methods of an object can be interactively invoked by right-clicking and
selecting the method from a pop-up menu. Parameters of constructors and
method calls are also entered interactively.

In the experiment, Jeliot was used as a BlueJ plugin [Myller et al. 2007a]
that performs code synchronization between the tools. This allowed students
to freely switch between the two tools.

BlueJ and Jeliot were both introduced in the laboratory session of the first
week. Students used them individually during the first session so that they
were familiar with the tools before the tools were used collaboratively.

4.5 Procedure

There were a total of ten laboratory sessions for each class; during four of
them—the 2nd, 4th, 6th, and 8th—students worked in small groups. The
students were randomly assigned (by a computer program) to small groups
of three or four students, and the membership in the groups was unchanged
throughout the course. Due to the high drop-out rate in the course, the number
of students in some groups became too low and the groups needed to be merged
in the second half of the course. Thus, the materials from the week eight are
not comparable to the materials of the other weeks because the groups are not
the same.

The learning process in the groups was filmed with video cameras, one for
each small group. The filming was done by the first author who was not associ-
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Fig. 2. User interface of BlueJ.

ated with the course. The camera was positioned so that students’ movements,
facial expressions, and the screen could be recorded. Although minimally
invasive, this setting posed some problems in the recordings, because students
moved during the lesson and the video cameras could not be always adjusted
so that all students’ faces were recorded.

Because BlueJ was the primary tool of the course both during the lectures
and during the laboratory sessions, the instructor was advised to encourage
the students to use Jeliot so that both tools would be used evenly. Since the
instructor used both tools as necessary in different exercises, the students were
exposed to both tools and could autonomously make decisions when to use each
of the tools.

4.6 Data Analysis

To analyze how visualization affected the students’ learning processes, we
repeatedly viewed those parts of the video materials that contained episodes
relating to the execution of a program using one of the tools. These episodes
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were characterized by extensive use of the visualization capabilities of the
tools. Because of the large amount of video-taped material (1.5 hours per small
group per week), we randomly sampled 30 two-minute-long episodes. A similar
number of episodes were sampled from each group, as were a similar number
of episodes using each of the tools. As mentioned above, the analysis was re-
stricted to the sessions of the second week.

In the analysis of the data, we classified each five-second segment of the
video according to several classification schemes in order to analyze the level
of engagement, and the behavior and the discussions of the students. We used
the extended engagement taxonomy (EET) as the independent variable to cap-
ture the changes in the level of engagement during an episode in which collab-
orative learning took place. The EET levels were presented in Table III. Each
segment was classified as belonging to a single EET level; in the case where
several engagement levels were applicable, the segment was classified at the
level that lasted the longest time, or if the times were the same, at the level
that was higher in the EET.

The dependent variables were aspects of the students’ behavior and dis-
cussions; we classified the activities (Section 4.6.1), the discussion contents
(Section 4.6.2) and transactive reasoning (Section 4.6.3). The differences found
in these classifications were analyzed using the statistical tests Cohen’s κ and
χ

2 test of independence. To adhere to the limitation of χ
2 test the categories of

data with counts less than ten were excluded from the analysis.

4.6.1 Activities. We adopted and modified the activity categories of Hund-
hausen and Brown [2008] to classify the five-second clips of the episodes (see
Table IV). We were interested in episodes, during which the students in the
group discussed aspects of the exercise (the program, the Java language, or
the visualization), and we categorized these episodes according to the activi-
ties that accompany the conversation. We removed some of the categories (such
as executing code and working on solution) that were irrelevant for the analy-
sis since we chose to analyze episodes where students were, in fact, carrying
out these activities. In addition, we added new categories related to differ-
ent types of conversing (i.e., conversing with gesturing and conversing with
drawing), and changed the priorities of the categories in order to prioritize dis-
cussions. Thus, if any kind of discussion happened, it was then assigned to one
of the discussion categories. More specialized discussions were given a higher
priority. We wanted to distinguish between discussions within the group and
discussions with the teacher, so conversing to the instructor had higher prior-
ity so it could be distinguished from other types of discussions that happened
within the group.

Each five-second period of the video was assigned to a single category based
on the activities of the groups. Because the members of a group might perform
several activities simultaneously, the priorities given for each category were
used to resolve the ambiguities. An episode was assigned the category with
the highest priority (lower numbers mean higher priority). Furthermore, we
assigned the number of participants for each activity in order to determine if
certain EET levels increase or reduce the participation of students.
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Table IV. Activity Categories

Priority Category Description

1 1 Conversing to an instructor The students discuss the exercise with the
instructor.

2 2 Conversing with gesturing The students perform gestures such as
pointing at the screen when discussing the
exercise.

3 3 Conversing with drawing The students discuss the exercise with the
help of drawing.

4 4 Conversing The students discuss the exercise (without any
of the above activities).

5 5 Listening to an instructor The students are listening to the instructor
who is talking with the group or announcing
something to the whole class.

5 6 Looking at or searching for Self-explanatory.
course materials, Internet
resources or example.

5 7 Reviewing the exercise The students are looking at the online
or hard-copy description of the problem.

5 8 Reviewing error messages The students are reviewing error messages
produced by the environment.

6 9 Silent work The students are working silently; for example,
looking at the visualization or entering input
without comment.

8 10 Other No observable activity or the activity is
off-task.

9 -1 Indeterminable The event cannot be categorized, for example,
because of a technical problem in the recording.

4.6.2 Discussion Contents. We wished to investigate the actual content of
the students’ discussions in order to determine if the engagement level had
any impact on the contents. If an activity was classified as (i) any type of
conversing, (ii) other but it contained talking, or (iii) undetermined but it con-
tained talking, it was further classified into one of ten discussion content cate-
gories (see Table V). The categories were exclusive, and the decision to classify
an event into a category was based upon the discussions during the five-second
period. If several categories were applicable, we used the category with the
highest priority, and if there were several with the same priority then the one
that happened first was chosen. The categories in Table V were adapted from
Hundhausen and Brown [2008]. As that study dealt with work at the algo-
rithmic level, we changed the relevant content categories so that they refer
to programs instead of algorithms. Furthermore, we removed categories that
were related to the ALVIS animation system that we did not use, and we added
a category, programming concepts.

4.6.3 Transactive Reasoning. Since transactive reasoning has been found
to have a positive impact on learning outcomes [Teasley 1997], we measured
the amount of transactive reasoning in order to see if it can help determine
how visualization affects the collaboration process.

If an activity was classified as any type of conversing, as other but it con-
tained talking, or as undetermined but it contained talking, it was further clas-
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Table V. Discussion Content Categories

Priority Category Description

1 1 Program The content relates to the program code:
“This line contains a while-loop.”

1 2 Program behavior The content relates to the program’s behavior:
“Now it repeats 10 times.”

1 3 Programming concepts The content relates to programming concepts
in general not directly related to the current
program: “What does double mean?”

1 4 Tool The content relates to the tools currently being
used tool: “How can I display the value of
a variable?”

1 5 Error detection The content relates to programming errors
and their detection: “I spotted an error!”

1 6 Error correction The content relates to the correction of an error:
“If we change the value of this variable, that will
solve the problem.”

1 7 Visualization The content relates to understanding the visualization
itself: “How is this box related to the program?”

2 8 On-topic (other) The content relates to the current task but cannot
be placed into one of the previous categories.

2 9 Off-topic Self-explanatory.
3 10 Indeterminable The content cannot be categorized, for example,

because of a technical problem in the recording.
0 -1 Not applicable There is no content in this activity; for example,

there is no talking in the segment.

sified into one of twelve transactive reasoning categories (see Table VI). These
categories were exclusive. The decision to classify an event was based on the
discussions and activities during a five-second block of the video. If several
categories were applicable, we used the category with the highest priority, and
if there were several categories with the same priority then the one that hap-
pened first was chosen. The categories in Table VI were adapted from Teasley
[1997] and Berkowitz and Gibbs [1983]. We added the prediction category used
by Teasley [1997] to the categories of Berkowitz and Gibbs [1983].

5. RESULTS

5.1 Inter-Rater Reliability

In order to test the reliability of the classification schemes used in the study,
a set of ten episodes (a total of 240 five-second blocks) were classified by two
raters, the first author, who classified all the video material used in the study,
and the second author, who classified only the set of ten episodes.

In a pilot, both raters analyzed three other episodes in order to reach agree-
ment on how to classify the observed behavior. The classification schemes and
the coding manual were updated as a result of the discussions leading to con-
sensus between the raters.

The inter-rater reliabilities are presented in Table VII. All Cohen’s κ values
indicated that it is very unlikely (p < 0.001) that this level of agreement is
achieved by chance. Furthermore, the EET and Activities classification has a
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Table VI. Transactive Reasoning Categories

Priority Category Description

1 0 Prediction A student tries to predict what will happen
next and justifies the prediction.

1 1 Feedback Request A student ensures that others understand or
agree with his/her position

1 2 Paraphrase A student paraphrases a discourse of another
student in order to demonstrate that he/she
understands it.

1 3 Justification A student justifies his/her position or
reasoning.

1 4 Juxtaposition A student explains the differences between the
positions or reasoning of other students and
his/her own.

1 5 Completion A student completes another student’s reasoning,
for example, by filling out an unfinished sentence.

1 6 Clarification A student explains his/her reasoning in
order to ensure that others understand it.

1 7 Refinement A student elaborates or qualifies his/her position
in order to to defend against criticism.

1 8 Extension A student elaborates on a previous discourse.
1 9 Criticism A student criticizes the reasoning or position of

another student and explains the reason for
the criticism.

1 10 Integration A student combines different views into one
common statement.

2 11 No transactive reasoning The discussion contains no transactive
reasoning.

0 -1 Not applicable This categorization is not applicable; for example,
there is no talking in the segment.

Table VII. Inter-rater Reliabilities. * p < 0.001

Classification Agreement Cohen’s κ

Scheme Percentage

EET 76.3% (0.66 *)
Activities 76.3% (0.68 *)
Number of Participants 58.3% (0.42 *)

substantial agreement and the Number of Participants has moderate agree-
ment based on classification of Cohen’s κ-measures given by Landis and Koch
[1977].

For the two other categorizations (Discussion Contents and Transactive
Reasoning) inter-rater reliabilities were low. We believe that this was due to
several factors: 1) subtle cues of the discussion contents or transactive reason-
ing (e.g., only one word could indicate if students discussed about program, its
behavior or programming concept) which might have been misinterpreted by
the raters, and 2) noise in the natural environment (i.e., classroom with sev-
eral groups) made it sometimes difficult to interpret exactly what the group
was discussing. We still include in the article results of the discussion con-
tents and transactive reasoning. Although they cannot be used as definitive
evidence supporting our hypothesis, the results do indicate that these catego-
rizations are consistent with the previous categorizations.
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Table VIII. The Distribution of Activities on Different EET Levels

Conversing Conversing Conversing Listen Review Review Silent Count
w/I w/G t/I Ex EM

No viewing 6.8% 12.4% 27.8% 27.2% 0.0% 1.2% 24.7% 162
Viewing 4.4% 6.1% 25.4% 15.7% 0.9% 0.0% 47.5% 343
Controlled 8.6% 0.0% 22.9% 34.3% 0.0% 0.0% 34.3% 35

viewing
Entering 5.5% 8.0% 42.9% 12.3% 0.0% 1.2% 30.1% 163

input
Changing 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 2
Modifying 0.0% 16.7% 50.0% 0.0% 0.0% 0.0% 33.3% 6
Constructing 22.2% 0.0% 0.0% 77.8% 0.0% 0.0% 0.0% 9
Overall 5.6% 7.6% 29.6% 19.3% 0.4% 0.6% 36.9% 720

Legend: w/I = with instructor; w/G = with gestures; t/I = to instructor; Ex = exerices;
EM=error messages

5.2 Activities

The distribution of the activities on each EET level is presented in Table VIII.
EET levels that contained fewer than ten observations or that had categories
that did not contain any observations (controlled viewing, changing, modifying
and constructing) were excluded from the analysis. Activity columns that con-
tained observations only on one or two EET levels (i.e., looking at or searching
for examples or course materials, and reviewing the exercise) were also ex-
cluded due to the restrictions of χ

2-test. These categories only contributed less
than eight percent of the overall data.

The distributions of the EET levels no viewing, viewing and entering input
were compared, first collectively (χ2(8) = 48.5, p < .01), and then pairwise
(no viewing vs. viewing χ

2(4) = 28.4, p < .01; no viewing vs. entering input
χ

2(4) = 17.0, p < .01; viewing vs. entering input χ
2(4) = 20.9, p < .01). All

tests were found to be statistically significant, meaning that the EET level has
an effect on the distribution.

Figure 3 shows the distributions of activities for the three most common
EET levels collapsed into three columns. The different forms of conversing are
combined into one, sum of conversing, and the categories that did not have ob-
servations for all engagement levels were removed as they contributed less
than eight percent of the data. The distributions were first compared col-
lectively (χ2(4) = 41.6, p < .01), and then pairwise (no viewing vs. viewing
χ

2(2) = 25.0, p < .01; no viewing vs. entering input χ
2(2) = 37.6, p < .01;

viewing vs. entering input χ
2(2) = 28.2, p < .01). All tests were found to be

significant. Figure 3 shows that entering input produced the greatest amount
of conversation. When students were not viewing a visualization, they listened
to the teacher more often than on any other EET level. When students were
viewing a visualization they were more often silent.

Figure 4 illustrates the difference between conversing and silent activities
performed by the groups when either on viewing or on entering input level. On
entering input level over half of the activities contained discussions whereas
in viewing level the percentage was approximately 35%. Almost the opposite
happens with the amount of silence.
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Fig. 3. Activity distributions on different EET levels.

Fig. 4. Viewing and entering input EET-levels compared on sum of conversing and silent
categories.

Table IX shows how the distribution of activities differs on each EET level,
depending on the tool used by the students. Jeliot provides support only for
the first four EET levels and the modifying level, which did not appear in
the data, therefore, there are no results for the higher levels. The within-
tool distributions of the activities for the most common EET levels (no view-
ing, viewing and entering input) were compared to each other and differences
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Table IX. Distribution of Activities on Each EET Level and When Using a Particular Tool.
(Legend as in Table VIII)

Conversing Conversing Conversing Listen Silent Count

w/I w/G t/I

Jeliot

No viewing 4.8% 16.7% 23.8% 33.3% 21.4% 42
Viewing 0.4% 4.9% 22.5% 12.7% 59.6% 245
Controlled viewing 8.3% 0.0% 41.7% 16.7% 33.3% 12
Entering input 1.8% 10.9% 25.5% 10.9% 50.9% 55

BlueJ

No viewing 7.6% 11.0% 29.7% 25.4% 26.3% 118
Viewing 14.7% 9.5% 33.7% 24.2% 17.9% 95
Controlled viewing 8.7% 0.0% 13.0% 43.5% 34.8% 23
Entering input 7.6% 6.6% 52.8% 13.2% 19.8% 106
Changing 0.0% 0.0% 0.0% 100.0% 0.0% 2
Modifying 0.0% 16.7% 50.0% 0.0% 33.3% 6
Constructing 22.2% 0.0% 0.0% 77.8% 0.0% 9

Table X. The Average Number of Participants at Each EET Level

EET Average Number of Participants

No viewing 3.1
Viewing 3.1
Controlled viewing 3.5
Entering input 2.9
Changing 4.0
Modifying 3.0
Constructing 3.2
Overall 3.1

were found to be statistically significant (Jeliot: χ
2(8) = 35.0, p < .01; BlueJ:

χ
2(8) = 19.9, p < .05). The activity distributions on both tools are similar to

the overall distribution shown in the Figure 3 (cf., previous paragraph).

5.3 Participation

Table X shows the average number of participants on each EET level. In the
most frequently occurring levels (no viewing, viewing, entering input), the
number of participants is almost the same. There were no statistically sig-
nificant differences and the number of participants on each activity is large
enough to argue that the students were truly collaborating.

5.4 Discussion Contents

All the activities that contained discussions were further classified based on
their discussion contents. Table XI shows the distribution of the frequency of
topics during the conversations when the students were working on one of the
EET levels.

The variability of the discussion contents between EET levels was large;
for example, on the no viewing level, the program category contains 25.7% of
the data, while there are no data for program category on the viewing level.
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Table XI. Discussion Topics Distribution on Each EET Level

EET / P PB PC Tool ED EC Visual- On- Off- I Count
Content ization topic topic

No viewing 25.7% 24.9% 0.0% 9.9% 4.0% 9.9% 0.0% 22.8% 2.0% 1.0% 101
Viewing 0.0% 33.1% 2.1% 14.8% 9.2% 2.8% 3.5% 29.6% 2.1% 2.8% 142
Controlled 0.0% 9.5% 9.5% 42.9% 4.8% 0.0% 0.0% 33.3% 0.0% 0.0% 21

viewing
Entering 2.1% 37.9% 4.2% 11.6% 4.2% 1.1% 1.1% 34.7% 0.0% 3.2% 95

input
Changing 0.0% 0.0% 0.0% 50.0% 0.0% 0.0% 0.0% 50.0% 0.0% 0.0% 2
Modifying 0.0% 25.0% 0.0% 0.0% 50.0% 25.0% 0.0% 0.0% 0.0% 0.0% 4
Constructing 33.3% 0.0% 33.3% 33.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3

Legend: P=Program; PB=Program behavior; PC=Program concepts; ED=Error detection;
EC=Error correction; I=Indeterminable

Table XII. Transactive Reasoning on Each EET Level

EET Transactive reasoning Count

No viewing 5.0% 101
Viewing 3.6% 139
Controlled viewing 0.0% 21
Entering input 6.5% 93
Changing 0.0% 2
Modifying 33.3% 3
Constructing 0.0% 3

Therefore, the χ
2 test might not be reliable. The three most frequent EET

levels (no viewing, viewing and entering input) were included into the analy-
sis. The test was first done for all three levels showing that the discussion
content distributions and the EET levels are related (χ2(18) = 85.1, p < .01).
However, pairwise comparison revealed that only differences between no view-
ing and viewing (χ2(9) = 54.1, p < .01), and between no viewing and entering
input (χ2(9) = 39.6, p < .01) were significant, meaning that those levels have
different discussion content distributions. This also means that the distribu-
tions of the discussion contents were very similar on both of the EET levels,
viewing and entering input, based on the statistical tests.

5.5 Transactive Reasoning

Less than five percent of all the discussions contained transactive reasoning.
Therefore, we do not report the results for each type separately, but, rather,
in Table XII we show the percentages of discussions that contained and did
not contain transactive reasoning. From the most frequent EET levels, enter-
ing input had the highest percentage of transactive reasoning; however, the
differences were not statistically significant.

6. DISCUSSION

The study partially confirms our hypothesis that the level of engagement on
which students select to work with the visualization tool affects the quality of
collaboration; that is, the engagement level and the interaction between the
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students are correlated. This seems to be true especially when a tool supports
engagement on the levels viewing and entering input: the latter increases the
amount of discussion significantly and reduces the time when students are
silent, the former does the opposite. The level entering input also increases
the amount of transactive reasoning, although the differences are not statisti-
cally significant. The increase in the amount of discussion changes neither the
contents of the discussions nor the participation of the students, and similar
numbers of students discuss similar topics on both levels, viewing and entering
input.

To summarize, this study shows that EET levels are positively correlated
with the amount of interaction, and it is interaction which is an important
component of the successful collaboration (Section 2.4). However, this does not
change the contents of the interactions and actually increases, although not
significantly, the amount of transactive reasoning, which is positively corre-
lated with learning outcomes.

At the lowest level of engagement (i.e., no viewing), the hypothesis does
not hold and the quality of the collaboration lies between that of entering in-
put and viewing. It seems that the no viewing level promotes different kinds
of interactions and communication among the students than the other levels.
Students’ discussions are more about the program code, which is natural, be-
cause the program code is often the only representation available at this level.
Furthermore, students listen to and discuss with the instructor more often,
which can mean either that they are seeking help or that they are listening
to instructor’s guidance more often when they are working on this level or
that the teacher guides them to this level when he/she comes to help the stu-
dents. It is reasonable to assume that this compensates for the lack of help
and guidance that is available from the visualization tool. This result par-
tially replicates the results of Hundhausen and Brown [2008] discussed in the
Section 2.3.

The average number of participants taking part in the collaboration is
roughly the same at all levels of engagement. Three students seem to be opti-
mal for collaborating on a single computer that is running a visualization tool.
We observed from the videos that in many cases when there were four stu-
dents, one of them sat far from the computer and was passive. Nevertheless,
for some groups the amount of collaboration among all four students was high,
a result we attribute to their interpersonal skills.

Although a comparison of Jeliot and BlueJ is not within the scope of this
article, a preliminary analysis indicates that it was the level of engagement
that was more influential than the specific tool. A currently unpublished
follow-up analysis of video protocols [Korhonen et al. 2008] from a study,
in which students were using the TRAKLA2 system to learn data structures in
small groups (see the report of the original study in Myller et al. [2007b] and in
Laakso et al. [2008] on students’ learning results), found the same correlation
between engagement levels and the amount of communication and collabora-
tion. This also supports the hypothesis and shows that it is independent of the
tool that is being used.
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Our experiment was carried out in an actual classroom and it has high
ecological validity, but this also means that we could not control all variables
as we could have done in an experimental setting. Therefore, we could not es-
tablish that the engagement level caused the increase in the interactions and
the quality of collaboration. We can only say that they are correlated, so the
causation, if any, could be in either direction. On the one hand, there are cer-
tain levels of engagement that were not always controlled by the students, but
happened as a side effect of the animation or other actions. For example, when
students were viewing an animation, students needed to enter input whenever
the visualized program needs input. Thus, they engaged on entering input, al-
though they only selected the viewing of the animation. On the other hand, an
activity could change the engagement level; for example, when students were
discussing with the instructor, s/he proposed the use of a visualization on a cer-
tain engagement level (e.g., seeing the source code instead of the animation).

In this study, we have not taken into consideration how the correlation
between EET levels and collaboration and communication develops over time.
Thus, based on the current research, we can definitely describe the correlation
only for the first week of the first course on programming. In future research,
we plan to study the effects of the use of visualizations on collaboration by
analyzing the video materials from several weeks of the course.

6.1 Threats to Validity and Reliability

Although we have tried to make sure that all the steps of the research process
would maintain the internal validity and reliability, there are issues that
might have affected the results. We have aimed to have a high ecological va-
lidity, so we carried out the study in a real classroom environment. We could
not randomize the students into the different sessions; however, we random-
ized the students within the sessions into small groups and by using a post-hoc
analysis, we checked that the background variables of the students were simi-
lar between the sessions. Thus, we expect that the collected data from several
groups is comparable and aggregable.

When the video data was sampled, we selected episodes in the materials
from one week. There could be bias in the random selection of the episodes
that could affect the results. We tried to minimize the bias by selecting a
similar number of episodes from each group for each tool. This should have
balanced out the influence of a single group to the final results.

The videos were coded using different coding schemes. The coding schemes
were checked for reliability by comparing the results of two coders on a subset
of the data. It was found that most of the coding schemes are reliable except
for the discussion contents and transactive reasoning categories. Thus, we use
them as secondary evidence not as the primary evidence for our hypothesis.
The reliability of this secondary evidence needs to be further tested in the
future studies.

Some of the EET levels were not completely assessed because we did not
have enough data from those levels. Given the high inter-rater reliabilities in
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classifying all the EET levels, we believe that additional data collection will
enable us to analyze other levels in the future experiments.

7. CONCLUSION

We have presented an extension to the Engagement Taxonomy, the Extended
Engagement Taxonomy, and used it to investigate the mutual relationship
between visualization tools and collaborative learning. Our empirical study
demonstrated support for the hypothesis that increasing the level of engage-
ment between learners and the visualization tool results in a higher positive
impact of the visualization on the collaboration process.

The EET can be used during the design and development of visualization
tools for collaborative learning. There are several design implications that are
already implemented in practice:

—We have added a capability for automatic question generation to Jeliot 3 in
order to support the EET level responding [Myller 2007].

—We believe that closer linking of BlueJ and Jeliot [Myller et al. 2007a] can in-
crease the engagement level of students. Students should be able to see both
BlueJ’s object bench and Jeliot’s animation at the same time, so that any
modification of an object results in a change in the animation. This would
allow a step-by-step construction of dynamic visualizations by the students.

—We have combined Jeliot 3 with Woven Stories 2, a collaborative authoring
tool [Myller and Nuutinen 2006], in order to provide Jeliot 3 with collabora-
tive editing support and augmenting visualizations that can support online
collaborative learning.

There are also pedagogical implications of the findings:

—Higher levels of engagement provide more support for collaborative activi-
ties, so instructors should find ways to use visualization tools at these levels.

—The viewing level seems to reduce collaboration significantly because stu-
dents become passive. Thus, engagement at this level should be avoided,
if possible, or it should combined with explanations by the teacher, as was
done by Ben-Bassat Levy et al. [2003] with positive results.

—The lowest level of engagement (no viewing) does not decrease interaction
and collaboration of students as much as viewing. However, when this level
of the EET is used in teaching, the instructor should be aware of the change
in the focus of the discussions (the program code) and of the need to provide
students with more help and guidance.

Our study suggests new directions in research on engagement in collabora-
tive learning with visualizations. The first step should be an expansion of the
analysis of the differences at a finer level of detail; for example, the contents of
the discussions between the students could be further analyzed to determine
what communicative resources they are referring to during the discussions
(e.g., the visualization or the source code). Also, the interaction of learning and
time-on-task should be analyzed in order to better understand how the role of
the visualization during the students’ learning process changes in long run.
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Therefore, a longitudinal analysis of the collected data from this study (video
materials from sessions during several weeks) could be used to analyze the
effects of time and learning, for example, by using a time-series analysis.

We also plan to evaluate the question generation support added to Jeliot 3
and the closer linking of BlueJ and Jeliot. This should shed more light on the
effects of the higher levels of the EET.

We think that it is important to create visualization tools that support
several engagement levels—especially the higher ones—and make the instruc-
tors aware of the potentials that the higher engagement levels can provide so
that students and their instructors can use the tools to their benefit during the
collaborative learning.
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