Organization of the course

• **175421 (5 ECTS)**
• **Lecturer** – Roman Bednarik, bednarik@cs
• **Lectures** – Mo and Tu, 14-16, room 2d106, in English
 – Introductory lectures
 – Student presentations
 – Project consultations

Organization of the course

• **Demos**
 – Mo 12-14, Tu 12-14, room B180
 – Minnamari Naumanen, Tersia // Gowases

• **Course web page**
 RSS channel
Organization of the course

Grading
- **active participation**
 - Topic presentation: 10%, compulsory
 - Course project: 36%
 - A final exam: 30%
 - Demo tasks – X-tasks: 24%, compulsory
 - Extra demo tasks - max: 10%

- < 50% => fail, 50 – 59.9% => 1, 60 – 69.9% => 2, …. >90% => 5

Topic presentation
- 10%, compulsory
 - List of topics will be circulated
 - Schedule of presentations at the UCD2009 course web-page
 - Can be done alone or in pairs
 - Materials from Roman
 - Discussion in the class after presentation

Course project
- Distributed via www and in demos
- Group work 2-3 persons

X-tasks
- Submit beforehand using email to the demo-teacher
- Will be graded
- Have ready in a paper version for demo session:
 - presentation and discussion is a part of X – task
- Exceptions: if you cannot attend the X-demo agree with demo-teacher beforehand.
Assignment 1.

• Take a break
• Self-organize into 15 groups, now

Relation to other courses

• HCI / IVT (Ihminen ja vuorovaikutteinen teknologia)
 – Basic knowledge about principles of human-computer interaction
 – next time in spring 2009

• Designing graphical UI – implementation of UI from technological perspective

• UCD – User-Centered Design / Käyttäjäkeskeinen suunnittelu
 – How to design interactive products with users

• UE – Usability engineering / Käytettävyystekniikat
 – How to evaluate usability and integrate its methods into the software development – next time in 2010
What is this course about?
• About how to design interactive products that consider
 – Who is going to be using them
 – How they are going to be used
 – Where they are going to be used

What is design
• A conversation between the designer and user
 and between the desired outcomes and unwanted side effects
 – Beale, 2007

Designing software
• Traditional, engineering perspective
 – Software engineering
 • Programming, algorithms, data management, process management
 • Functionality
 – Software engineers similar to civil engineers
 • It is built technically in a proper way = it works, it's safe, it follows standards, no fatal errors, fulfils functional requirements
 – But where is human? Combination of both = UCD.
What is design

- A conversation between the designer and user
- Removing ambiguity
- Creating an opportunity
- Solving a problem – problem solving, often messy
- Searching an abstract state space for “good” solutions
- Defining the inside of a black box

Requirements

- Problem definition
- Assumptions
- Background and context capture
 - Social, physical, organizational, security, political, …
- Users
- Risks

PROBLEM => REQUIREMENTS => ????

Design window

- Designer and User/Client
- Designer transforms the design requirements into the final product.
Design window - risks

- **BIAS**
 - DESIGNER: Known
 - USER / CLIENT: Unknown

- **LOST OPPORTUNITY**
 - DESIGNER: Known
 - USER / CLIENT: Unknown

- **SURPRISE**
 - DESIGNER: Unknown
 - USER / CLIENT: Known

NATURE’S LAST LAUGH
- Nor user neither designer has access of critical information. Nature is hiding and playing a good game with us. Relevant information may never be revealed or only during or after the project, e.g. state-of-art, on-the-edge development.

LOST OPPORTUNITY
- Designer did not manage to obtain relevant information. Major decrease in user-experience, since it is in the field of user expectations.

SURPRISE
- Designer presented features that surprise users, based on information known to designer only. Some surprises can be pleasant, some not that much.
Design window - risks

DESIGNER

KNOWN

UNKNOWN

USER / CLIENT

KNOWN

UNKNOWN

BIAS – All goes OK, lowest risk. Still there is a possibility for human error, misuse of information.

LOST OPPORTUNITY

SURPRISE

NATURE'S LAST LAUGH

USER EXPECTATIONS

More about design

• Design is a social activity – group-work, work with users and clients
• Design has consequences – on people’s lives, designer has a responsibility
• Design is a creative process – envisioning solutions and surprises
Design errors = Usability – user experience problems

- Usability problems are seen as caused design errors.
- Errors can be corrected, if discovered, or can be avoided completely.
 - Errors can be avoided, prevented - UCD
 - Errors can be discovered - UE

Relative Cost to Fix an Error

<table>
<thead>
<tr>
<th>DISCOVERY PHASE</th>
<th>COST RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>1</td>
</tr>
<tr>
<td>Design</td>
<td>3 to 6</td>
</tr>
<tr>
<td>Coding</td>
<td>10</td>
</tr>
<tr>
<td>Development Testing</td>
<td>15 to 40</td>
</tr>
<tr>
<td>Acceptance Testing</td>
<td>30 to 70</td>
</tr>
<tr>
<td>Operation</td>
<td>40 to 1000</td>
</tr>
</tbody>
</table>

User-centered design

- UCD is a philosophy and a set of methods.
- UCD methods place the user in a critical/central position for both determining system requirements and ensuring they are achieved.
UCD at SAP

1. Understand Users
2. Define Interactions
3. Design UI

UCD in ISO 13407

- Human-centred design is an approach to interactive system development that focuses specifically on making systems usable. It is a multi-disciplinary activity. (ISO 13407)

User-centered design

- A wide range of methods practitioners use.
- Goal of design is to avoid usability and user experience problems
- Matured enough to have standards – ISO 13407
Human vs. Machine

Human centered development vs. Machine-centered development (Norman)

<table>
<thead>
<tr>
<th>People</th>
<th>Machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative</td>
<td>Unoriginal</td>
</tr>
<tr>
<td>Compliant</td>
<td>Rigid</td>
</tr>
<tr>
<td>Attentive to change</td>
<td>Insensitive to change</td>
</tr>
<tr>
<td>Resourceful</td>
<td>Powerful, fast</td>
</tr>
<tr>
<td>Emotional</td>
<td>Unimaginative</td>
</tr>
<tr>
<td>Prone to err</td>
<td>Error-free</td>
</tr>
</tbody>
</table>

• Still too many products are made in a machine-centered, technology way => unusable, too many functions, no value to users.

Machines for people, or people for machines?

Design goals - User experience vs Usability

• Usability goals
• User experience goals
Usability

- "Usability: an extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use."
- ISO 9241

Usability goals

- Easy to learn
- Efficient to use
- Easy to remember
- Few errors
- Safe to use
- (Subjectively) pleasing - vague

User experience

- Satisfying
- Enjoyable
- Doing the right job
- Fun
- Helpful
- Apprehensive
- Motivating
- Rewarding
- Supporting creativity
- … and many more
Design goals - User experience vs Usability

- Usability goals –
 - meeting specific criteria
- User experience goals –
 - quality of user experience in every day life applications

Challenges of UCD

- Access to relevant information and users
- Applicability of methods
- Assumptions
- Attitudes
- Conflicting needs of different groups
- Conflicting needs of inclusiveness and equity with efficiency and quality => trade-offs
- Cooperative user – motivation
- Organizational flexibility
- …

- Participation of people in the design of artifacts, services, institutions, technology, media and social movements is key to creating futures that are effective and equitable. (Schuler, 2004).
Gould and Lewis (1985)!

- We recommend that **typical users** (e.g., bank tellers) be used, as opposed to a "group of a variety of experts" (e.g., supervisors, industrial engineers, and programmers). We recommend that these potential users become part of the design team from the very outset when their perspectives can have the most influence, rather than using them post hoc as part of an "analysis team (of) end user representatives."

Origins of PD

- Suom: osallistava suunnittelu (osallistaa, tehdä osalliseksi = to (make to) participate)

- Began in a political context: Scandinavian workplace democracy movement (1960’s – 1970’s)
 - University researchers performed experiments in alliance with organized labor

- Draws upon many fields
 - Graphic design, software engineering, architecture, public policy, psychology, anthropology, sociology, labor studies, political science
What is participation?

• A social process of
 – involving users in the design and development of products – urban areas, software, furniture, shoes, …
• Encouraging ownership of the community

What is participation in software development?

• A social process, too!

• E.g. by using prototypes with real users to drive the development of UI

4 Principles of PD

• Computerization is not to automate human skills but to give the workers better tools for doing their job
 – Exception might be expert systems or systems in which we want automation
4 Principles of PD

• The users knows best how their work and work environment should be improved
 – Designer is a consultant of how to achieve this
 – Users have opportunity to have a say, and they are the experts

4 Principles of PD

• The user’s views and attitudes towards technology are as important to the success as what they can do with the technology
 – Effective system can be useless

4 Principles of PD

• Technology should be considered as processes in the context of workplace
 – Not as an individual product
 – A network of different technologies, organizations, practices, and people, affecting each other
Challenges of PD

• Participation in design can succeed only if it
 – Makes a difference for the users
 – Implementation of the results is likely
 – Is fun

• How to encourage participation?