On the splitting method for VQ codebook generation

published in Optical Engineering, 36 (11), 3043-3051, November 1997

Pasi Fränti# , Timo Kaukoranta* and Olli Nevalainen*

Department of Computer Science,

University of Joensuu, P.O. Box 111

FIN-80101 Joensuu, FINLAND

Email: franti@cs.joensuu.fi�*Department of Computer Science,

Turku Centre for Computer Science (TUCS)

University of Turku

Lemminkäisenkatu 14 A

FIN-20520 Turku, FINLAND

��Abstract

The well known LBG algorithm uses binary splitting method for generating initial codebook which is then iteratively improved by GLA. In the present paper we study different variants of the splitting method and its application to codebook generation problem - with and without GLA. A new iterative splitting method is proposed which is applicable to the codebook generation without the use of GLA. Experiments show that the improved splitting method outperforms both GLA and the other existing splitting based algorithms. The best combination uses hyperplane partitioning of the clusters along the principal axis as proposed in (1(, integrated with a local repartitioning phase at each step of the algorithm.

1. Introduction

In this paper we study the codebook generation in vector quantization (VQ) [2]. The aim is to find M representative codevectors for given N training vectors in a K�dimensional Euclidean space (where N>>M) by minimizing the total square error between the training vectors and their nearest codevectors. The codebook is usually generated by generalized Lloyd algorithm (GLA) [3]. It starts with an initial codebook which is then improved iteratively using two optimality criteria in turn until a local minimum is reached.

Splitting problem is an important special case of the codebook generation. The aim is to partition the training vectors into two clusters so that the total square error between the training vectors and their closest cluster centroids is minimized. The number of codevectors is thus M=2. The problem has several applications in:

	(Iterative splitting algorithm for VQ codebook generation (as in this paper).

	(Split-and-merge algorithm for codebook generation (4(.

	(Tree-structured vector quantization (1(.

	(Quantization problem in color image BTC (5(.

	(Any two-class clustering problem.

Here we study the iterative splitting algorithm for VQ codebook generation. The algorithm was originally used only for generating an initial codebook for GLA (3(. It has been later shown that the iterative splitting is applicable also by itself and is able to produce similar to or better codebooks than GLA with less computation (1, 6(.

We propose a new iterative splitting algorithm where the intermediate codebooks are refined by partial remapping after each splitting stage. Since only two new vectors are created, two comparisons are sufficient to reassign each training vector. In a sense, the split operation first makes a rough approximation of the next level codebook which is then fine-tuned by a repartitioning stage. This results in a better codebook with an algorithm that is still faster than GLA.

The rest of the paper is organized as follows. The iterative splitting algorithm is described in Section 2. The selection of the cluster for splitting is briefly discussed in Section 2.1, followed by a detailed treatment of various splitting methods in Sections 2.2 and 2.3. They are classified into two categories: (1) heuristic codevector-based algorithms, (2) partitioning-based algorithms using principal component analysis. The refinement phase is then discussed in Section 2.4. The time complexity of the main variants is analyzed in Section 3, and test results appear in Section 4. Finally, conclusions are drawn in Section 5.

2. Iterative splitting algorithm

The iterative splitting algorithm starts with a codebook of size 1 where the only codevector is the centroid of the training set. The codebook is then iteratively enlarged by a splitting procedure until it reaches the size M. The sketch of the algorithm is as follows:

Iterative splitting algorithm:

	1. Set m=1 and calculate the training set centroid.

	2. Repeat the following until m=M.

		2.1. Select cluster(s) to be split.

		2.2. Split the cluster(s); m(m+1.

		2.3. Refine the partitions and codevectors.

	3. Output the M codevectors.

The main steps of the algorithm are basically the same as in (1, 6, 7(, only the phase 2.3 is new. In the following, the size of an intermediate codebook is denoted by m, and the size of the processed cluster by n.

An important parameter of the algorithm is the number of clusters that will be split at each iteration step. Here we consider two possibilities. In the main variant only one cluster is split at a time. Thus, the algorithm performs M steps in total. Another variant (referred as binary splitting) uses blind recursion and splits all clusters at each step thus taking log M steps (3, 8(. The phase 2.1 can then be omitted.

The benefit of binary splitting is that the resulting tree structure is perfectly balanced. This allows logarithmic time encoding in vector quantization. A well-balanced tree structure is reported to be obtained with an ordinary M step splitting algorithm (1(also; our test results confirm this. Binary splitting is therefore not necessary for this purpose.

Binary splitting was originally used for generating a starting point for GLA (3(. This is because the original method can hardly ever create reasonable codebooks by itself. On the other hand, it has been shown that the M step splitting variant is competitive on its own if a suitable selection method and an efficient splitting operation are applied (1, 6(.

The existing algorithms perform local optimization only. Consider the example of Figure 1 where 2-level splitting is performed for the data. The optimal 3-level clustering is unreachable if the cluster boundary of the first split is not modified. In the method of this paper refine the intermediate codebooks after each splitting phase either by GLA, or by some other means. We will discuss the following variants of the iterative splitting algorithm:

	(Iterative splitting algorithm (Split).

	(Iterative splitting as an initial codebook to GLA (S+GLA)

	(Iterative splitting using GLA at the phase 2.3 (SGLA)

	(Iterative splitting using local repartitioning at the phase 2.3 (SLR)

The experiments in other context have shown that it is often better to integrate GLA with the steps of the algorithm than to apply it separately [9]. The running time, on the other hand, is easily multiplied this way, but there are ways to avoid this problem, see Section 2.4 for the details.

� EMBED Designer ���

Figure 1: A situation where the local optimization fails.

2.1 Selecting the cluster to be split

Four methods are considered here for selecting the cluster to be split. The simplest strategy is to split the cluster with the highest variance [1]. This is a natural choice when minimizing the total square error but its result is suboptimal. Denote the distortion of the processed cluster by D, and the distortions of the two subcluster after the splitting by D1 and D2. It is most likely that D (D1 + D2 but there is no way to know beforehand which cluster yields the greatest improvement in the total distortion.

Another simple heuristics is to select the widest cluster, i.e. the one with the maximal distance of the two furthest vectors in the cluster. The method has its own intuition but (as the previous method) it is not able to detect the bimodality (or multimodality) of the cluster. In fact, it might be a proper choice to split the cluster consisting of two (or more) subclusters. Since this is difficult we therefore try to find the skewest cluster instead. Skewness of a distribution can be measured by calculating the third moment, which weights heavily the distances to the mean. We approximate it by the following formula:

	w = � EMBED Equation.2 ���							(1)

A large value of w indicates a skew distribution of the vectors.

Local optimization strategy considers each cluster and chooses the one decreasing the distortion most [6]. In each iteration only the two newly formed subclusters need to be evaluated because the values for all other clusters are known from the previous iterations. The total number of splitting procedures though is doubled due to the local optimization. The splitting procedure is applied iteratively and there is no guarantee that the local optimization yields a globally optimum solution.

In summary we have discussed four selection methods: the highest variance, the widest cluster, the skewest cluster, and the local optimization strategy. We assume that the criterion of the splitting can be calculated during the splitting operation without extra costs. Thus, the selection can be performed in O(log m) time when using a binary search tree.

2.2 Heuristical codevector-based splitting methods

The are two basic approaches for splitting a cluster: codevector-based (CB) and partitioning-based (PB). In the PB-variant we divide the training vectors into two subclusters and replace the original codevector by the centroids of the two subclusters. In the CB-variant we select two new codevectors by some heuristic method and map the training vectors to the nearest of these new codevectors. The codevector of the original cluster is discarded. The CB�variants will be studied in this section.

In [3], the new codevectors are C-(and C+(, where (is a fixed deviation vector. We fix (=(, i.e. the deviation vector is formed by taking the standard deviation values of the components. Without considering the direction of (this method is of little use. A simpler and better heuristic is to select the two new vectors randomly among the training vectors of the cluster. This seems to work especially well for binary data.

In [4], the original vector is retained and a new vector is the furthest training vector with it. Here we propose a modification to this method denoted the two furthest strategy. It is possible to make an exhaustive search for the pair of training vectors with maximal distance from each other. This naive algorithm takes O(n2K) time, whereas a faster O(nK) algorithm (giving virtually the same result) proceeds by two subsequent steps: (1) find C1 as the furthest vector from the cluster centroid C, (2) find C2 as the furthest vector from C1. The vectors C1 and C2, however, tend to be near the cluster boundaries and the central area is ignored. It is therefore better to calculate the averages of C1 and C, and C2 and C.

Our experiments have indicated that in general it is better to select two new vectors instead of only one, no matter what heuristic is used. In summary we have discussed three heuristic methods: C-(& C+(, two random vectors, and two furthest strategy. A training vector is assigned to the subcluster whose centroid is closer. This takes O(nK) time, which is also the overall time complexity of the CB-based splitting phase.

2.3 Partition-based splitting along the principal axis

In this subsection we will discuss various PB-variants for the splitting phase [1, 8]. They are all based on principal component analysis (PCA) [10, p. 8]. The main idea is to calculate the principal axis of the training vectors. The training vectors are classified by a (K�1)�dimensional hyperplane perpendicular to the principal axis, passing it at a point P (eg. the cluster centroid), see Figure 2. A sketch of the algorithm is as follows:

1. Calculate the principal axis using the power method [11, p. 457].

2. Select the dividing point P at the principal axis.

3. Partition the training vectors according to hyperplane.

4. Calculate two new codevectors as the centroids of the two subclusters.

It takes an O(nK2) time to obtain the principal axis. The calculation of the covariance matrix dominates the running time, see [1]. We propose a faster O(nK) time algorithm where the principal component is approximated for each dimension separately in respect to the dimension with largest variance, and by assuming L1 instead of the L2 distance. The result is slightly worse in MSE-sense. In the following discussions, we will assume the O(nK2) time algorithm unless otherwise noted.

The partitioning is performed by calculating the inner product � EMBED Equation.2 ���(� EMBED Equation.2 ���, where � EMBED Equation.2 ��� is the eigenvector of the principal axis and � EMBED Equation.2 ��� is the vector from the dividing point P to Vi. The sign of the inner product determines the subcluster which Vi is assigned to. The operation of the algorithm is illustrated in Figure 2 for a two-dimensional case.

� EMBED Designer ���

�� EMBED Designer ������ EMBED Designer ����� EMBED Designer �����

Figure 2: The first five iterations of the iterative splitting along the principal axis. Centroid is used as the dividing point. The numbers indicate the total

square error of the partitions ((103).

There are several possibilities for choosing the dividing point along the principal axis. The Cluster centroid is the most natural but not necessarily the best choice. The use of the radius weighted centroid was proposed in [12]. It is calculated similarly as the centroid but the training vectors are weighted proportional to the distance from the original centroid. In this way, vectors far from the centroid contribute more to the choice of dividing point than vectors near the centroid.

In principle, any quantization method of BTC can be applied here, see [13]. We experiment one such method, the middle point of the two furthest. It finds the two vectors whose distance along the principal axis is maximal: argmaxij(|� EMBED Equation.2 ���(� EMBED Equation.2 ����� EMBED Equation.2 ���(� EMBED Equation.2 ���|), and the dividing point P is their average.

All the above PCA-based algorithms take an O(nK2) time but it is not clear which algorithm should be used. It is not even evident that the choice of the dividing point is critical, especially if the partitions are refined after the splitting. Regardless, the optimal algorithm for finding the dividing point [1, 6] is discussed next for completeness.

Let us consider the hyperplanes which are perpendicular to the principal axis of the training vectors. We can obtain optimal partitioning among these hyperplanes by considering each training vector as a tentative dividing point through which the hyper plane passes. The one with the lowest distortion value is selected. This can be implemented by the following exhaustive search algorithm:

1. Calculate the projections � EMBED Equation.2 ���(� EMBED Equation.2 ��� of the training vectors on the principal axis.

2. Sort the training vectors according to their projections.

3. Repeat the following for each training vector Vi:

	3.1. Calculate the two clusters using Vi as the dividing point.

	3.2. Calculate the total distortion values D1 and D2 of the subclusters.

4. Choose the Vi that gives the lowest total distortion D = D1 + D2.

The algorithm starts by assigning all vectors to subcluster 2, and none to subcluster 1. The implementation keeps track of all centroids, the numbers of training vectors assigned to the clusters, and the total distortion (diversity) of all clusters. Thus, D2 is initially the distortion of the entire cluster, and D1=0. In each iteration, one vector (the one corresponding to the tentative dividing point) is removed from subcluster 2 and assigned to subcluster 1. The increase in D1 and decrease in D2 can be calculated by modifying the equation (13) in [14] as follows. The total distortion after the modification is:

	� EMBED Equation.2 ���				(2)

	

Here n1 and n2 are the number of training vectors assigned to the subclusters. The new centroids due to the modification are:

	� EMBED Equation.2 ���								(3)

	� EMBED Equation.2 ���								(4)

These calculations take an O(K) time for one iteration, and O(nK) time in total. Thus, the time complexity of the optimal partitioning (along the principal axis) is O(nK2) + O(n(logn) due to PCA and sorting of the projected values. In most situations K2>logn so the time complexity remains O(nK2). In summary we have discussed four PB-methods which choose the dividing point as: centroid, radius weighted centroid, middlepoint of the furthest, optimal.

The partitioning could be fine-tuned by applying GLA within the cluster as proposed in [1]. There are only two codevectors in the cluster and the number of iterations remains very small (about 3-6 iterations according to our experiments). The GLA, however, is applied only within the cluster without any interaction to the neighboring clusters. This is referred here by intracluster GLA, opposite to the standard, global GLA. A different approach will be taken in the next section.

2.4 Refinement of the intermediate solutions

The splitting operates with one cluster at a time without any interaction with the neighboring clusters. It is likely that some training vectors in the neighboring clusters may become closer to a new codevector than the original one. Thus, the partition boundaries can be improved by a refining operation.

A natural choice is to apply GLA (globally) to the newly created m-level intermediate codebook. Only few GLA iterations are needed in practice but it would still be computationally expensive to apply GLA in each iteration step. Instead, we propose partial remapping of the training vectors. Assume that a training vector Vi was originally mapped to its nearest codevector C. Since only two new codevectors (C1 and C2) have been created, the optimal mapping for Vi is C, C1 or C2. A remapping is performed by checking which one of these is closest to Vi. This takes an O(NK) time. Furthermore, assuming that the original partitioning before split was optimal, the partial remapping performs the partitioning step of GLA.

In the implementation, we also update a sum-vector for each C. Every time the mapping of a training vector Vi will change (eg. from C to C1) we subtract Vi from the sum-vector of C and add it to the sum-vector of C1. A new codebook can thus be calculated at any stage of the algorithm in O(MK) time. This performs the codebook step of GLA.

The subsequent application of partial remapping and calculation of a new codebook practically performs a full GLA iteration in O(NK) time, compared to the O(NMK) time of GLA. This is referred here as local repartitioning. The result of the PCA-based splitting method with partition refinement is illustrated in Figure 3. Compare this to Figure 2.

� EMBED Designer ���

Figure 3: The codevectors and partitions of the PCA-based splitting with local repartitioning. The numbers indicate the total square error of the partitions ((103)

3. Complexity analysis of the iterative splitting algorithm

The iterative splitting algorithm consist of the following three components: selecting the cluster, splitting the cluster, and possible refinements (GLA or local repartitioning). Their time complexities are analyzed next, not for one iteration, but in total. A summary is shown in Table 1. The total running time depends on the training set size (N), the number of iterations (M), the cluster sizes in the splitting phase, and the methods for the steps of the algorithm. Denote the number of clusters by m, and the size of the processed cluster by n at any intermediate stage of the algorithm.

Selection:

Each selection method of Section 2.1 takes an O(log m) time per iteration and an O(M logM) time for M iterations. In binary splitting, no selection phase is needed at all.

Splitting:

The time complexity of the splitting phases depends on the size of the clusters. In the following we will assume that the largest cluster is always split. In the best case a cluster (of size n) will be split into two equal sized (n/2) subclusters. The total number of processed vectors (for the best case) therefore becomes:

	� EMBED Equation.2 ���

	� EMBED Equation.2 ���					(5)

The total running time is O(NK2 logM) for an O(nK2) time splitting algorithm. This holds also for the average case; an intuitive proof follows. Assume that the size of the smaller subcluster in a split has always the same constant of proportion p(n of the n points, for example p=0.25. It can then be shown that the size of the largest cluster (nmax) and the smallest (nmin) in any stage of the algorithm satisfies the following (proof is omitted here):

	� EMBED Equation.2 ���									(6)

Consider any intermediate stage of the algorithm. The cluster sizes obey the following:

	� EMBED Equation.2 ���

	� EMBED Equation.2 ���								(7)

The total number of the processed vectors (for the average case) is therefore:

	� EMBED Equation.2 ���			(8)

Note that this balanced case analysis does not give an exact proof for the general case even though it does provide a strong indication for most variants. In principle, the average case analysis of the famous quicksort algorithm could be applied here, see [15, Chapter 8]. However, the splitting procedure stops already after M iterations whereas quicksort continues the partitioning until all clusters are of size 1. Therefore this analysis would result in an overpessimistic O(NK2 logN) time. Furthermore, it is not possible to give analysis for the general case because it depends on the way the split procedure is designed.

The worst case of the splitting phase is still O(NMK2) in the case where the size of the two subclusters are n-1 and 1. Fortunately this is not common in practical situations; according to our experiments the average case is very close to the best case. For our training sets, each training vector was involved in the splitting process 8 times on an average when M=256.

Refinement:

There are two alternative ways to refine the partitions after the splitting process: (1) inclusion of GLA iterations, and (2) local repartitioning. The application of GLA takes O(GNmK) time for each phase, where G refers to the number of iterations in GLA. Assuming that only a fixed number of GLA iterations is applied (eg. G=2) this is reduced to O(NmK). The total running time of this phase becomes:

	� EMBED Equation.2 ���				(9)

Local repartitioning takes only O(NK) time, see Section 2.4. The total complexity is then O(NMK) which is remarkably lower than if we include the GLA iterations.

In binary splitting, GLA is applied only logM times. The codebook size is doubled before each application of GLA. The time complexity of GLA for binary splitting is therefore:

	� EMBED Equation.2 ���				(10)

The application of the local repartitioning is somewhat problematic in binary splitting because there are not only two, but m new codevectors at each iteration. Therefore each training vector must be compared against all new codevectors, which yields an O(NmK) time algorithm resulting O(NMK) time in total. This is of the same order of magnitude as with the application of GLA iterations.

Summary:

The time complexities of the different components of the iterative splitting algorithm are summarized in Table 1. Using these components we can sum up the running times of the main variants of the algorithm, see Table 2.

Split: Without any refinements the iterative splitting algorithm with PCA takes O(NK2(logM) time, and O(NK(logM) time if the approximative L1 norm is used instead of the PCA.

SLR: The local repartitioning increases the time complexity to O(NMK) which is worse than O(NK(logM), and for typical data (K=16, M=256) worse than O(NK2(logM).

SGLA: If GLA is integrated with the splitting algorithm, the time complexity is O(NM2K). In this case, (log M)-stage binary splitting is faster than the M-stage splitting algorithm. On the basis of these analyses, no variant can be shown to be superior to any other but they are tradeoffs between the speed and quality.

Table 1: Time complexity of the different phases of the algorithm.

��Splitting:�Binary splitting:���Selections:�O(M(logM)�---���Splittings:�(average)

(worst)�O(NK2(logM)

O(NMK2)�O(NK2(logM)

O(NMK2)���GLA iterations:�O(NM2K)�O(NMK)���Local refinement:�O(NMK)�O(NMK)��

Table 2: Time complexity of the different variants.

��with splitting:�with binary splitting:���Split�O(NK2(logM)�O(NK2(logM)���S+GLA�O(GNMK)�O(GNMK)���SGLA�O(NM2K)�O(NMK)���SLR�O(NMK)�O(NMK)��

4. Test results

Three training sets (Bridge, Camera, Lena) were prepared by taking 4(4 pixel blocks from the gray-scale images of Fig. 4. In the following experiments, we fixed the number of codevectors to M=256.

���������Bridge (256�symbol 180 \f "Symbol" \s 10��256)�Camera (256�symbol 180 \f "Symbol" \s 10��256)�Lena (512�symbol 180 \f "Symbol" \s 10��512)��

Figure 4. Training set images.

Among the different cluster selection methods the local optimization strategy is preferred because it has the best speed vs. quality trade-off. The improvement in MSE was 5 % in comparison to the heuristic selection methods on an average, and 15 % in comparison to the binary splitting. At the same time the increase in time was only about 10 % despite that the number of split procedures is doubled. The extra clusters that are only tentatively split tend to appear in the later stages of algorithm when the cluster sizes are radically smaller. In fact, half of the processing time of the splitting phases originates from the first 16 iterations (of 256).

The splitting variants are compared in Table 3. In these comparisons the intracluster GLA was applied as proposed in [1]. In case of PCA-based variants, it gave an improvement of 1 % on average at the cost of a 15 % increase in the running time. In the heuristic variants, the inclusion of the intracluster GLA was vital; reduction in MSE was about 20-80 %. Nevertheless, the PCA-based variants are superior to the heuristic ones.

The running time of the PCA-based splitting variants can be decreased by 50 % if we replace PCA by the faster O(nK)-time approximative algorithm proposed in Section 2.3. The deficiency in MSE remains about 1 % only.

Table 4 summarizes the results of the GLA using different initialization methods. The best splitting refers to the best variant of Table 3. Note that it is precisely the same algorithm as proposed by Wu and Zhang [1]; using local optimization for selection, optimal PCA-based splitting method, and intracluster GLA, but no refinement phase. (The other splitting algorithms found in the literature are inferior variations compared to this method.) A random codebook is created by selecting M random codevectors from the training set (duplicates are not allowed). LBG refers to the binary splitting method as proposed in [3]. GLA was iterated for each initial codebook until no improvement was obtained.

The results of Table 4 show that the best splitting variant is clearly the best method of these for the GLA initialization. Surprisingly, it is also the fastest combination of these. Because GLA is the time critical phase of the algorithm, the time spent for the initialization is of secondary importance. It is therefore better to perform slower but better initialization than e.g. random selection. In this way, the total number of GLA iterations is reduced and the overall running time shortened. For example, the total number of GLA iterations for (Bridge, Camera, Lena) after random initialization was (21, 32, 48) and after splitting (16, 12, 24).

The main variants are compared in Table 5. Split-1 is the best splitting variant of Table 3 and Split-2 refers to our variant in which the PCA has been replaced by the faster approximation algorithm, and the intracluster GLA has been omitted. SLR is the same as Split-2 but it has been augmented by the local repartitioning phase. S+GLA and SLR+GLA are the corresponding Split-1 and SLR algorithms when they have been improved using GLA. SGLA aims at the best quality by applying two (global) GLA iterations after each splitting phase.

The results for Bridge are also shown in Figure 5 to illustrate the time-distortion performance of the algorithms. Two additional methods, Random and R+GLA, refer to the average value of randomly chosen codebooks, and to the standard GLA algorithm using the random codebook as initialization. The proposed SLR algorithm gives better MSE-values than the splitting variants. The running time, on the other hand, is compromized. Even if SLR is asymptotically faster than the methods using GLA, its speed benefit is only about 50 %. Thus, SLR+GLA can be regarded as a good choice if more computation time can be spent. The superiority of any variant is clearly a trade-off between running time and quality.

Table 3: MSE-comparison of the splitting variants (without refinement phase).

�Heuristic algorithms���PCA-based variants������C-�symbol 101 \f "Symbol" \s 10�� & C+�symbol 101 \f "Symbol" \s 10���Two random�Two furthest�Centroid�Radius weighted�Middle point of furthest�Optimal��Bridge�182.80�181.62�181.09�180.80�179.77�178.44�176.96��Camera�85.64�83.24�81.01�80.44�80.63�78.78�76.55��Lena�61.22�59.72�59.89�60.14�59.94�59.64�59.46��

Table 4: Different methods for generating the initial codebook for GLA. The MSE-results for the random initialization are averages of 100 test runs.

��Random�Binary

splitting�Best

splitting���Bridge�179.68�195.59�169.93���Camera�122.61�127.25�74.70���Lena�59.73�62.89�56.24��

Table 5: MSE-comparison of the main variants.

��Split-1�Split-2�SLR�S+GLA�SLR+GLA�SGLA���Bridge�176.96�180.02�170.22�169.93�167.31�165.86���Camera�76.55�78.25�72.98�74.70�71.64�71.05���Lena�59.46�59.91�56.88�56.24�55.68�54.95��

�EMBED Designer \s * mergeformat���

Figure 5: Speed vs. quality trade-off comparison of the main variants (Bridge).

See text for abbreviations.

5. Conclusions

Iterative splitting algorithm was studied. Several ideas for the cluster selection and splitting phase were discussed. The method of Wu and Zhang (1(was found to be the best choice if no refinement phase is used. It includes local optimization for selection, and optimal PCA-based splitting augmented by intracluster GLA. Its drawback is that the splitting is optimized locally within the cluster only.

A local repartitioning phase was proposed for the iterative splitting method. The next level codebook is first prepared by the split operation and then fine-tuned by the local repartitioning. This results in a better codebook with an algorithm that is still faster than GLA. For better results than that, GLA must be included in the algorithm. Either the resulting codebook is used as an initial codebook for GLA, or GLA itself is integrated within each step of the algorithm.

There is still potential to improve the iterative splitting algorithm. The method includes nearest neighbor problem as a basic component in splitting, local repartitioning, and in GLA. Optimal solution is commonly found by exhaustive search. Instead, sophisticated data structures like Kd�tree or neighborhood graph could be used [16]. These methods are suboptimal but their speed advantage may be remarkable. The proposed splitting method is already a compromise between quality and time. Therefore the loss in the quality (due to suboptimal nearest neighbor search) could be compensated by allocating computing resources to other parts of the algorithm. This would make the overall algorithm more complex though.

�References

[1]�X. Wu and K. Zhang, A Better Tree-Structured Vector Quantizer. Proceedings Data Compression Conference, Snowbird, Utah, 392�401, 1991.��[2]�A. Gersho and R.M. Gray, Vector Quantization and Signal Compression. Kluwer Academic Publishers, 1992.��[3]�Y. Linde, A. Buzo and R.M. Gray, An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications, Vol.28 (1), 84-95, January 1980.��[4]�T. Kaukoranta, P. Fränti and O. Nevalainen, Reallocation of GLA codevectors for evading local minima. Electronics Letters, Vol. 32, (17), 1563-1564, August 1996.��[5]�Y. Wu and D.C. Coll Single Bit-Map Block Truncation Coding of Color Images. IEEE Journal on Selected Areas in Communications, Vol. 10 (5), 952�959, June 1992.��[6]�C.�K. Ma and C.�K. Chan, Maximum Descent Method for Image Vector Quantisation. Electronics Letters, Vol. 27 (19), 1772-1773, September 1991.��[7]�C.�K. Chan and C.�K. Ma, Maximum Descent Method for Image Vector Quantisation. IEEE Transactions on Communications, Vol. 42 (2/3/4), 237-242, 1994.��[8]�C.�M. Huang and R.W. Harris, A Comparison of Several Vector Quantization Codebook Generation Approaches. IEEE Transactions on Image Processing, Vol. 2 (1), 108-112, January 1993.��[9]�P. Fränti, J. Kivijärvi, T. Kaukoranta and O. Nevalainen, "Genetic algorithms for codebook generation in vector quantization", Proc. 3rd Nordic Workshop on Genetic Algorithms, Helsinki, Finland, August 1997. (to appear)��[10]�S. Kotz, N.L. Johnson and C.B. Read, (editors) Encyclopedia of Statistical Sciences, Vol. 6, John Wiley Sons, New York, 1985.��[11]�R.L. Burden and J.D. Faires, Numerical Analysis (third edition). Prindle, Weber & Smith, Boston, 1985.��[12]�C.-Y. Yang and J.-C. Ling, Use of Radius Weighted Mean to Cluster Two-Class Data. Electronics Letters, Vol. 30 (10), 757-759, May 1994.��[13]�P. Fränti, O. Nevalainen and T. Kaukoranta, Compression of Digital Images by Block Truncation Coding: A Survey, The Computer Journal, Vol. 37 (4), 308-332, 1994.��[14]�W.H. Equitz, A New Vector Quantization Clustering Algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37 (10), 1568-1575, October 1989.��[15]�T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.��[16]�S. Arya and D.M. Mount, Algorithms for Fast Vector Quantization. Proceedings Data Compression Conference, Snowbird, Utah, 381-390, 1994.�����

The work of Pasi Fränti was supported by a grant of the Academy of Finland.

�PAGE �

�PAGE �15�

