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Abstract

Program comprehension processes have previously been studied
using methodologies such as think-aloud or comprehension sum-
mary analysis. Eye-tracking, however, has not been previously
widely applied to studies of behavioral aspects of programming.
We present a study in which program comprehension was investi-
gated with a help of a remote eye-tracker. Novice and intermediate
programmers used a program visualization tool to aid their com-
prehension while the location of fixations, fixation durations and
attention switching between the areas of interest were recorded.

In this paper 1) we propose an approach how to investigate trends
in repeated-measures sparse-data of few cases captured by an eye-
tracker and 2) using this technique, we characterize the develop-
ment of program comprehension strategies during dynamic pro-
gram visualization with help of eye-movement data.

CR Categories: H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces Evaluation/methodology—Input devices and
strategies;

Keywords: eye-movement tracking methodology, psychology of
programming, program comprehension, program visualization

1 Introduction

Program comprehension, the ability to understand programs writ-
ten by others, is widely recognized as central to programming. Be-
ing also a cognitively complex skill of acquiring mental models of
structure and function of a program, program comprehension has
been for many years a field of need to develop and apply methods
and techniques to effectively capture and analyze the involved men-
tal processes. Although originally centered around (professional)
computer-programmers developing computer programs, studies of
programming strategies nowadays extend far beyond these borders
[Blackwell 2002], both in terms of users and application domains.

Previous research in the domain has established a solid body of
knowledge about the comprehension models and strategies em-
ployed in comprehension, expert and novice differences or com-
prehension outcome analysis [Good and Brna 2004]. Other stud-
ies concentrated on developing tools to aid program understand-
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ing, especially by means of visual representations of program ex-
ecution, e.g. [Moreno et al. 2004; Sajaniemi and Kuittinen 2003].
Surprisingly, given the importance of identifying the cognitive pro-
cesses involved in program comprehension, little has been done by
applying visual attention tracking systems such as eye-movement
tracking. Instead, investigations have been mostly based on verbal-
protocols, a well established - and probably the most popular -
method used to capture the thought-processing.

To safely apply eye-movement tracking to study the behavioral as-
pects of programming, however, requires to develop a methodolog-
ical framework. This study starts to build such a framework. As
eye-tracking has not been previously applied in the domains of pro-
gram comprehension and visualization, despite clearly presenting a
strong potential, our motivation is to create a methodological frame-
work that would allow to apply the eye-tracking and provide a way
to analyze the data. An obvious solution to the latter problem would
be to use some variation of repeated measures designs and analy-
sis. However, as seen from previous studies (e.g. [Bednarik et al.
2005]), treating the data as average values over a longer period -
without considering the actual underlying task- might blur individ-
ual differences in between-participant and within-participant trials.
In addition, the comprehension process with program visualization
is dynamic and gradual in its nature and cannot be effectively ex-
amined by studying long-term averages.

In this paper, we apply eye-movement tracking to a study of com-
prehension processes of programmers using a program visualiza-
tion tool. To allow for as natural conditions as possible, the partic-
ipants were not limited in the ways they used and interacted with
the tool, particularly in replaying the visualizations. Therefore, al-
though designed as a repeated-measures experiment, the resulting
data have often a sparse structure. We present an approach to ana-
lyze the data and apply the method to characterize the strategies and
behavior of programmers to coordinate multiple representations of
a program during program comprehension.

2 Related Work

2.1 Capturing Mental Processing during Program-

ming

Studies of cognitive processes involved in program comprehension
tasks are central to our understanding of software maintenance and
development [von Mayrhauser and Vans 1996]. Particularly pop-
ular techniques to capture the thought-processes are different vari-
ations and derivations of the think-aloud methodology, either con-
current or retrospective, since the seminal work of Ericsson and Si-
mon [1984]. In the empirical studies of programmers and psychol-
ogy of programming, the think-aloud methodology was applied in
the pioneering experiments conducted by Soloway and others dur-
ing 1980’s and 1990’s (e.g. [Letovsky 1986; Soloway et al. 1988;
Littman et al. 1986; von Mayrhauser and Vans 1996] or recently
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[Burkhardt et al. 2002; Ko and Uttl 2003] and many others). By an-
alyzing verbal protocols, these and other studies attempted to get an
access to cognitive processes and provide insights into what strate-
gies programmers of various expertise take while undergoing the
tasks of program comprehension.

To increase the validity of verbal reports, research practitioners of-
ten complement them with other concurrent behavioral data, such
as direct observations, video or interaction protocols, as for exam-
ple [von Mayrhauser and Vans 1996] or [Ko and Uttl 2003]. The
approaches based on verbal reports, however, have been criticized
widely, e.g. [Branch 2000; Nielsen et al. 2002; van den Haak et al.
2003], especially when used with complex tasks involving high
cognitive load and requiring verbalizing visual information.

2.2 Previous Studies Using Visual Attention Track-

ing

Normally, programmers work within a computer-based (graphical)
environments, such as program debugging or visualization tools.
These environments often present some of the program represen-
tations in several adjacent windows and programmers have to co-
ordinate these representations in order to construct a viable mental
model. In these situations, when the problem-solving and forma-
tion of mental model is driven by visual information, such as during
dynamic program visualization, it would be beneficial to capture
and analyze the patterns of visual attention. As eye-movement data
provide insight into attention allocation, it is also possible to infer
underlying cognitive processes [Rayner 1998].

Understanding that opportunity, Romero et al. [2002] conducted
a series of experiments that involved the Restricted Focus Viewer
(RFV) [Jansen et al. 2003], a tool that links visual attention to
a small fully-focused spot within an otherwise blurred stimulus.
When an experimenter employs the RFV to track the visual atten-
tion, participants move the focused spot using a computer mouse to
explore the visual representations in task. This approach, however,
was shown to be questionable. Using a remote eye-tracker, Bed-
narik and Tukiainen [2004; 2005] replicated one of the experiments
in which the RFV was employed. They suggested that the technique
interferes with natural strategies involved in program debugging.
Similarly as in the influential studies of Petre [1995], the visual rep-
resentations in experiments of Romero et al. were static. Modern
program visualization tools, however, often present the concepts in
form of dynamic animations. The ecological validity of these ex-
periments could be, therefore, questioned too.

Eye-tracking as a research methodology in studies of programmers
has been previously applied to investigate how programmers read
the code [Crosby and Stelovsky 1990]. Using an eye-tracker, pat-
terns of programmers’ visual attention were recorded while reading
a binary search algorithm written in Pascal. Authors analyzed fixa-
tion times and number of fixations to reveal the strategies involved
in reading source code. Crosby and Stelovsky shown, beside other
findings, that while the subjects with greater experience paid atten-
tion to meaningful areas of source code and to complex statements,
novice participants, on the other hand, visually attended comments
and comparisons. Both groups paid least attention to the keywords
and did not exhibit any difference in reading strategies.

Other studies using eye-movement tracking during program com-
prehension or debugging, such the one of Crosby and Stelovsky
above, are infrequent and appeared only recently, e.g. [Bednarik
and Tukiainen 2004; Bednarik and Tukiainen 2005; Nevalainen and
Sajaniemi 2005]. Bednarik et al. [2006; 2005] reported that in terms
of fixation counts and attention switching between main representa-
tions (code and graphical representation of execution) of a program

during its animation, patterns of novice and expert programmers did
not differ. An effect of experience was found, however, on overall
strategies adopted to comprehend programs and on fixation dura-
tions.

Bednarik et al. [2005], however, approached the analysis of eye-
movement data only from a long-term, global point of view: the
data were treated as means over a whole comprehension session.
To characterize the comprehension processes more completely, an-
other, more detailed procedure has to be taken. In the present paper,
we subdivide the comprehension process aided by a program visu-
alization into meaningful pieces and study gradual changes in the
related eye-movement patterns. By doing so, we believe to capture
the changes in the role each of the representations take during the
comprehension and to characterize the construction of the mental
model of the comprehended program.

3 Experiment

The present experiment was conducted to discover whether there is
any development in the way programmers visually attend the repre-
sentations provided by a program visualization tool during program
comprehension. In particular, we were interested in whether the
role of different representations of a program changes in the course
of time, as reflected in the gaze data. Ratios of fixation counts,
attention switching, and fixation durations between the main repre-
sentations of a program were analyzed. Since the present analysis
reports the data recorded from an experiment previously described
and reported elsewhere, the following sections might share some
parts with the previous reports [Bednarik et al. 2006; Bednarik et al.
2005].

3.1 Participants

A total of eighteen participants were recruited from high-school stu-
dents attending a university level programming course, undergrad-
uate and graduate computer science students from the local uni-
versity; each received a lunch ticket as an incentive. Data from
two participants had to be discarded due to technical problems with
eye-tracking. Therefore the eye-tracking results are based on data
collected from 16 subjects (13 male, 3 female). The participants,
according to their report, can be characterized as having, on av-
erage, 49.3 (SD = 54.1) months of experience with programming,
13.1 (SD = 12.8) months of experience with Java, 19.3 (SD = 29.5)
months of experience with other programming language. Five par-
ticipants had a previous experience with the program visualization
tool used in this experiment, other two participants had a previous
industrial experience. All participants had normal or corrected-to-
normal vision, according to their own report.

For some parts of the analysis, participants were divided into two
groups according to the number of animation runs they initiated
during the experiment. The number of animation runs can be
considered as a measure of experience and comprehension perfor-
mance: those who animated the program once did not need the sup-
port of the visualization tool further but to confirm their hypothesis,
while those running the visualization more times were in need of its
help.

3.2 Materials

Three short Java programs, a factorial computation, recursive
binary-search program and naı̈ve string matching, were presented
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to the participants. The lengths of the programs (in lines of code)
were 15, 34, and 38, respectively. Each of the programs generated
only one line of output and did not require any user input. To make
recognition of a program based on these surface features difficult,
the names of the methods and variables were altered. In practice,
method and variable names were made random and neural.

To visualize the Java programs, Jeliot 3 [Moreno et al. 2004], a
novice-oriented program visualization tool, was used. The user in-
terface of Jeliot 3 (Figure 1) consists of four separate areas: the
Code is on the top left, the visualization is shown in the top right
area (called Theater), the Control panel with VCR-like buttons to
control the animation is on the bottom left, and the Output of the
program is displayed in the bottom right panel. Moreover, the The-
ater area is further split into four discrete sections that detail a) the
method calls, b) expression evaluation, c) constants and static ob-
jects, and d) instantiation of objects and arrays. In the present ex-
periment, the specialized views of method-call-tree and history of
execution provided by regular Jeliot 3 were disabled.

Jeliot 3 automatically visualizes execution of Java programs by
demonstrating graphically the data and control flows, using an
object-oriented approach. In a typical session, a user loads or write
a program, compiles it and then selects Play or Step button to start
the animation in a continuous or step-wise fashion, respectively.
An animation step consists of highlighting a block of instructions,
statement, assignment or expression in the Code and displaying
their respective graphical visualization in the Theater area.

Figure 1: Program visualization tool used in the experiment with a
representative scan-path superimposed.

3.3 Apparatus

As one of our requirements was to use a minimally invasive ex-
perimental setting, we used the remote Tobii ET-1750 (sampling at
50Hz) eye tracker that made no contact with participants (for setting
see Figure 2). We used a single computer setup, in which operator’s
and participant’s displays share same computer. The eye tracker is
built into a TFT panel so no moving part is visible and no sound
can be heard during recording. Interaction protocols (such as key-
strokes and mouse clicks) were collected for all target programs,
and audio and video streams were recorded for a whole session. To
avoid involuntary fixations, a minimal duration of fixation for the
algorithm processing the eye-data was set at 100ms. Seven static
areas of interest (AOI) that matched with the seven main panels in

the Jeliot 3 interface were defined: the code, the expression eval-
uation area, the method area, the instances area, the constants, the
control, and the output area.

Figure 2: Experimental settings.

3.4 Procedure and Design

The experiment was conducted in a quiet usability laboratory. Af-
ter becoming acquainted with the experiment and signing a con-
sent form, participants were seated in an ordinary office chair
near the experimenter and facing a 17” TFT display (resolution
of 1024x768). Every participant then passed an automatic eye-
tracking calibration. The calibration required the participants to
follow sixteen shrinking points that appeared one by one across the
display. If needed, the calibration was repeated in order to achieve
the highest possible accuracy.

The window with program visualization tool was resized to occupy
full-screen. Participants performed three sessions, each consisting
of a comprehension phase using Jeliot 3 and a program summary
writing phase. The target programs contained no errors, were al-
ways preloaded into Jeliot and compiled to demonstrate the absence
of errors. Participants were instructed to comprehend the program
as well as possible, and they could interact with Jeliot as they found
necessary. The duration of a session was not limited and partici-
pants were told about it.

The first target program was a factorial computation that was used
as a warm-up and the resulting data were discarded. The order of
the two actual comprehension tasks was randomized so that half of
the participants started with the recursive binary search and other
half with naı̈ve string matching.

4 Data Analysis Methodology

In the present experiment, the participants were not limited in the
ways they used and interacted with the visualization tool nor in the
time they needed to spend on the comprehension. Some of the par-
ticipants performed only one animation run, while others, in order
to comprehend the program as best as they could, needed the help
of the dynamic animation more. Since we are interested in com-
monalities during the comprehension process and to allow for a fair
comparison, the whole stream of eye-movement data for a single
participant was segmented into the sections where the animation
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was on and off. The results are therefore in a form of sparse ma-
trix (see a hypothetical example in Table 1 below), depending on
the number of animation runs (the columns marked Run 1 ... 4)
each participant performed. The columns then contain a measure-
ment obtained during first, second, and following animations of a
program.

Let’s consider now the situation in which a participant C (Table 1,
for fixation count ration between two areas of interest) used the vi-
sualization tool to animate the program execution four times, while
participant D only two times. Not only the analysis of variance
would suffer from a low degree of freedom as the number of an-
imation runs decreases, but potentially, such an approach would
align two measures (e.g. in column Run 2) that reflect different
cognitive tasks. While participant C was, supposedly, still attempt-
ing to create a hypothesis of the visualized problem, the participant
D was most probably confirming the hypothesis she created during
the Run 1. Therefore, a research question whether the ratio of fix-
ations between two areas is different during Run 1 and Run 2, so
that it reflects a shift in the relative importance of the two areas,
would be not only ill-defined but also hard to answer using tradi-
tional ANOVA.

Participant Run 1 Run 2 Run 3 Run 4

A 1.162
B 1.170 1.288 1.978
C 1.234 1.562 1.619 1.432
D 2.106 2.670
E 1.953 1.321 2.342

Table 1: Example of sparse data: ratio of fixation counts on two
areas of interest

Typically, repeated measures designs are analyzed using analysis
of variance (ANOVA) procedures. However, in the situations when
the result matrix is sparse, of few cases, and matching up of corre-
sponding trials between participants is not explicit, as found also in
the present experiment, the ANOVA is ruled out. We suggest a pos-
sible solution to this problem by reframing the data set as binomial
trials and using nonparametric statistical methods to analyze the
outcome. This approach allows for answering the research ques-
tions related to trends over time and solves the problem with sparse
data.

The original data set is considered as whether the scores on succes-
sive trials in respect to all previous trials of a participant were higher
(an observed increase) or lower (a decrease). While reframing the
original data into binomial trials, the research hypothesis needs to
be also restated. The claims of null-hypothesis and alternative hy-
potheses are then stated as:

• H0: ”There is no trend in the trials and same number of in-
creases and decreases will occur.”

• HA: ”There is a trend in the trials and the number of in-
creases and decreases will differ significantly.”

Table 2 shows the result of applying such a transformation from
original data contained in Table 1. For example of the Participant
E, the first ”0” represents no increase in the measurement between
Run 1 and Run2, while the consecutive ”1” signals an increase in
the measurement between Run 1 and Run 3. As for participant A
who performed only one Run, no trend it the measurement could be
analyzed.

Having the original problem reframed into binomial distribution,
the statistical analysis of the newly formed data consists of: 1)
counting the total number of trials N, 2) counting the cases in which

Participant 1-2 1-3 1-4 2-3 2-4 3-4

A - - - - - -
B 1 1 - 1 - -
C 1 1 1 1 0 0
D 1 - - - - -
E 0 1 - 1 - -

Table 2: Data from Table 1 in binomial form.

the trend was increasing x, 3) setting the probability of null hypoth-
esis to p = .5 since the variable is binary, 4) computing the cumula-
tive probability by using binomial formula (1) for all i = x..N, and 5)
finding the mean value and standard deviation of this distribution.

P(X ≥ x) =
N

∑
i=x

P(X = i) =
N!

i!(N − i)!
(p)i(1− p)(N−i) (1)

Following the example given in Table 2, N = 13, x = 10, p = .5, then
P(X≥10) = .0461, with mean value of 6.5 and standard deviation
of 1.8. That means, that the probability of getting greater than or
equal to 10 increases out of 13 trials, given the probability of having
no trend is .5 (null hypothesis), is .0461. Shall the null hypothesis
hold (no trend) the mean number of increases would have to be
6.5 (SD = 1.8). However, as the number of successive increases
was 10, we can conclude that we have found an increasing trend
with proportion of 10 increases to 3 decreases (76.9%), with an
exact probability of getting the same or greater number of increases,
assuming the null hypothesis was p = .5, of .0461. Therefore, the
null-hypothesis is rejected.

5 Results

In this paper, we study coordination of multiple program represen-
tations during program comprehension. We report results related to
the time spent on animating the program execution, rather than re-
porting mean values for a whole comprehension session. We do so
because the task was complex and participants were allowed to se-
lect their own strategy. Some of the more experienced participants
first did not use the animation but instead studied the source code
only. Therefore, they did not perform any coordination of multiple
representations; these were available during animation only. To al-
low for a fair comparison, we split the whole stream of data into
distinct phases of code-reading and animation and analyze the data
during animation.

A detailed analysis of comprehension summaries and interaction
patterns is reported and discussed in [Bednarik et al. 2006]. The
effects of experience levels on gaze patterns during program com-
prehension have been reported in [Bednarik et al. 2005].

We analyzed several measures related to the gaze behavior. First,
a ratio between the code and visualization in terms of total fixa-
tion times was measured. This ratio shall reveal the importance of
the two representations during the comprehension process. Next,
the number of attention switches per minute between any of the
areas of interest shall reflect the dynamics of attention allocation.
Finally, we analyzed fixation durations in overall, on the code rep-
resentation of the program and on graphical visualizations. Fixation
durations are believed to reflect relative importance and complexity
of information during problem-solving[Just and Carpenter 1976].
The longer the durations are, the more mental efforts a participant
has to exert.

Although being an important representation during program com-
prehension, the output area of Jeliot interface was excluded from
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the analysis due to the low amount of output of the programs. Since
the purpose of this experiment was to explore how the roles of dif-
ferent representations of a program develop during program com-
prehension, the control area of Jeliot interface was also excluded,
as it does not contain any information about the program being vi-
sualized.

Because of the experimental design, commonly used ANOVA could
not be applied for some part of the results. The results were there-
fore analyzed in part using the method described in section 4,
ANOVA and using t-tests for pre-planned comparisons.

5.1 Interaction with the Tool

In overall, the grand mean number of program animation replays
was 2.21 (SD = 0.98), with a minimum of no animation, and a
maximum of 5. On average, there were 2.06 (SD = 1.2) and 2.25
(SD = 1.2) animations of binary-search program and naı̈ve string-
matching program initiated, respectively. There was no difference
in the number of animations between the two target programs, pair-
wise t(15) = .64, ns. For the recursive binary-search program, five
participants animated the program only once and one did not an-
imate at all, while for the naive string matching, six participants
replayed the animation only once. Therefore, the analysis of eye-
movement patterns in the following subsections is based on data
of remaining ten participants that could be considered as binomial
trials.

Two groups were formed post-hoc from all participants, depending
whether a participant animated the programs on average more or
less than two times. Table 3 details the distribution of expertise in
the resulting groups and resulting statistical differences.

Group # Replays Progr. Java Other Jeliot Prof.

≤ 2 9
1.25 73.5 16.9 29.6 2 2

(0.38) (69.92) (16.4) (38.1)

> 2 7
3.21 18.0 7.3 5.1 3 0

(0.49) (19.4) (4.1) (4.9)

p < .001 .014 .044 .034 ns ns

Table 3: Characteristics and differences (means, standard devia-
tions in parentheses) of the two groups (≤ 2 animations, > 2 anima-
tions) in months (Programming, Java, Other experience), analyzed
by one-tailed t-test, and number of participants (Jeliot experience,
Professional experience), by χ2 test.

5.2 Animation Replays as Binomial Trials

For the purposes of the eye-movement analysis using binomial dis-
tribution, the replays of the animations were transformed into bino-
mial trials. Thus, during the animations of binary-search program,
28 trials were performed. The resulting binomial distribution for
null hypothesis (p = 0.5, i.e. no trend with same number of in-
creases and decreases) have a mean of 14 with a standard deviation
of 2.65. During the animations of naı̈ve string matching program
37 trials were performed, that formed a binomial distribution with
a mean of 18.5 and a standard deviation equal to 3.04.

5.3 Fixation Time

To estimate the importance of the available representations, we
computed the total fixation time as a sum of all fixation durations

on the two main areas of interest during each of the animation runs.
Then, for each of the animations a participant initiated, we calcu-
lated the ratio of the fixation time spent on code to the time spent
fixating the graphical representation. For those participants who
animated at least twice, these ratios were then transformed into bi-
nomial trials as described in Section 4.

The mean ratio of total fixation times on code/visualization of re-
maining participants that animated the programs only once was
0.86 (SD = 0.5) and 0.65 (SD = 0.32) for recursive binary search
and for naı̈ve string-matching, respectively. There was no statisti-
cal difference in the mean ratios between the two programs of this
group, independent-sample t(8) = 0.77, ns.

Twenty-two increasing trials and six decreases were found during
the replays of recursive binary search. Therefore, the ratio of fixa-
tion time spent on code/visualization had an increasing tendency, p
= .0019. Twenty-one increases and 16 decreases were found during
the replays of naı̈ve string matching animation. Thus, the ratio of
fixation time spent on code/visualization had a slightly increasing
trend, p = .26, also in this program.

5.4 Attention Switching Behavior

The dynamics of attention allocation was measured as a number of
switches per minute between any of the areas of interest during the
animation. We define a switch as any change of the focus of visual
attention between any of the pre-defined areas of interest.

Those participants that animated the program execution only
once, performed 40.6 (SD = 22.7) and 48.8 (SD = 9.8) atten-
tion switches per minute, while comprehending binary-search and
string-matching programs, respectively. There was no difference
in the number of switches per minute between the programs,
independent-sample t(8) = 0.74, ns, of this group.

Attention switching behavior of the group that animated program
execution more than once can be characterized as 10 increases in
the number of switches per minute and 18 decreases, p = .96, in
binary-search program, and as 11 increases and 26 decreases, p
= .99, in naı̈ve-string matching. Therefore, in both of the target
comprehension tasks, the number of attention switches per minute
performed by the participants shown a strongly decreasing trend.

5.5 Fixation Duration

The interface of the program visualization tool consisted of two
main areas of interest, the code and the visualization panel (The-
ater). Besides for the code as a main representation, we measured
fixation durations also for the four discrete areas of the Theater that
show certain aspects of the program execution (described in section
3.2).

Mean fixation durations of the group that animated the programs
only once (Table 4) were analyzed using ANOVA (program(2) x
area (5)); missing values were replaced by the means of the group
for that particular area and program. No effect of program on fixa-
tion duration was found, F(1,8) = 1.28, ns, together with no interac-
tion with area, F(4,32) = .51, ns. However, there was a major effect
of area on fixation duration, F(4,32) = 3.22, p = .025. In both pro-
grams, the longest durations were measured on the area containing
visualization of expression evaluation, while the shortest durations
fell on the area displaying constants.

Fixation durations of the group that animated the programs more
than once were analyzed using the binomial trials (Table 5). Several
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Program Code Methods Expressions Instances Constants Overall

binary-search 301.7 285.5 387.3 293.9 249.5 312.8
(137.4) (80.6) (159.6) (189.5) (53.4) (120.1)

string-matching 273.7 249.2 317.9 276.6 214.2 284.3
(26.7) (16.7) (93.3) (13.5) (32.2) (38.1)

Table 4: Mean fixation durations and standard deviations (in parentheses) over the main areas of interest and in overall for the group that
animated one time.

general trends can be observed, regardless of the program. Most
importantly, the steepest increasing trend is related the fixation du-
rations on the code area. On the other hand, the fixations that fell on
the area containing instances of objects and arrays were decreasing
with following animation runs. No trends were observed in areas vi-
sualizing expression evaluations. Altogether, participant’s fixation
durations on the areas of the Theater were decreasing or remained
about same while those on the code area, on the other hand, were
showing an increasing trend. Finally, the overall fixation duration
in both of the programs seemed to stay same during consecutive
animations.

6 Discussion

Unlike many previous studies that involved some variation of think-
aloud protocol to trace the subjects thought processes, we have con-
ducted an exploratory study of program comprehension on unfa-
miliar code using eye-movement tracking. Our aims were to in-
troduce eye-tracking as a valid source of data about behavioral as-
pects of programming and to develop an approach to analyze this
data. Although the study was designed as a repeated measures,
traditional statistical methods for analyzing the data could not be
applied. Therefore, we reframed the results and considered the data
as binomial trials.

6.1 Eye-movement Data as Binomial Trials

In comparison with other more traditional approaches to statistical
analysis of eye-movement data of repeated measures designs, the
methodology introduced in this paper provides researchers with a
possibility to investigate trends over time. Using average values
of collapsed measurements and some methods of analysis of vari-
ance might not provide enough information about how strategies
of experimental participants develop during problem solving and
learning.

However, also practical considerations have to be taken into account
when applying this approach. First, the valuable data from those
participants that performed only one trial are not considered and
this dissipates the efforts spent on recruiting the participants. In
the present experiment, fortunately, these participants belonged to
the group whose behavior was different from the rest of sample
population. Second, the reframing of the original data represents
an additional step in the analysis. However, the computations do
not require any special techniques and, in our opinion, are justified
by the possibility to interpret eye-movement data as trends.

6.2 Limitations of the Data Analysis

The proposed methodology of analyzing sparse data that originated
from unequal number of trials in a repeated measure design seems
to be practical when the research questions do not concern the exact

values of the measures, but rather investigate trends in a time. Al-
though the proposed approach provides many advantages in these
situations, several limitations can be identified. Most importantly,
by converting the data sets to binomial trials the nominal values of
original data are not part of the results any more. This makes the
results hard to compare to other studies that used parametric meth-
ods to analyze their results and reported means of their measures.
However, as the resulting probabilities are reported and exact, these
can be used for a comparison. Second problem, that will be ad-
dressed in future studies, is that the binomial distribution requires
all trials to be independent. While this condition holds for between-
participant trials, within-participants trials can hardly be considered
independent.

6.3 Comprehension process analysis

With the exception of one experienced participant during one pro-
gram comprehension session, all participants animated the program
execution at least once. Mean number of animation runs turned out
to be a good indicator of previous programming experience. Those,
who on average run the animation at most twice belonged to a more
experienced group, especially in terms of general experience in pro-
gramming. This finding is not surprising and can be explained by at
least two reasons. First, although we provided all participants with
a short introduction to Jeliot and we tried to equalize the previous
experience with the tool by having a warm-up session, most of the
experts in our study were not previously familiar with the tool and
with the visualization. As it has been argued, to benefit from pro-
gram visualization, users have to be explicitly taught to use it [Ben-
Ari 2001]. Therefore, experts’ low number of animation runs could
be explained by their unfamiliarity with the tool. However, the pre-
vious experience with Jeliot was balanced between the groups and
still those participants in the less experienced group who have ani-
mated the program several times were lacking the previous training
with the tool.

Second reason of the low number of animations of experts can stem
from a difference in the strategies to comprehend the program us-
ing the visualization tool [Bednarik et al. 2006]. According to
Brooks [1983], once a hypothesis of the program is formed, the
programmer tries to verify it against the program text. In our ex-
periment, more experienced participants read the code first, created
a model and hypotheses, and then confirmed their hypotheses by
(usually) only one run of the animation.

On the other hand, less experienced programmers did not read the
code at the beginning, but instead animated the program several
times and let the tool to visually explain the execution. They en-
gaged in doing so, until they have collected enough information
to form a hypothesis and then, during the last run, coordinated the
representations in the way that favored code more than at the begin-
ning, to confirm their hypotheses.

The results obtained by capturing and analyzing the eye-movement
data can be seen as supporting the discussion above. At the begin-
ning of the comprehension, less experienced participants targeted
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Program/Trials Code Methods Expressions Instances Constants Overall

binary-search/28
Increases 17 9 11 4 12 12

p 0.17 0.98 0.91 1.0 0.83 0.83

string-matching/37
Increases 21 18 19 17 20 18

p 0.25 0.63 0.50 0.74 0.37 0.63

Table 5: Fixation durations over the main areas of interest and in overall, as binomial trials with associated probabilities.

their attention toward the visualization of the target program, as
indicated by the total fixation time. However, with increasing iter-
ations, the less experienced participants focused more on the code
representation.

Considering the dynamics of the coordination strategies, partici-
pants gradually decreased the attention switches between the code
and the visualization, and concentrated on the code representation.
In other words, the attention allocation and related eye-movements
reflect what information and what representation is relevant to the
programmers during the comprehension task. It turned out that at
the early phases of comprehension, visualization provides more im-
portant information and plays more important role than at the later
stages.

More experienced programmers exhibited different behavior. Dur-
ing their single animation run, they spent more time focusing on vi-
sualization than on the code. Based on the mean fixation durations
over the discrete areas of visualization, we believe that the more
experienced programmers faced highest difficultness with the ex-
pression evaluations, while following the visualization of constants
did not introduce similar depth of cognitive processing.

As discussed before, expert programmers, in this experiment, stud-
ied the code of the program first before they initiated the visual-
ization. The visualization then provided them with an additional
information, most probably needed to confirm and fine-tune their
previously established mental model and hypotheses.

6.4 Limitations of the Experiment

Some limitations can be identified considering the experimental
part of this study. The number of participants was relatively low
and further decreased by technical problems with eye-movement
tracking. This issue will be addressed in future studies to ensure
higher validity of data and drawn conclusions.

Another limitation is related to the generalizability of the findings,
concerning the gaze behavior during comprehension. Although the
current program visualization systems that are in use share many
external features, such as design of interface (e.g. the horizontal
split of main area, code on left, visualization on right), their inner
mechanism and interaction with the tools might differ. For exam-
ple, the visualization of Jeliot 3 is based on representing a virtual
machine on which a program is executed, while visualizations of
PlanAni [Sajaniemi and Kuittinen 2003] are based on a cognitive
concept. In addition, some of the previous experiments in pro-
gram comprehension and debugging with multiple representations
involved only precomputed static or semi-dynamic visualizations
[Romero et al. 2002]. Therefore, the eventual behavior recorded
during comprehension with other tools might be different for any
of the involved experience groups.

7 Conclusions and Further Work

Eye-movement based analysis can contribute to our understanding
of cognitive processes involved in program comprehension, debug-
ging, and visualization. Unlike verbal reports used in numerous
previous studies of program comprehension, eye-movement-based
analysis does not require any training of experimental participants
to verbalize their thoughts neither interferes with their mental pro-
cessing.

This paper demonstrated, that in incorporation with other experi-
mental protocols, eye-tracking data can reveal important informa-
tion about behavior of computer programmers, that can be hard
to access using only a single methodology. Reframing of origi-
nal repeated-measures eye-movement data as the sets of binomial
trials allowed to characterize the development of program compre-
hension behavior in terms of representation use and coordination.

However, as the applications of eye-movement tracking to program
comprehension are rare up to date, more studies have to be con-
ducted and the methodological framework needs to be further de-
veloped. The framework shall provide researchers with a tool to
capture, analyze, and explain the cognitive processing during pro-
gram comprehension using eye-movement data.
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