Clustering Methods

Exercises 5/7, 10.4.2017

- 1. Implement one clustering algorithm using one of the tools: **C**, **Java**, **Matlab**, **R**, **Python**, **Excel**. Algorithms available are in the 2nd page. The same algorithm with same language can be implemented only by one student. The ones already existing are not available.
- 2. Upload your program to Sami. (samisi@cs.uef.fi) by 10.4. by 10.00 latest. In your email, have title "Clustering project work".
- 3. Make your program (a) easy-to-read, (b) modular, (c) useful for others.
- 4. Find and remove all bugs found from your implementation. Upload revised version by 31.5.
- 5. Validate that your method by calculating the following measures:

(a) SSE = sum-of-squared error (=TSE)

(b) nMSE = SSE/nd

(c) CI = Centroid index (CI) value

(d) Success = Repeated 100 times. How many times it finds solution with CI=0?

(e) ARI = Adjusted Rand Index (only if you have software for it)

(f) ε = (SSE_x-SSE_{opt})/SSE_{opt} (optional; x=your algorithm, opt=best known)

Example values for K-means: (scaled by 10^p!!!)

Dataset	Clustering quality			Objective function			Best
	Success	CI	ARI	SSE	nMSE	3	Dest
A1	1%	2.5	0.82	1.98	3.31	0.64	1.22
A2	0%	4.5	0.82	3.39	3.23	0.67	2.03
A3	0%	6.6	0.82	4.90	3.27	0.69	2.89
S1	3%	1.8	0.85	18.84	18.84	1.11	8.91
S2	11%	1.4	0.86	19.79	19.79	0.48	13.28
S3	12%	1.3	0.84	19.51	19.51	0.14	16.89
S4	26%	0.9	0.84	17.00	17.00	0.07	15.70
Unbalance	0%	3.9	0.64	2.10	1.61	8.81	0.21
Birch1	0%	6.6	0.85	10.95	5.47	0.18	
Birch2	0%	16.6	0.81	15.75	7.87	2.45	
Dim32	0%	3.6	0.76	16.5	504	68.34	
Average:	5%	4.5	0.81			7.60	

If implemented by C using modules package, all points **double**!

Algorithms

	C	Java	Matlab	Python	Excel
Random Swap					
Genetic Algorithm ¹					
Density peaks ²					
Mean shift ³					
Affinity propagation ⁴					
Stochastic relaxation ⁵					
(more to appear)					

¹P. Fränti, "Genetic algorithm with deterministic crossover for vector quantization", *Pattern Recognition*

Letters, 21 (1), 61-68, 2000 ² A. Rodriquez and A. Laio, Clustering by fast search and find of density peaks, *Science*, 344 (6191), 1492-1496, 2014.

³ Y. Cheng, "Mean shift, mode seeking, and clustering", *IEEE Trans. on Pattern analysis and Machine* Intelligence, 17 (8), 790-799, 1995.

⁴B.J. Frey, D. Dueck, Clustering by passing messages between data points, *Science*, 315 (2007), pp. 972–

⁵K. Zeger and A. Gersho, Stochastic Relaxation Algorithm for Improved Vector Quantiser Design. Electronics Letters, Vol. 25 (14), pp. 896-898, July 1989.