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Outlier detection methods

Distance-based methods
* Knorr & Ng

Density-based methods
 KDIST: Kth nearest distance
« MeanDIST: Mean distance

Graph-based methods
 MKNN: Mutual K-nearest neighbor
* ODIN: Indegree of nodes in k-NN graph



What 1s outlier?

One definition: Outlier is an observation that deviates from
other observations so much that it is expected to be generated
by a different mechanism.
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Distance-based method

[Knorr and Ng , CASCR 1997]

Definition: Data point x is an outlier if at most k points are
within the distance d from x.
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Selection of distance threshold
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Density-based method: KDIST

[Ramaswamy et al., ACIM SIGMOD 2000]

X
» Define KDIST as distance S e s
to the k™ nearest point. Pt
: ] g A :
» Points are sorted by their . WY .
KDIST distance. The last n e B B
points in the list are classified B

as outliers. %




Density-based: MeanDist

[Hautamaki et al., ICPR 2004]

MeanDIST = the mean of k nearest distances.
User parameters: Cutting point k, and local threshold t:

T =max(L, —L_,)-t

Algorithm 2 MeanDIST

Compute 1" using Eq. 1 with {

Calculate kNN graph of S
[, = Sort vectors 1n ascending order by kNN density

Find smallest ? for which L; — L;_1 = T
Mark L;, ..., L g as outliers
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Comparison of KDIST and MeanDIST
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Distribution-based method

[Aggarwal and Yu, ACM SIGMOD, 2001]
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Detection of sparse cells
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Mutual k-nearest neighbor

[Brito et al., Statistics & Probability Letters, 1997]

Generate directed k-NN graph.
Create undirected graph:

1. Points a and b are mutual neighbors if both links

a— b anc
2. Change a

b— a exist.
| mutual links a<>b to undirected link a—Db.

3. Removet

ne rest.

Connected components are clusters.
Isolated points as outliers.



Mutual k-NN example

k=2

1 1. Given a data with one outlier.

2. For each point find two nearest
neighbours and create directed 2-NN
graph.

3. For each pair of points, create link if
both a—b and b—a exist.




ODIN: QOutlier detection using indegree

[Hautamaki et al., ICPR 2004]

Definition: Given kNN graph, classify data point x as an
outlier its indegree < T.

Algorithm 1 ODIN

1" 1s indegree threshold

Calculate kNN graph of S
fori = 1to|S| do
if indegree of v; < 1 then

Mark v; as outher

end if
end for




Examplke_g)f ODIN

Input data

Graph and indegrees




Example E—szA and FR

T False False Detected as outlier
Acceptance | Rejection|  With different threshold

values (T)
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Experiments
Measures

» False acceptance (FA):
— Number of outliers that are not detected.
 False rejection (FR):

— Number of good points wrongly classified as
outlier.

« Half total error rate:
—HTER = (FR+FA) / 2



Comparison of graph-based methods

Name N d | Outhers
HR [12] 47 2 2
KDD [9] | 60318 | 3 486
NHL1 [8] 681 3 2
INHL?2 [8] 731 3 |
synthetic | 5165 | 2 165
Method synthetic KDD HR NHL1 NHL?2
MKNN [1] 50.0 (13) 77.0 (1) 25.0 (5) 25.0 (29) 44.4 (28)
ODIN 9.0 (190,26) 49.6(1,2) 0.0 (7, 1) 0.0 (87, 9) 0.0 (36, 2)
MeanDIST | 4.9 (21, 0.05) | 49.6(232,0.19) | 30.0 (1,0.15) | 16.7(20,0.05) |43.8(1,0.57)
KDIST [11] | 5.7 (12,0.06) | 48.6(72,0.40) |30.0(1,0.15) | 300 (1,0.02) |41.7(7,0.75)




Difficulty of parameter setup

MeanDIST:
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Improved k-means using
outlier removal

o eriglinall o

After 40 iterations

Aftlerl 70 iltelraltiolnsl

At each step, remove m0§t\A

diverging data objects and

construct new clustering.



Example of removal factor
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CERES algorithm

[Hautamaki et al., SCIA 2005]

Algorithm 1 CERES(/,T")
(' «— Initialize codebook
for; — 1.....1do
dmax — max;{||T; — ¢, || }
for: — 1,....N do
0; = ||Ti — p, || /dmax
if o, > 1T then
X — X\ {7}
end if
end for
(C, P) — K-means(X, ()
end for




Experiments

Artificial data sets ‘
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Comparison

Algorithm || Al S3 S4 || M1 | M2 | M3
K-means 60 | 5719 | 7100 | 47 | 32 | 26
EM 525 | 3586 | 3507 || 46 | 49 | 35
CERES 56 | 3329 | 2813 || 45 | 13 | 23
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