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Part I: 
Cut-based clustering



Cut-based clustering

• What is cut?
• Can we used graph theory in clustering?
• Is normalized-cut useful?
• Are cut-based algorithms efficient?



• Clustering method = defines the problem
• Clustering algorithm = solves the problem
• Problem defined as cost function

– Goodness of one cluster
– Similarity vs. distance 
– Global vs. local cost function (what is “cut”)

• Solution: algorithm to solve the problem

Clustering method



• Usually assumes graph
• Based on concept of cut
• Includes implicit assumptions which are often:

– No difference than clustering in vector space
– Implies sub-optimal heuristics
– Sometimes even false assumptions!

Cut-based clustering



• Minimum-spanning tree based clustering (single link)
• Split-and-merge (Lin&Chen TKDE 2005): Split the data set using K- 

means, then merge similar clusters based on Gaussian distribution cluster 
similarity.

• Split-and-merge (Li, Jiu, Cot, PR 2009): Splits data into a large number of 
subclusters, then remove and add prototypes until no change.

• DIVFRP (Zhong et al, PRL 2008): Dividing according to furthest point 
heuristic.

• Normalized-cut (Shi&Malik, PAMI-2000): Cut-based, minimizing the 
disassociation between the groups and maximizing the association within 
the groups.

• Ratio-Cut (Hagen&Kahng, 1992)
• Mcut (Ding et al, ICDM 2001)
• Max k-cut (Frieze&Jerrum 1997)
• Feng et al, PRL 2010. Particle Swarm Optimization for selecting the 

hyperplane.

Cut-based clustering methods

Details to
 be 

added later…



Clustering a graph

But where we 
get this…?



Distance graph

Distance graph
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Calculate from 
vector space!



Space complexity of graph

Distance graph Complete graph

N·(N-1)/2 edges 
= O(N2)
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Minimum spanning tree (MST)

Distance graph MST

Works with simple 
examples like this
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Cut

Graph cut Resulted clusters

Cost function is to 
maximize the 
weight of edges cut

This equals to 
minimizing the 
within cluster 
edge weights



Cut

Graph cut Resulted clusters

Equivalent to 
minimizing MSE!



Stopping criterion 
Ends up to a local minimum
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Clustering method
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Conclusions of “Cut”
• Cut  Same as partition
• Cut-based method  Empty concept
• Cut-based algorithm  Same as divisive
• Graph-based clustering  Flawed concept
• Clustering of graph  more relevant topic



Part II: 
Divisive algorithms



Motivation
• Efficiency of divide-and-conquer approach
• Hierarchy of clusters as a result
• Useful when solving the number of clusters
Challenges
• Design problem 1: What cluster to split?
• Design problem 2: How to split?
• Sub-optimal local optimization at best

Divisive approach



Split(X, M)  C, P 
m  1; 
REPEAT 

Select cluster to be split; 
Split the cluster; 
m  m+1; 
UpdateDataStructures; 

UNTIL m=M; 

Split-based (divisive) clustering



• Heuristic choices:
– Cluster with highest variance (MSE)
– Cluster with most skew distribution (3rd moment)

• Optimal choice:
– Tentatively split all clusters
– Select the one that decreases MSE most!

• Complexity of choice:
– Heuristics take the time to compute the measure
– Optimal choice takes only twice (2) more time!!!
– The measures can be stored, and only two new clusters 

appear at each step to be calculated.

Select cluster to be split

Use this !



Selection example
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… but dividing this 
decreases MSE more



Selection example
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How to split
• Centroid methods:

– Heuristic 1: Replace C by C-
 

and C+
– Heuristic 2: Two furthest vectors.
– Heuristic 3: Two random vectors.

• Partition according to principal axis:
– Calculate principal axis
– Select dividing point along the axis
– Divide by a hyperplane
– Calculate centroids of the two sub-clusters



Splitting along principal axis 
pseudo code

Step 1: Calculate the principal axis.

Step 2: Select a dividing point.

Step 3: Divide the points by a hyper plane.

Step 4: Calculate centroids of the new clusters.



Example of dividing

Dividing hyper plane Pr
in

cip
al

 ax
is



Optimal dividing point 
pseudo code of Step 2

Step 2.1: Calculate projections on the principal axis.
Step 2.2: Sort vectors according to the projection.
Step 2.3: FOR each vector xi DO:

- Divide using xi as dividing point.
- Calculate distortion of subsets D1 and D2 .

Step 2.4: Choose point minimizing D1 +D2 .



Finding dividing point

2
2

2

22
1

1

1

11
' ii vc

n
nvc

n
nDD 







1
'

1

11
1 




n
vcn

c i

1
'

2

22
2 




n
vcn

c i

• Calculating error for next dividing point:

• Update centroids:

Can be done in O(1) tim
e!!!



Sub-optimality of the split

optimal partition
boundary for
2-level clustering



Example of splitting process
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4 clusters 5 clusters

Example of splitting process



6 clusters 7 clusters

Example of splitting process



8 clusters 9 clusters

Example of splitting process



10 clusters 11 clusters

Example of splitting process



12 clusters 13 clusters

Example of splitting process



14 clusters 15 clusters

MSE = 1.94

Example of splitting process



K-means refinement

Result after 
re-partition: 
MSE = 1.39

Result after 
K-means: 
MSE = 1.33

Result directly 
after split: 
MSE = 1.94
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Time complexity
Number of processed vectors, assuming that 
clusters are always split into two equal halves:

Assuming unequal split to nmax and nmin sizes:



Number of vectors processed:
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Comparison of results
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Conclusions
• Divisive algorithms are efficient
• Good quality clustering
• Several non-trivial design choices
• Selection of dividing axis can be improved!
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