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Abstract: The course introduces to digital image processing techniques such as histogram manipulation, filtering, thresholding, segmentation and shape detection. They are basic components in many applications in image analysis, visual communication, satellite and medical imaging.
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1
Digital image representation

Digital image is a finite collection of discrete samples (pixels) of any observable object. The pixels represent a two- or higher dimensional “view” of the object, each pixel having its own discrete value in a finite range. The pixel values may represent the amount of visible light, infra red light, absortation of x-rays, electrons, or any other measurable value such as ultrasound wave impulses. The image does not need to have any visual sense; it is sufficient that the samples form a two-dimensional spatial structure that may be illustrated as an image.

The images may be obtained by a digital camera, scanner, electron microscope, ultrasound stethoscope, or any other optical or non-optical sensor. Examples of digital image are:

( digital photographs

( satellite images

( radiological images (x-rays, mammograms)

( binary images, fax images, engineering drawings

Computer graphics, CAD drawings, and vector graphics in general are not considered in this course even though their reproduction is a possible source of an image. In fact, one goal of intermediate level image processing may be to reconstruct a model (e.g. vector representation) for a given digital image.

1.1
Digitization

Digital image consists of N SYMBOL 180 \f "Symbol" M pixels, each represented by k bits. A pixel can thus have 2k different values typically illustrated using a different shades of gray, see Figure 1.1. In practical applications, the pixel values are considered as integers varying from 0 (black pixel) to 2k-1 (white pixel).




Figure 1.1: Example of digital image.

The images are obtained through a digitization process, in which the object is covered by a two-dimensional sampling grid. The main parameters of the digitization are:

SYMBOL 183 \f "Symbol" Image resolution: the number of samples in the grid.

SYMBOL 183 \f "Symbol" pixel accuracy: how many bits are used per sample.

These two parameters have a direct effect on the image quality (Figure 1.2) but also to the storage size of the image (Table 1.1). In general, the quality of the images increase as the resolution and the bits per pixel increase. There are a few exceptions when reducing the number of bits increases the image quality because of increasing the contrast. Moreover, in an image with a very high resolution only very few gray-levels are needed. In some applications it is more important to have a high resolution for detecting details in the image whereas in other applications the number of different levels (or colors) is more important for better outlook of the image. To sum up, if we have a certain amount of bits to allocate for an image, it makes difference how to choose the digitization parameters.
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Figure 1.2: The effect of resolution and pixel accuracy to image quality.

Table 1.1
Memory consumption (bytes) with the different parameter values.

	
	Bits per pixel:

	Resolution
	1
	2
	4
	6
	8

	32 SYMBOL 180 \f "Symbol" 32
	128
	256
	512
	768
	1,024

	64 SYMBOL 180 \f "Symbol" 64
	512
	1,024
	2,048
	3,072
	4,096

	128 SYMBOL 180 \f "Symbol" 128
	2,048
	4,096
	8,192
	12,288
	16,384

	256 SYMBOL 180 \f "Symbol" 256
	8,192
	16,384
	32,768
	49,152
	65,536

	512 SYMBOL 180 \f "Symbol" 512
	32,768
	65,536
	131,072
	196,608
	262,144

	1024 SYMBOL 180 \f "Symbol" 1024
	131,072
	262,144
	524,288
	786,432
	1,048,576


The properties of human eye implies some upper limits. For example, it is known that the human eye can observe at most one thousand different gray levels in ideal conditions, but in any practical situations 8 bits per pixel (256 gray level) is usually enough. The required levels decreases even further as the resolution of the image increases (Figure 1.3). In a laser quality printing, as in this lecture notes, even 6 bits (64 levels) results in quite satisfactory result. On the other hand, if the application is e.g. in medical imaging or in cartography, the visual quality is not the primary concern. For example, if the pixels represent some physical measure and/or the image will be analyzed by a computer, the additional accuracy may be useful. Even if human eye cannot detect any differences, computer analysis may recognize the differences.

The requirement of the spatial resolution depends both on the usage of the image and the image content. If the default printing (or display) size of the image is known, the scanning resolution can be chosen accordingly so that the pixels are not seen and the image appearance is not jagged (blocky). However, the final reproduction size of the image is not always known but images are often achieved just for “later use”. Thus, once the image is digitized it will most likely (according to Murphy’s law) be later edited and enlarged beyond what was allowed by the original resolution. The image content sets also some requirements to the resolution. If the image has very fine structure exceeding the sampling resolution, it may cause so‑called aliasing effect (Figure 1.4) where the digitized image has patterns that does not exists in the original (Figure 1.5).
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Figure 1.3: Sensitivity of the eye to intensity changes.
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	Figure 1.4: Aliasing effect for 1-dimensional signal.
	Figure 1.5: Aliasing effect (Moiré) for an image.


1.2
Color image models

Visible light is composed of relatively narrow band of frequencies in the electromagnetic energy spectrum - approximately between 400 and 700 nm. A green object, for example, reflects light with wavelength primarily in the 500 to 570 nm range, while absorbing most of the energy at other wavelengths. A white object reflects light that is relatively balanced in all visible wavelengths.

According to the theory of the human eye, all colors are seen as variable combinations of the three so-called primary colors red (R), green (G), and blue (B). For the purpose of standardization, the CIE (Commission Internationale de l'Eclairage - International Commission on Illumination) designated in 1931 the following specific wavelength values to the primary colors:

blue (B)

= 435.8 nm

green (G)
= 546.1 nm

red (R)

= 700.0 nm

The primary colors can be added to produce the secondary colors magenta (red + blue), cyan (green + blue), and yellow (red + green), see Figure 1.6. Mixing all the three primary colors results in white. Color television reception is based on this three color system with the additive nature of light. There exists several useful color models: RGB, CMY, YUV, YIQ, and HSI - just to mention a few.

RGB color model
The colors of the RGB model can be described as a triple (R, G, B), so that R, G, B [0,1]. The RGB color space can be considered as a three-dimensional unit cube, in which each axis represents one of the primary colors, see Figure 1.6. Colors are points inside the cube defined by its coordinates. The primary colors thus are red=(1,0,0), green=(0,1,0), and blue=(0,0,1). The secondary colors of RGB are cyan=(0,1,1), magenta=(1,0,1) and yellow=(1,1,0). The nature of the RGB color system is additive in the sense how adding colors makes the image brighter. Black is at the origin, and white is at the corner where R=G=B=1. The gray scale extends from black to white along the line joining these two points. Thus a shade of gray can be described by (x,x,x) starting from black=(0,0,0) to white=(1,1,1).

The colors are often normalized as given in (1.1). This normalization guarantees that r+g+b=1.























(1.1)
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Figure 1.6: RGB color cube.

CMY color model
The CMY color model is closely related to the RGB model. Its primary colors are C (cyan), M (magenta), and Y (yellow). I.e. the secondary colors of RGB are the primary colors of CMY, and vice versa. The RGB to CMY conversion can be performed by
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(1.2)
The scale of C, M and Y also equals to unit: C, M, Y [0,1]. The CMY color system is used in offset printing in a subtractive way, contrary to the additive nature of RGB. A pixel of color Cyan, for example, reflects all the RGB other colors but red. A pixel with the color of magenta, on the other hand, reflects all other RGB colors but green. Now, if we mix cyan and magenta, we get blue, rather than white like in the additive color system.

YUV color model
The basic idea in the YUV color model is to separate the color information apart from the brightness information. The components of YUV are:
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(1.3)
Y represents the luminance of the image, while U,V consists of the color information, i.e. chrominance. The luminance component can be considered as a gray-scale version of the RGB image, see Figure 1.7 for an example. The advantages of YUV compared to RGB are:

SYMBOL 183 \f "Symbol" The brightness information is separated from the color information

SYMBOL 183 \f "Symbol" The correlations between the color components are reduced.

SYMBOL 183 \f "Symbol" Most of the information is collected to the Y component, while the information content in the U and V is less. This can be seen in Figure 1.7, where the contrast of the Y component is much greater than that of the U and V components.

The latter two properties are beneficial in image compression. This is because the correlations between the different color components are reduced, thus each of the components can be compressed separately. Besides that, more bits can be allocated to the Y component than to U and V. The YUV color system is adopted in the JPEG image compression standard.

YIQ color model
YIQ is a slightly different version of YUV. It is mainly used in North American television systems. Here Y is the luminance component, just as in YUV. I and Q correspond to U and V of YUV color systems. The RGB to YIQ conversion can be calculated by
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(1.4)
The YIQ color model can also be described corresponding to YUV:
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(1.5)
HSI color model
The HSI model consists of hue (H), saturation (S), and intensity (I). Intensity corresponds to the luminance component (Y) of the YUV and YIQ models. Hue is an attribute associated with the dominant wavelength in a mixture of light waves, i.e. the dominant color as perceived by an observer. Saturation refers to relative purity of the amount of white light mixed with hue. The advantages of HSI are: 

SYMBOL 183 \f "Symbol"
The intensity is separated from the color information (the same holds for the YUV 


and YIQ models though). 

SYMBOL 183 \f "Symbol"
The hue and saturation components are intimately related to the way in which human 


beings perceive color.

Whereas RGB can be described by a three-dimensional cube, the HSI model can be described by the color triangle shown in Figure 1.8. All colors lie inside the triangle whose vertices are defined by the three initial colors. Let us draw a vector from the central point of the triangle to the color point P. Then hue (H) is the angle of the vector with respect to the red axis. For example 0SYMBOL 176 \f "Symbol" indicates red color, 60SYMBOL 176 \f "Symbol" yellow, 120SYMBOL 176 \f "Symbol" green, and so on. Saturation (S) is the degree to which the color is undiluted by white and is proportional to the distance to the center of the triangle.
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Figure 1.7: Color components of test image Parrots in RGB, YUV, and HSI color space.
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Figure 1.8: (left) HSI color triangle; (right) HSI color solid.

HSI can be obtained from the RGB colors as follows. Intensity of HSI model is defined:


















(1.6)
Let W=(1/3, 1/3, 1/3) be the central point of the triangle, see Figure 1.9. Hue is then defined as the angle between the line segments WPR and WP. In vector form, this is the angle between the vectors (pR-w) and (p-w). Here (p-w) = (r-1/3, g-1/3, b-1/3), and (pR-w) = (2/3, -1/3, -1/3). The inner product of two vectors are calculated 

, where SYMBOL 97 \f "Symbol" denotes the angle between the vectors. The following equations thus holds for 0SYMBOL 176 \f "Symbol" SYMBOL 163 \f "Symbol" H SYMBOL 163 \f "Symbol" 180SYMBOL 176 \f "Symbol":













(1.7)
The left part of the equation is:











(1.8)
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Figure 1.9: Details of the HSI color triangle needed to obtain expressions for hue and saturation.

The right part evaluates as follows:













(1.9)












(1.10)
Now we can determine H:










(1.11)
Equation (1.11) yields values of H in the interval 0SYMBOL 176 \f "Symbol" SYMBOL 163 \f "Symbol" H SYMBOL 163 \f "Symbol" 180SYMBOL 176 \f "Symbol". If B > G, then H has to be greater than 180SYMBOL 176 \f "Symbol". So, whenever B > G, we simply let  H = 360SYMBOL 176 \f "Symbol" - H. Finally, H is normalized to the scale [0,1]:
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(1.12)
The next step is to derive an expression for saturation S in terms of a set of RGB values. It is defined as the relative distance between the points P and W in respect to the distance between P' and W:
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(1.13)
Here P' is obtained by extending the line WP until it intersects the nearest side of the triangle, see Figure 1.9. Let T be the projection of P onto the rg plane, parallel to the b axis and let Q be the projection of P onto WT, parallel to the rg plane. The equation then evaluates to:
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(1.14)
The same examination can be made for whatever side of the triangle that is closest to the point P. Thus S can be obtained for any point lying on the HSI triangle as follows:











(1.15)
The RGB to HSI conversion can be summarized as follows:



















(1.16)
The HSI to RGB conversion is left as an exercise, see [Gonzalez & Woods, 1992, p.229-235] for details.

1.3
Summary of image types
In the following sections we focus on gray-scale images because it is the basic image type. All other image types can be illustrated as a gray-scale or a set of gray-scale images. In principle, the image processing methods designed for gray-scale images can be straightforwardly generalized to color and video images by processing each color plane, or image frame separately. Color images consists of several (commonly three) color components (typically RGB or YUV), whereas the number of image frames in a video sequence is practically speaking unlimited.

Good quality photographs needs 24 bits per pixel, which can represent over 16 million different colors. However, in some simple graphical applications the number of colors can be greatly reduced. This would put less memory requirements to the display devices and usually speeds up the processing. For example, 8 bits (256 colors) is often sufficient to represent the icons in Windows desktop if the colors are properly chosen. A straightforward allocation of the 8 bits, e.g. (3, 3, 2) bits to red, green and blue respectively, is not sufficient. Instead, a color palette of 256 specially chosen colors is generated to approximate the image. Each original pixel is mapped to its nearest palette color and the index of this color is stored instead of the rgb-triple (Figure 1.10). GIF images are examples of color palette images.

Binary image is a special case of gray-scale image with only two colors: black and white. Binary images have applications in engineering, cartography and in fax machines. They may also be a result of a thresholding, and therefore a point of further analysis of another non-binary image. Binary images have relatively small storage requirements and using the standard image compression algorithms they can be stored very efficiently. There are special image processing methods suitable only for binary images. The main image types are summarized in Table 1.2.

Table 1.2: Summary of image types.

	Image type
	Typical bpp
	No. of

colors
	Common

file formats

	Binary image
	1
	2
	JBIG, PCX, GIF, TIFF

	Gray-scale
	8
	256
	JPEG, GIF, PNG, TIFF

	Color image
	24
	16.6 ( 106
	JPEG, PNG, TIFF

	Color palette image
	8
	256
	GIF, PNG

	Video image
	24
	16.6 ( 106
	MPEG
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Figure 1.10: Look-up table for a color palette image.

2
Basic image processing operations

In this section we study techniques for resolution enhancement and reduction, adjusting color distribution (histogram and LUT operations), and spatial operations such as filtering and edge detection. We operate with 8 bpp gray-scale images each constrained to the range [0, 255], unless otherwise noted. Generalization to color images will be considered in Section 5.

2.1
Changing resolution

A reduced resolution version of a given image is sometimes needed for a preview purpose, for example. A preview image (or thumbnail) must be small enough to allow fast access but also with sufficient quality so that the original image is still recognizable. A smaller resolution copy is also needed if the image is embedded into another application (or printed) using smaller size as the full resolution would allow. Sometimes the image resolution may be reduced just for saving memory.

Resolution reduction is formally defined as follows: given an image of N SYMBOL 180 \f "Symbol" M pixels, generate an image of size N/c SYMBOL 180 \f "Symbol" M/c pixels (where c is a zooming factor) so that the visual content of the image is preserved as well as possible. There are two alternative strategies: (1) sub sampling, (2) averaging. In both cases, the input image is divided into blocks of c SYMBOL 180 \f "Symbol" c pixels. For each block, one representative pixel is generated to the output image (Figure 2.1). In sub sampling, any of the input pixels is chosen, e.g. the upper leftmost pixel in the block. In averaging, the pixel depends on the values of all input pixels in the block. It could be chosen as the average, weighted average, or the median of the pixels. Averaging results in smoother image whereas sub sampling preserves more details.




Figure 2.1: Changing image resolution by the factor of two.

The resolution of an image must sometimes be increased, e.g. when the image is zoomed for viewing. For each input pixels there are c SYMBOL 180 \f "Symbol" c output pixels to be generated. This is opposite to resolution reduction (see Figure 2.1). A straightforward method simply takes copies of the input pixel but this results in a jagged (blocky) image where the pixels are clearly visible. A more sophisticated method known as bilinear interpolation generates the unknown pixel values by taking the linear combination of the four nearest known pixel values (Figure 2.2). The value of a pixel xi,j at the location (i,j) can be calculated as:











(2.1)
where a, b, c, d are the nearest known pixel values to x; (i and (j define the relative distance from a to x (varying from 0 to 1). The result is a smoother image compared to straightforward copying of a single pixel value. Examples of resolution reduction and resolution increasing by interpolation is illustrated in Figures 2.3 and 2.4.




Figure 2.2: Bilinear interpolation of pixel x using the four known pixels a, b, c, d.
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Figure 2.3: Example of resolution reduction 384(256 ( 48(32: original image (left), resolution reduced by averaging (middle), and by sub sampling (right).
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Figure 2.4: Bilinear interpolation using two 48(32 images obtained using averaging (top), sub sampling (below). Interpolated images: original (left), 92(64 (middle), 192(128 (right).

2.2
Gray-level transforms

A general gray-level transform can be described as


y = f(x)
















(2.2)
where x is the original pixel value and y is the result after transform (Figure 2.5). The function f depends only on the pixel value, and some global information in the image given by the frequency distribution of the pixels (i.e. histogram). The transform can also use prior knowledge of the image given by the user of the image processing application. The transform, however, is independent from the neighboring pixel values. 
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Figure 2.5: Illustration of arbitrary transform (left), identity transform (right).

Constant addition and negation
The simplest form of global transform are constant addition (also known as DC-shift) and negation, see Figures 2.6. The former is used to enhance dark images. The latter can be used for displaying medical images and photographs on screen with monochrome positive film with the idea of using the resulting negatives as normal slides.


Constant addition:

f(x) = x + c









(2.3)

Negation:



f(x) = c - x









(2.4)
Contrast stretching
The visible quality of a low contrast image can be improved by contrast stretching. This is based on an assumption that the dynamic scale, or the relevant information of the image is concentrated between two pixel values x1 and x2, and that these values are already prior knowledge. The scale of the histogram in the range [x1, x2] is enlarged while the scales below x1 and above x2 are compressed, see Figure 2.6.
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Figure 2.6: Constant addition (left), negation (middle), contrast stretching (right).

Range compression
A counter example to the previous situation appear when the dynamic range of an image far exceeds the capability of the display device. In this case only the brightest parts of the image are visible. An effective way to compress the dynamic range of pixel values is to perform the following intensity transform:


Range compression:

f(x) = c SYMBOL 215 \f "Symbol" log( 1 + |x| )







(2.5)
Gray-level slicing
Suppose that the gray-level values that are of particular interest are known. These pixel values can then be separated from the background by the gray-level slicing technique, see Figure 2.7. The method assigns a bright pixel value to the pixels of interest, and a dark value to the rest of the pixels belonging to the "background". In another variant the so-called background pixels are leaved untouched, see Figure 2.7. In the former case, the gray-level slicing technique thus performs a kind of thresholding (see the next paragraph).
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Figure 2.7: Range compression (left), variants of gray-level slicing (middle and right).

Quantization and global thresholding
Quantization is a technique where the number of gray-levels are reduced. Let's suppose an image consisting of 8 bits per pixel and thus having 256 different gray levels. The image can be quantized for example to 16 levels simply by taking the 4 most significant bits of the pixel values. This operation performs a uniform quantization, where the range of each gray-level value is equal, see Figure 2.8. The applications of quantization can be found in image compression. It can also be used as a basic tool in image segmentation, or to help a human observer to detect possible objects in an image that is otherwise not seen because of the smoothness of the image. Quantization generates artificial edges into the images which may be of help in the analysis. Quantization is also necessary when displaying 256-level gray-scale images on a VGA-display that can only show a maximum of 64 gray-levels.

Thresholding performs a two-level quantization of the image, see Figure 2.8. The purpose of thresholding is to classify the image pixels according to some threshold criterion. The operation splits the pixels into two (or more) groups in the same manner as the gray-level slicing.
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Figure 2.8. Quantization (left), thresholding (right).

Histogram equalization
Sometimes the histogram of an image contains mostly dark pixels; this is the case of an insufficiently exposed photograph (Figure 2.9). The image can be enhanced by constant addition but histogram equalization is generally more efficient technique for this purpose (Figure 2.10). It is also applicable whenever the contrast of the image is too small for whatever reason. The idea of the method is to spread the histogram as evenly as possible over the full intensity scale. This is done by calculating cumulative sums of the pixel samples for each gray level value x in the histogram. The sum implies the number of gray levels that should be allocated to the range [0, x], and is proportional to the cumulative frequency t(x), and to the total number of gray levels g:
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(2.6)
Here n is the total frequency, i.e. the number of pixels in the image. An example of histogram equalization is given in Table 2.1 and in Figure 2.10.
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Figure 2.9: Histograms corresponding to four basic image types.

Table 2.1: Example of histogram equalization.

	Original

value

x
	Frequency

#(x)
	Cumulative frequency

t(x)
	New value

f(x)

	0
	1
	1
	0

	1
	9
	10
	2

	2
	8
	18
	5

	3
	6
	24
	7

	4
	1
	25
	7

	5
	1
	26
	8

	6
	1
	27
	8

	7
	1
	28
	8

	8
	2
	30
	9

	9
	0
	30
	9
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Figure 2.10: Example of histogram equalization.
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	original
	constant addition
	negative image
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	range compression
	addition + contrast stretching
	histogram equalization
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	original
	addition + contrast stretching
	range compression
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	original
	contrast stretching to (0, 128(
	histogram equalization


Figure 2.11: Illustrations of some gray-level transforms. Contrast stretching was applied with the factor k=2, range compression factor was c=25, and addition constant 100.

2.3
Filtering

Filtering is an image processing operation where the value of a pixel depends on the values of its neighboring pixels. Each of the pixels are processed separately with a predefined window (or template, or mask). Weighted sum of the pixels inside the window is calculated using the weights given by a mask, see Figure 2.12. The result of the sum replaces the original value in the processed image:



















(2.7)
In the case of border pixels, the part of the mask lying outside of the image is assumed to have the same pixel values as that of the border pixels, see Figure 2.13. Note that the filtering is a parallel operation, i.e. the neighboring values used in the calculations are always taken from the original image, not from the processed image.
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Figure 2.12: General mask for filtering with a 3SYMBOL 180 \f "Symbol"3 window.
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Figure 2.13: Example of filtering operation in the case of border pixel.
Low-pass filtering
Low-pass filtering (or averaging filtering, or smoothing) reduces the high frequency components (or noise) in the image by averaging the pixel values over a small region (block). see Figure 2.14. This reduces noise and makes the image generally smoother, especially near the edges. The level of smoothing can be changed by increasing the size of the window, see Figure 2.15.

High-pass filtering

High-pass filtering is the opposite operation to low-pass filtering. The low frequency components are eliminated and only the high frequency components in the image are retained. The operation can be applied in image enhancement by adding the result of the filtering to the original image. This is known as sharpening. It enhances the pixels near edges and makes it easier to observe details in the image, see Figure 2.16. The use of negative weights in the mask may result in negative values, thus the pixel values must be scaled back to [0, 255].
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Figure 2.14: Masks for low-pass (left) and high-pass filters (right).
Median filtering
Low-pass and high-pass filters (as well as many other filters presented in Section 2.3) are in the class of linear filters; they can always be described by a weighting mask. Median filtering, on the other hand, belong to a class of rank filters. Here the pixels within the window are ranked (or sorted) and the result of the filtering is chosen according to the ordering of the pixel values. In median filtering the new value of a pixel is the median of the pixel values in the window. The parameter of the filtering is the size and the shape of the filtering window (mask).

The median filter is used for removing noise. It can remove isolated impulsive noise and at the same time it preserves the edges and other structures in the image. Contrary to average filtering it does not smooth the edges. Two examples of the so-called salt and pepper noise and their removal are shown in Figure 2.17. In the left image each pixel has been affected by the noise with a probability of 5 %, and in the right example with a probability of 20 %. A pixel that is affected by the noise is replaced either with a black or a white pixel.

Detailed examples of the three filtering schemes are demonstrated in Table 2.2.

Table 2.2: Pixel-level examples of smoothing, sharpening and median filtering.

	ORIGINAL

IMAGE
	
	SMOOTHING
	
	SHARPENING
	
	MEDIAN

FILTERING

	Flat

	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10

	Random texture

	11
	13
	18
	16
	16
	
	12
	14
	14
	15
	15
	
	1
	8
	50
	23
	28
	
	11
	13
	13
	16
	16

	14
	11
	13
	12
	12
	
	14
	15
	15
	15
	14
	
	10
	0
	0
	0
	0
	
	14
	14
	13
	16
	16

	19
	18
	19
	12
	17
	
	15
	15
	14
	14
	13
	
	52
	44
	62
	0
	53
	
	14
	14
	13
	13
	12

	14
	15
	13
	15
	10
	
	15
	16
	15
	15
	14
	
	2
	7
	0
	16
	0
	
	14
	15
	15
	15
	14

	13
	13
	19
	15
	14
	
	13
	15
	15
	15
	13
	
	9
	0
	53
	16
	19
	
	13
	13
	15
	15
	14

	Two impulses

	10
	10
	10
	10
	10
	
	11
	11
	11
	10
	10
	
	0
	0
	0
	10
	10
	
	10
	10
	10
	10
	10

	10
	20
	10
	10
	10
	
	11
	11
	11
	10
	10
	
	0
	100
	0
	10
	10
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	11
	11
	12
	11
	11
	
	0
	0
	0
	0
	0
	
	10
	10
	10
	10
	10

	10
	10
	10
	20
	10
	
	10
	10
	11
	11
	11
	
	10
	10
	0
	100
	0
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	10
	10
	11
	11
	11
	
	10
	10
	0
	0
	0
	
	10
	10
	10
	10
	10

	Line (horizontal)

	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	13
	13
	13
	13
	13
	
	0
	0
	0
	0
	0
	
	10
	10
	10
	10
	10

	20
	20
	20
	20
	20
	
	13
	13
	13
	13
	13
	
	80
	80
	80
	80
	80
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	13
	13
	13
	13
	13
	
	0
	0
	0
	0
	0
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10

	Edge (vertical)

	10
	10
	10
	20
	20
	
	10
	10
	13
	17
	20
	
	10
	10
	0
	50
	10
	
	10
	10
	10
	20
	20

	10
	10
	10
	20
	20
	
	10
	10
	13
	17
	20
	
	10
	10
	0
	50
	10
	
	10
	10
	10
	20
	20

	10
	10
	10
	20
	20
	
	10
	10
	13
	17
	20
	
	10
	10
	0
	50
	10
	
	10
	10
	10
	20
	20

	10
	10
	10
	20
	20
	
	10
	10
	13
	17
	20
	
	10
	10
	0
	50
	10
	
	10
	10
	10
	20
	20

	10
	10
	10
	20
	20
	
	10
	10
	13
	17
	20
	
	10
	10
	0
	50
	10
	
	10
	10
	10
	20
	20

	Edge (horizontal)

	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	10
	
	13
	13
	13
	13
	13
	
	0
	0
	0
	0
	0
	
	10
	10
	10
	10
	10

	20
	20
	20
	20
	20
	
	17
	17
	17
	17
	17
	
	50
	50
	50
	50
	50
	
	20
	20
	20
	20
	20

	20
	20
	20
	20
	20
	
	20
	20
	20
	20
	20
	
	10
	10
	10
	10
	10
	
	20
	20
	20
	20
	20

	Edge (diagonal)

	10
	10
	10
	10
	10
	
	10
	10
	10
	11
	12
	
	10
	10
	10
	0
	0
	
	10
	10
	10
	10
	10

	10
	10
	10
	10
	20
	
	10
	10
	11
	13
	16
	
	10
	10
	0
	0
	60
	
	10
	10
	10
	10
	20

	10
	10
	10
	20
	20
	
	10
	11
	13
	17
	19
	
	10
	0
	0
	50
	30
	
	10
	10
	10
	20
	20

	10
	10
	20
	20
	20
	
	11
	13
	17
	19
	20
	
	0
	0
	50
	30
	20
	
	10
	10
	20
	20
	20

	10
	20
	20
	20
	20
	
	12
	16
	19
	20
	20
	
	0
	60
	30
	20
	20
	
	10
	20
	20
	20
	20

	Slope (horizontal)

	10
	12
	14
	16
	18
	
	11
	12
	14
	16
	17
	
	4
	12
	14
	16
	24
	
	10
	12
	14
	16
	18

	10
	12
	14
	16
	18
	
	11
	12
	14
	16
	17
	
	4
	12
	14
	16
	24
	
	10
	12
	14
	16
	18

	10
	12
	14
	16
	18
	
	11
	12
	14
	16
	17
	
	4
	12
	14
	16
	24
	
	10
	12
	14
	16
	18

	10
	12
	14
	16
	18
	
	11
	12
	14
	16
	17
	
	4
	12
	14
	16
	24
	
	10
	12
	14
	16
	18

	10
	12
	14
	16
	18
	
	11
	12
	14
	16
	17
	
	4
	12
	14
	16
	24
	
	10
	12
	14
	16
	18
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Original image "airplane" (512SYMBOL 180 \f "Symbol"512SYMBOL 180 \f "Symbol"8)
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Smoothed by 3SYMBOL 180 \f "Symbol"3 averaging filter



Smoothed by 5SYMBOL 180 \f "Symbol"5 averaging filter
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Smoothed by 7SYMBOL 180 \f "Symbol"7 averaging filter



Smoothed by 15SYMBOL 180 \f "Symbol"15 averaging filter

Figure 2.15: Example of smoothing.
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Original image "airplane" (512SYMBOL 180 \f "Symbol"512SYMBOL 180 \f "Symbol"8)



Sharpened by 3SYMBOL 180 \f "Symbol"3 window
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Original image "xray" (512SYMBOL 180 \f "Symbol"512SYMBOL 180 \f "Symbol"8)



Sharpened by 3SYMBOL 180 \f "Symbol"3 window
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Original image "sample-1" (200SYMBOL 180 \f "Symbol"200SYMBOL 180 \f "Symbol"8)


Sharpened by 3SYMBOL 180 \f "Symbol"3 window

Figure 2.16: Example of sharpening.
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Salt & pepper noise (5 %)





Salt & pepper noise (20 %)
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Smoothed by 3SYMBOL 180 \f "Symbol"3 window





Smoothed by 3SYMBOL 180 \f "Symbol"3 window
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Median filtered by 3SYMBOL 180 \f "Symbol"3 window



Median filtered by 3SYMBOL 180 \f "Symbol"3 window

Figure 2.17: Example of noise removing by smoothing and median filtering.

2.4
Detection of discontinuities

Discontinuities (such as isolated points, thin lines and edges in the image) can be detected by using similar masks as in the low- and high-pass filtering. The absolute value of the weighted sum given by equation (2.7) indicates how strongly that particular pixel corresponds to the property described by the mask; the greater the absolute value, the stronger the response. 

Point detection
The mask for detecting isolated points is given in Figure 2.18. A point can be defined to be isolated if the response by the masking exceed a predefined threshold:




















(2.8)
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Figure 2.18: Mask for detecting isolated points.

Line detection
In principle, line detection is identical to point detection. Instead of one mask, four different masks must be used to cover the four primary directions (horizontal, vertical and two diagonals), see Figure 2.19. Note that the result of the operation only indicates for that particular pixel only, whether it is in a line (corresponding to its local neighborhood). More global approach to line detection is given in Section 3.




Figure 2.19 Masks for line detection.

Edge detection
The most important operation to detect discontinuities is edge detection. Edge is defined here as the boundary between two regions with relatively distinct gray-level properties. Therefore it can be given by the first derivate. This is done by calculating the gradient of the pixel relative to its neighborhood. A good approximation of the first derivate is given by the two Sobel operators of Figure 2.20 with the advantage of a smoothing effect. Because derivatives enhance noise, the smoothing effect is a particularly attractive feature of the Sobel operators.

The gradients are calculated separately for horizontal and vertical directions:














(2.9)













(2.10)
It is a common practice to approximate the overall gradient by taking the sum of the absolute values of these two:
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(2.11)
The direction of the gradient is:



















(2.12)

The second derivate can be approximated by the Laplacian mask given in Figure 2.21. The drawbacks of Laplacian are its sensitivity to noise and incapability to detect the direction of the edge. On the other hand, because it is the second derivate it produces double peak (positive and negative impulse). By Laplacian, we can detect whether the pixel lies in the dark or bright side of the edge. This property can be used in image segmentation.
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Figure 2.20: Sobel masks for edge detection.


Figure 2.21: Mask for Laplacian















(second derivate).

Table 2.3: Pixel-level examples of point, line and edge detection.

	ORIGINAL

IMAGE
	
	POINT

DETECTION
	
	LINE (x)

DETECTION
	
	EDGE (x)

DETECTION

	Flat

	10
	10
	10
	10
	10
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	Random noise

	11
	13
	18
	16
	16
	
	-10
	-5
	32
	7
	12
	
	-4
	4
	11
	13
	12
	
	7
	-6
	-16
	-17
	-16

	14
	11
	13
	12
	12
	
	-4
	-37
	-15
	-27
	-22
	
	-13
	-22
	-24
	-24
	-22
	
	29
	19
	3
	-6
	-1

	19
	18
	19
	12
	17
	
	33
	26
	43
	-15
	36
	
	30
	32
	19
	21
	21
	
	4
	8
	7
	4
	-3

	14
	15
	13
	15
	10
	
	-12
	-8
	-22
	1
	-34
	
	-9
	-17
	-10
	-20
	-19
	
	-23
	-16
	-2
	3
	-6

	13
	13
	19
	15
	14
	
	-4
	-15
	34
	1
	5
	
	-4
	3
	4
	10
	8
	
	-5
	1
	10
	10
	12

	Two impulses

	10
	10
	10
	10
	10
	
	-10
	-10
	-10
	0
	0
	
	-10
	-10
	-10
	0
	0
	
	10
	20
	10
	0
	0

	10
	20
	10
	10
	10
	
	-10
	80
	-10
	0
	0
	
	20
	20
	20
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	-10
	-10
	-20
	-10
	-10
	
	-10
	-10
	-20
	-10
	-10
	
	-10
	-20
	0
	20
	10

	10
	10
	10
	20
	10
	
	0
	0
	-10
	80
	-10
	
	0
	0
	20
	20
	20
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	0
	0
	-10
	-10
	-10
	
	0
	0
	-10
	-10
	-10
	
	0
	0
	-10
	-20
	-10

	Line (horizontal)

	10
	10
	10
	10
	10
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	-30
	-30
	-30
	-30
	-30
	
	-30
	-30
	-30
	-30
	-30
	
	40
	40
	40
	40
	40

	20
	20
	20
	20
	20
	
	60
	60
	60
	60
	60
	
	60
	60
	60
	60
	60
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	-30
	-30
	-30
	-30
	-30
	
	-30
	-30
	-30
	-30
	-30
	
	-40
	-40
	-40
	-40
	-40

	10
	10
	10
	10
	10
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	Edge (vertical)

	10
	10
	10
	20
	20
	
	0
	0
	-30
	30
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	20
	20
	
	0
	0
	-30
	30
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	20
	20
	
	0
	0
	-30
	30
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	20
	20
	
	0
	0
	-30
	30
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	20
	20
	
	0
	0
	-30
	30
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	Edge (horizontal)

	10
	10
	10
	10
	10
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	10
	10
	10
	10
	
	-30
	-30
	-30
	-30
	-30
	
	-30
	-30
	-30
	-30
	-30
	
	40
	40
	40
	40
	40

	20
	20
	20
	20
	20
	
	30
	30
	30
	30
	30
	
	30
	30
	30
	30
	30
	
	40
	40
	40
	40
	40

	20
	20
	20
	20
	20
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	Edge (diagonal)

	10
	10
	10
	10
	10
	
	0
	0
	0
	-10
	-20
	
	0
	0
	0
	-10
	-20
	
	0
	0
	0
	10
	30

	10
	10
	10
	10
	20
	
	0
	0
	-10
	-30
	40
	
	0
	0
	-10
	0
	10
	
	0
	0
	10
	30
	40

	10
	10
	10
	20
	20
	
	0
	-10
	-30
	30
	10
	
	0
	-10
	0
	0
	10
	
	0
	10
	30
	30
	10

	10
	10
	20
	20
	20
	
	-10
	-30
	30
	10
	0
	
	-10
	0
	0
	10
	0
	
	10
	30
	30
	10
	0

	10
	20
	20
	20
	20
	
	-20
	40
	10
	0
	0
	
	10
	10
	10
	0
	0
	
	10
	20
	10
	0
	0

	Slope (horizontal)

	10
	12
	14
	16
	18
	
	-6
	0
	0
	0
	6
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	12
	14
	16
	18
	
	-6
	0
	0
	0
	6
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	12
	14
	16
	18
	
	-6
	0
	0
	0
	6
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	12
	14
	16
	18
	
	-6
	0
	0
	0
	6
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0

	10
	12
	14
	16
	18
	
	-6
	0
	0
	0
	6
	
	0
	0
	0
	0
	0
	
	0
	0
	0
	0
	0
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Original image






Gx-gradient
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Figure 2.22: Example of Sobel operators.

3
Segmentation

Segmentation is often the first phase in image analysis. Its primary purpose is to divide the image into certain basic elements. What these elements (segments) are, depends on the application. In air-to-ground images it may be sufficient to separate a road from the environment and the vehicles moving on the road. Automatic image segmentation is one of the most difficult tasks in image processing.

Segmentation algorithms for monochrome images (gray-scale images) generally are based on one or two basic properties of gray-level values: discontinuity and similarity. The basic image processing operations for detecting discontinuities was presented in Section 2.3. The similarity-based segmentation algorithms are based either on thresholding, region growing, or region splitting and merging. Formally image segmentation can be defined as a process that divides the image R into regions R1, R2, ... Rn such that:


SYMBOL 183 \f "Symbol" The segmentation is complete: 



SYMBOL 183 \f "Symbol" Each region is uniform.


SYMBOL 183 \f "Symbol" The regions do not overlap each other: 



SYMBOL 183 \f "Symbol" The pixels of a region have a common property: 



SYMBOL 183 \f "Symbol" Neighboring regions have different properties: 


Let continue by presenting a few techniques that are used in image segmentation.

3.1
Regular block decomposition

The easiest way to segment an image is to divide it into blocks with regular shapes. The shape is often fixed throughout the image and the segmentation is based on varying the size of the blocks. These techniques are often found in image compression methods that do not require a perfect segmentation of the image, rather than aims at minimizing the contrast (variance) within the blocks.

Quadtree segmentation

Quadtree segmentation begins with only one segment which is the entire image. Let the size of the image be nSYMBOL 180 \f "Symbol"n pixels. The image is then recursively split into four equally sized sub-blocks of size 
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 until the blocks meet a predefined uniformity criterion. This criterion is generally the variance of the pixels in the block. The block is considered homogenous if its variance is below a predefined threshold , otherwise it is divided into sub blocks. See Figure 3.1 for an example of a quadtree, and Figure 3.2 for a quadtree segmentation applied to the image Camera.


[image: image101.wmf]
Figure 3.1: Example of quadtree data structure.
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Figure 3.2: Example of quadtree segmentation based on variance criterion.

Binary tree segmentation

Binary-tree segmentation is closely related to quadtree segmentation. Here the region splitting is performed by dividing the blocks to not four but two equal sized sub blocks. The direction of the splitting varies so that the blocks at the first level (=the whole image) are divided in horizontal direction. At the second level the splitting is performed in vertical direction, then at the third level again in horizontal direction, and so on. By this way the blocks are always square, or rectangular with the dimension of 2:1.

The threshold criterion can also be variance as in quadtree segmentation. Any other suitable criterion, however, can be applied both in quadtree and binary tree segmentation, as well as in the polygon segmentation to be presented next.

Polygon segmentation

A generalization of binary tree segmentation is established if the blocks are allowed to be split within any directions, not just in horizontal and vertical directions. A straight line can be drawn from any border pixel of the region to any other border pixel, see Figure 3.3. This line splits the region into two sub regions. The resulting regions are always polygons, thus the method is called polygon segmentation.
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Figure 3.3: Example of splitting a polygon block.

To select the best possible line for splitting, all possible border pixel pairs must be considered. Among the several candidate lines, the one is chosen which yields smallest overall variance of the two resulting sub blocks. This is because the aim of the segmentation is to minimize the variance of each block. The operation, on the other hand, is computationally demanding and requires


















(3.1)
tests in the worst case, where n is the number of border pixels in the region. A variant of the polygon segmentation limits the possible directions of the lines to four in the set of (0SYMBOL 176 \f "Symbol", 45SYMBOL 176 \f "Symbol", 90SYMBOL 176 \f "Symbol", 135SYMBOL 176 \f "Symbol"). By this way we only need to test at most 4 counter-pairs for each border pixel of the block, taking O(n) time in total. The lines can still begin anywhere in the region border. The resulting regions are always polygons having at most 8 border lines. See Figure 3.4 for an example of polygon segmentation of this kind. The degree of freedom in the splitting is always a trade-off between a good segmentation and computation time.
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Figure 3.4: Example of polygon segmentation based on variance criterion.

3.2
Splitting and merging

The quadtree segmentation, for example, is a simple but still powerful tool for image decomposition. The resulting segmentation, on the other hand, contains neighboring regions having similar values, thus contradicting the last requirement of the image segmentation (neighboring regions should have different properties). The regular block decomposition techniques of Section 3.1. thus are not sufficient alone, at least if the formal requirements of segmentation are wanted to be met. To overcome this drawback, the block decomposition techniques can be augmented by a second phase called merging. The overall algorithm is thus called splitting and merging technique.

An example of quadtree-based split and merge is given in Figure 3.5. In the first phase the image is decomposed into four sub blocks (a), which are then further divided, except the top leftmost block (b). At the third phase the splitting phase is completed (c). At the merging phase the neighboring blocks that are uniform and have the same color are merged together. The segmentation results to only two regions (d), which is ideal in this favorable example.
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Figure 3.5: Example of quadtree based splitting and merging.

3.3
Region growing

Region growing (or pixel aggregation) starts from an initial region, which can be a group of pixels (or a single pixel) called seed points. The region is then extended by including new pixels into it. The included pixels must be neighboring pixels to the region and they must meet a uniform criterion. The growing continues until a stopping rule takes effect, see Figure 3.6 as an example. The region growing has several practical problems:


SYMBOL 183 \f "Symbol" how to select the seed points


SYMBOL 183 \f "Symbol" growing rule (or uniform criterion)


SYMBOL 183 \f "Symbol" stopping rule.

All of these parameters depend on the application. In the infra-red images in military applications the interesting parts are the areas which are hotter compared to their surroundings, thus a natural choice for the seed points would be the brightest pixel(s) in the image. In interactive applications the seed point(s) can be given by the user who gives (by pointing with the mouse, for example) any pixels inside the object, and the computer then finds the desired area by region growing algorithm.

The growing rule can be the differences of pixels. The value of the pixel in consideration can be compared to the value of its nearest neighbor inside the region. If the difference does not exceed a predefined threshold the pixel is attended to the region. The comparison can also be made to the average value of the region, though the local comparison criteria has found to be superior in the Cell Particle Motion Analysis project, see Section 6. Another criterion is to examine the variance of the region, or gradient of the pixel. Several growing criteria worth consideration are summarized in the following:

Global criteria:

SYMBOL 183 \f "Symbol" Difference between xi,j and the average value of the region.


SYMBOL 183 \f "Symbol" The variance 2 of the region if xi,j is attended to it.

Local criteria:

SYMBOL 183 \f "Symbol" Difference between xi,j and the nearest pixel inside the region.

SYMBOL 183 \f "Symbol" The variance of the local neighborhood of pixel xi,j. If the variance is low enough (meaning that the pixel belongs to a homogenous area) it will be attended to the region.

SYMBOL 183 \f "Symbol" Gradient (see Section 2.3) of the pixel. If it is small enough (meaning that the pixel does not belong to an edge) it will be attended to the region.

The growing will stop automatically when there are no more pixels that meet the uniform criterion. The stopping can also take effect whenever the size of the region gets too large (assuming a priori knowledge of the object's preferable size). The shape of the object can also be used as a stopping rule, however, this requires some form of pattern recognition and prior knowledge of the object's shape.
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initial pixel
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after 25 pixels
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after 100 pixels
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after 500 pixels
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after 1000 pixels
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final region


Figure 3.6: Example of region growing.

3.4
Edge following algorithm

If it is known that an object in an image has a discrete edge all around it, it is then possible to follow the edge around the object and get back to the beginning. It is assumed that a position on the edge of a region has been identified (i, j) which is the starting point of the algorithm. A simple edge following algorithm based on Sobel gradients is described as follows.

Algorithm for edge following:
1. Check the neighbors of the starting pixel:


(a) Choose the three with the greatest (absolute) gradient magnitude.


(b) Sort the pixels into descending order and store them into an array as a triple.


(c) Choose the one with the greatest magnitude.


(d) Set dir as the direction according to Figure 3.7.

(e) Go one step forward in direction dir.

2. REPEAT UNTIL back at starting pixel, or list is empty:


(a) Mark the current pixel as visited.


(b) Check the three neighboring pixels in directions: dir, dir-1, dir+1 (mod 8).


(c) Sort the pixels into descending order and store them into an array as a triple.


(d) Choose the one with the greatest magnitude.


(e) REPEAT UNTIL suitable pixel found:



IF the candidate pixel is unvisited and its gradient is high enough, THEN



- Pixel OK



- Remove the pixel from the list



ELSE IF more candidate pixels in the triple, THEN




- Take the next pixel from the triple



ELSE




- Remove the empty triple




- Move one position back in the array

(f) Go one step forward in direction dir.
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Figure 3.7: Numbering of the directions.

An example of the edge following algorithm is given in Table 3.1. Here the pixel (x,y) with the greatest gradient is chosen as the seed: (4,4)=76. A threshold value 20 is assumed (only gradients exceeding this threshold are considered as edge pixels). At the first stage the three pixels with the greatest gradients are chosen: (4,3), (5,3), and (3,4) in that order. When two or three pixels have equal values, row-major order is assumed in the ordering. The pixel (4,3) is first chosen, however, the following pixels (3,2), (4,2), and (5,2) fail the test and pixel (4,3) is therefore dropped. The next candidate (5,3) produces candidates (6,3), (5,2), and (6,2), from which the first is chosen. The detailed execution of the algorithm is given in Table 3.2.

Table 3.1: Example of edge following algorithm: original image superimposing the object (left); gradients of the pixels superimposing the result of the edge following (right).

	Original image
	
	Sobel gradients

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	1
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	
	1
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	2
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	
	2
	-
	16
	16
	16
	16
	16
	16
	16
	16
	-

	3
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	
	3
	-
	16
	36
	56
	56
	56
	40
	20
	16
	-

	4
	11
	12
	13
	24
	25
	26
	27
	18
	19
	20
	
	4
	-
	16
	56
	76
	56
	56
	60
	40
	16
	-

	5
	12
	13
	14
	25
	26
	27
	28
	19
	20
	21
	
	5
	-
	16
	56
	56
	16
	4
	44
	24
	16
	-

	6
	13
	14
	15
	26
	27
	28
	19
	20
	21
	22
	
	6
	-
	16
	56
	56
	4
	44
	44
	4
	16
	-

	7
	14
	15
	16
	27
	28
	19
	20
	21
	22
	23
	
	7
	-
	16
	40
	60
	44
	44
	4
	16
	16
	-

	8
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	
	8
	-
	16
	20
	40
	24
	4
	16
	16
	16
	-

	9
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	
	9
	-
	16
	16
	16
	16
	16
	16
	16
	16
	-

	10
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	
	10
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-


Table 3.2: Detailed execution of the edge following algorithm.

	Step
	1st candidate
	2nd candidate
	3rd candidate

	1
	(4,3)=56
	(5,3)=56
	(3,4)=56

	2
	(3,2)=16
	(4,2)=16
	(5,2)=16

	3
	(6,3)=56
	(5,2)=16
	(6,2)=16

	4
	(7,4)=60
	(7,3)=40
	(7,2)=16

	5
	(7,5)=44
	(8,4)=40
	(8,5)=24

	6
	(6,6)=44
	(7,6)=44
	(8,6)=4

	7
	(5,7)=44
	(6,7)=44
	(5,6)=4

	8
	(4,7)=60
	(4,8)=40
	(5,8)=24

	9
	(3,6)=56
	(3,7)=40
	(3,8)=20

	10
	(3,5)=56
	(2,5)=16
	(2,6)=16

	11
	(4,4)=76
	(3,4)=56
	(2,4)=16


3.5
Edge linking

Edge pixels can be linked simply by comparing their gradient information. Edge linking uses the gradient information given by Sobel operation. Two pixels are defined to be similar if their gradient magnitudes and their gradient directions are close enough to each other:

















(3.2)
















(3.3)
Here T and A are predefined threshold values. Pixels found to be similar are linked together by drawing a straight line between them. The algorithm operates in a local 5SYMBOL 180 \f "Symbol"5, or 7SYMBOL 180 \f "Symbol"7 pixel window. The center pixel is compared against the other pixels in the window. If the compared pixels are similar they are linked together. The window is then moved by one position to right and the center pixel of the next window is processed. Note that the algorithm considers the edge pixels only, i.e. the pixels whose gradient magnitude does not exceed a predefined threshold are ignored.

See Figure 3.8 for an example of edge linking. Here the resulting image is post-processed by deleting isolated short elements and linking edge segments separated by small breaks.

[image: image115.png]



Figure 3.8: Example of edge linking: (a) original image; (b) Gy-component; (c) Gx‑component; (d) result of edge linking.

3.6
Thresholding

Suppose that the image consists of one or more objects and background, each having distinct gray-level values. The purpose of thresholding is to separate these areas from each other by using the information given by the histogram of the image. If the object and the background have clearly uniform gray-level values, the object can easily be detected by splitting the histogram using a suitable threshold value, see Figure 3.9. The threshold is considered as a function of:


















(3.4)
where i and j are the coordinates of the pixel, xi,j is the intensity value of the pixel, and p(i, j) is a function describing the neighborhood of the pixel (e.g. the average value of the neighboring pixels). The thresholding can be performed by:

















(3.5)
An example of thresholding is shown in Figure 3.10, and the corresponding histogram in Figure 3.11.
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Figure 3.9: Histogram partitioned with one threshold (left),and with two thresholds right).

The thresholding can be classified according to the parameters it depends on:


Thresholding:
Effective parameters:


Global


xi,j

Local


xi,j , p(i, j)


Dynamic

xi,j , p(i, j) , i , j 

In practice, the processed images are rarely taken in perfect illumination conditions, thus the object is hardly recognizable only by analyzing the global histogram of the image. An image can be defined as consisting of two components: illuminance I(i, j) and reflectance R(i, j). The first component corresponds to the amount of light striking the object at a given position. The latter component corresponds to the surface of the object; how much it reflects light. The perceived image is the product of these two components: xi,j = I(i, j)  R(i, j), see Figure 3.12. If the illumination component is known, it can be easily eliminated, but this is rarely the case.
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Original gray-scale image (0..255)
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Thresholded with T = 150
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Thresholded with T = 200
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Thresholded with T = 250


Figure 3.10: Example of thresholding with fixed threshold value.
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Figure 3.11: Example of histogram with two overlapping peaks.

For a given histogram, a threshold value can be calculated by an iterative method as described below. The method aims at minimizing the pixel variances inside the two segments. The algorithm starts by taking the average value of the pixels as a tentative threshold T. The image is the segmented into two parts and the average values (

 and 

) of the two segments are calculated (n1 and n2 are the number of pixels in the two segments). New threshold value T is taken as the average of 

 and 

, and the segmentation is redone. The process is then repeated until the threshold value T (and therefore segmentation) does not change. The iterative method does not necessarily give the optimal threshold value but it is practical, and in most cases sufficiently good.

Iterative method for calculating threshold:
	
Initialize: T = 



REPEAT



- Segment the image using T.



- Calculate segment averages: 

  and  




- Recalculate threshold: 



UNTIL T does not change.


Dynamic thresholding works. The first phase of the algorithm is to divide the image into 7SYMBOL 180 \f "Symbol"7 blocks. For each block a local histogram is calculated, and the blocks having a bimodal histogram (as in Figure 3.12b) are further examined. At the second phase threshold values are calculated for each of these blocks using the method presented in [Gonzalez & Woods, 1992, pp. 447‑450]. Thresholds for the other (non-bimodal) blocks are then determined by using bilinear interpolation (extract formulation of interpolation is passed here). The threshold of each block is assigned to the center pixel of the block, and a pixel-level interpolation is used to derive thresholds for the rest of the pixels on the basis of the thresholds of the center pixels. At this stage each pixel of the image has its own threshold value. Finally, the image pixels are thresholded with (3.5) according to their threshold values.

[image: image123.png]



Figure 3.11: (a) Computer generated reflectance function; (b) histogram of reflectance function; (c) computer generated illumination function; (d) image produced by the product of the illumination and reflectance function; (e) histogram of the image.

(From: Gonzalez and Woods [1992])

3.7
Hough transform

Suppose that we have an image consisting of several samples of a straight line, see Figure 3.12. Hough [1962] proposed a method (commonly referred as Hough transform) for finding the line (or lines) among these samples (or edge pixels). Consider a point (xi, yi). There is an infinite number of lines passing through this point, however, they all can be described by
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(3.6)
This means that all the lines passing (xi, yi) are defined by two parameters, a and b. The equation (3.6) can be rewritten as
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(3.7)
Now, if we consider b as a function of a, where xi and yi are two constants, the parameters can be represented by a single line in the ab-plane. The Hough transform is a process where each pixel sample in the original xy-plane is transformed to a line in the ab-plane. Consider two pixels (x1, y1) and (x2, y2). Suppose that we draw a line L across these points. The transformed lines of (x1, y1) and (x2, y2) in the ab-plane intersect each other in the point (a', b'), which is the description of the line L, see Figure 3.13. In general, the more lines cross point (a, b) the stronger indication that is that there is a line 
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 in the image.

To implement the Hough transform a two-dimensional matrix is needed, see Figure 3.15. In each cell of the matrix there is a counter of how many lines cross that point. Each line in the ab-plane increases the counter of the cells that are along its way. A problem in this implementation is that both the slope (a) and intercept (b) approach infinity as the line approaches the vertical. One way around this difficulty is to use the normal representation of a line:
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(3.8)
Here d represents the shortest distance between origin and the line. SYMBOL 97 \f "Symbol" represents the angle of the shortest path in respect to the x-axis. Their corresponding ranges are SYMBOL 97 \f "Symbol"SYMBOL 206 \f "Symbol"[0, 
[image: image128.wmf]2
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], and SYMBOL 97 \f "Symbol"SYMBOL 206 \f "Symbol"[‑90SYMBOL 176 \f "Symbol", 90SYMBOL 176 \f "Symbol"], where D is the distance between corners in the image.

Although the focus has been on straight lines, the Hough transform is applicable to any other shape. For example, the points lying on the circle

















(3.9)
can be detected by using the approach just discussed. The basic difference is the presence of three parameters (c1, c2, c3), which results in a 3-dimensional parameter space.
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Figure 3.12: Image containing samples of a straight line.
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Figure 3.13: Hough transform: xy-plane (left); ab-plane (right).
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Figure 3.14: Small example of Hough transform.
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Figure 3.15: Quantization of the parameter plane for use in Hough transform.
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Figure 3.16: Normal representation of a line (left); quantization of the SYMBOL 97 \f "Symbol"d-plane into cells.
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