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ABSTRACT

Deep reinforcement learning has proven to be successful for
learning tasks in simulated environments, but applying same
techniques for robots in real-world domain is more challeng-
ing, as they require hours of training. To address this, transfer
learning can be used to train the policy first in a simulated
environment and then transfer it to physical agent. As the
simulation never matches reality perfectly, the physics, visu-
als and action spaces by necessity differ between these envi-
ronments to some degree. In this work, we study how gen-
eral video games can be directly used instead of fine-tuned
simulations for the sim-to-real transfer. Especially, we study
how the agent can learn the new action space autonomously,
when the game actions do not match the robot actions. Our
results show that the different action space can be learned by
re-training only part of neural network and we obtain above
90% mean success rate in simulation and robot experiments.

Index Terms— deep reinforcement learning, transfer
learning, sim-to-real, reality gap, action space transfer

1. INTRODUCTION

When it comes to training robots to solve a given task with re-
inforcement learning, one feasible way to do so is by training
the policy in a simulation and then using transfer learning [1]
to learn the final policy on the real-world robot; a simulation-
to-real or virtual-to-real transfer [2]. This way we are not hin-
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Fig. 1. A policy was trained in a video game with an action
space consisting of four discrete actions, and then transferred
to a robot with a different action space with small amount of
training on the robot.

dered by expensive and slow robotics experiments. However,
simulating real world accurately is hard if not impossible, and
thus data obtained from simulation may not be directly appli-
cable to real-world robot, a problem termed reality gap [2].
To address this, one can try to create as realistic simulation as
possible, which requires vast amount of time and is costly.

Video games can act as one such simulation: They can be
ran fast, are readily available and are shown to be useful in
control and reinforcement learning research [3, 4]. Software
packages such as ViZDoom [5] are designed for reinforce-
ment learning. When transferring the trained policies from
video games to real-world robots, methods such as domain
randomization [2] can be used to narrow the reality gap be-
tween visual appearances (observations) of the two worlds.
However, as video games are not designed for robotics sim-
ulations, they lack the options to tune dynamics to match the
real world. This leads to a mismatch between available ac-
tions between these two worlds. Differences in action dy-
namics, such as different rotation speeds, could be manually
fine-tuned away, but in the case of completely removed ac-
tions this is not possible, e.g. when robot is not able to turn
left while original simulation allowed this.

In this work we train a deep reinforcement learning (DRL)
agent which we adapt to a different action space with as little
additional training as possible. We demonstrate effectiveness



Fig. 2. Overview of the different training methods for moving
pre-trained neural networks to new action spaces. Boxes rep-
resent different layers of a network with left head being value
estimation and right being policy or state-action values.

of this method by transferring agent from a crude simulation
(video game “Doom”, 1993) to a real robot, where the task is
the same, environment shares visual similarities, but the ac-
tion space differs. We conduct experiments with semantically
similar action space where the agent can execute similar ac-
tions as previously via new action space. We also experiment
by removing possible actions from target action-space, effec-
tively hindering agent’s capabilities.

2. ACTION SPACE TRANSFER IN
REINFORCEMENT LEARNING

Our work is closely related to experiments conducted by Rusu
et al. 2016 [6], but here we focus on transfer between action-
spaces and not tasks. Video games are a popular benchmarks
in reinforcement learning scheme [7, 5, 8, 9], and video game
engines have been used for robotics experiments [10, 11, 12].
Our work differs by using a video game as a simulator for
robotics experiments successfully, despite the game was not
designed for such purpose. We use methods from previous
work on simulation-to-real transfer to overcome the visual re-
ality gap [11, 2, 13], while our contribution lies in bridging
the reality gap in action spaces.

The action space transfer can be done with neural net-
works by replacing the final (output) layer to fit the new action
space. If randomly initialized, this final layer requires some
training in the target domain to produce useful actions. At this
point we have multiple choices how this training should be
done. We opted for four similar and simple methods for our
study (see Figure 2). These methods are similar to baseline
methods in [6], but here we transfer between action spaces
rather than tasks.

Fine-tuning Target model uses source model’s parame-
ters as initial values, and begins training from there, fine-
tuning the previously learned parameters [1]. This is known
to be prone to catastrophic forgetting [14], where neural net-
work “forgets” the good parameters learned in the previous
environment, and thus may not perform as well as expected.

Replace We can avoid catastrophic forgetting by not up-

dating some of the neural network parameters at all (“freez-
ing”). We freeze all layers except the output layers, since we
assume similar dynamics and visual appearance from the two
environments, allowing the re-use of features of penultimate
layer.

Replace with pre-trained value function Value of a state
depends on the policy, which depends on the action-space.
However, with our assumption of same task and similar envi-
ronment dynamics between environments, the learned value
function could serve as a good initial point in the target envi-
ronment. We do not freeze the value layer to allow it to adapt
to the new policy.

Adapter Instead of updating parameters of the source net-
work, we keep them all fixed and learn a mapping from source
actions to new actions, essentially learning which action in
source environment matches an action in the target environ-
ment. Similar method has been used successfully with policy
transfer from one domain to another [15]. We implement this
by adding a fully-connected layer which maps old actions to
new actions.

3. EXPERIMENTS

3.1. Experimental setup

Agent’s task is to navigate to a red goal pillar in a simple room
without obstacles, using visual input as the observation (see
Figure 1). It starts each episode from the center of the room,
facing to a random direction and receives positive reward 1
for reaching the goal and negative reward−1 if episode times
out after 1000 environment steps. Agent chooses an action
every 10 environment steps (frameskip) and receives a color
image of size 80 × 60 to decide the action. The image is the
green channel of a RGB image to highlight the goal.

We use two RL learning algorithms for our experiments:
deep Q-learning (DQN) [3] and proximal policy optimization
(PPO) [16]. DQN is selected as it is known to be sample ef-
ficient, thanks to its off-policy learning and replay memory.
Experiments with PPO are included for its applicability to
continuous action spaces and for its closer connection to opti-
mizing policy directly. With DQN, we use double Q-learning
[17] and dueling architecture [18] to obtain the state-value
function. We use implementations from stable-baselines [19].
Both learning algorithms use network described in Mnih et.
al. 2015 [3].

To find suitable exploration strategy, we performed hyper-
parameter search for the exploration parameters during action
space transfer with replace method. For DQN’s ε-greedy pol-
icy we anneal chance of a random action from 1.0 to 0.02 over
first 7500 agent steps (searched over interval [500, 25000]).
For PPO we tested entropy weight coefficients in interval
[10−6, 1] and selected 10−3 for further experiments. Code
and video of the results are available in GitHub 1.

1https://github.com/jannkar/doom_actionspace



3.1.1. Source environment

For the source environment, we use ViZDoom [5] platform,
which is based on the Doom (1993) video game. The agent’s
action space consists of four different actions; move forward,
move backward, turn left and turn right.

We apply domain randomization to ensure that policy can
be transferred to a robot [2]. We randomize textures of the
walls, ceilings and floors (68 different textures), agent’s field
of view (50 to 120 degrees horizontally), height of the player
and head-bobbing strength. We also add small amount of
white- and Gaussian noise on the image, and finally apply
random amount of gamma-correction (0.6 to 1.5).

3.1.2. Target environment

We start experiments by transferring the agent between two
Doom environments. In these simulation-to-simulation ex-
periments (“sim-to-sim”) the environment uses unseen tex-
tures and action-space to the agent. For PPO experiments the
new action space consists of two continuous values, one for
forward/backward velocity and another for rotation speed.
For DQN we define discretized action space of 24 actions,
each action being some combination of forward/backward
speed and left/right turning, similar to the continuous action
space.

The results of best method in sim-to-sim experiments
are then verified with real-world experiments by transferring
agent to a Turtlebot 3 Waffle robot with a RGB camera. The
task is same with a similar environment, with major differ-
ence being the lack of roof (Figure 1) and larger number of
environment steps per one action (15 versus original 10).

3.2. Source models

We trained three separate source models with both DQN
and PPO in Doom environment, by repeating the training
runs. All the following experiments were repeated over these
source models, since the source model parameters can affect
on final performance of the transfer. All three source mod-
els of both algorithms learned to solve the task. The three
DQN source models reached a 90− 95% testing success rate
and mean episode length of 18.57 − 27.54 steps, while PPO
reached 98− 100% success rate with mean of 10.45− 14.01
steps per episode.

3.3. Sim-to-sim experiments

Freezing most of the network (replace method) performs most
reliably with DQN, reaching 99.2 − 100% success rate (Ta-
ble 1) with the final policy. The task was solved efficiently
already at around 15, 000−20, 000 steps. Compared to learn-
ing the task from scratch, which took approximately 30, 000−
40, 000 steps for efficient policy, replace method reduces the
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Fig. 3. Results of transferring three source models to a new
action space with different transfer methods, source models
(columns) and learning algorithms. Lower is better. Each line
is an average over five repetitions. We omitted variance for
visual clarity. Rows share same baseline result (no transfer
learning, ”Scratch”).

learning time to almost half. Other methods, adapter, fine-
tune and replace with value function performed even worse
than training from scratch (Figure 3). Interestingly, large vari-
ance is detected between source model: For source model 2
all tested methods worked well but for models 1 and 3 only
replace method gave stable performance.

PPO is not as sample efficient algorithm as DQN, and as
such it did not learn the task reliably before 1, 000, 000 steps.
The replace method again resulted in robust transfer between
action spaces and the performance even improved slightly on
average when the value function was loaded with it. However,
the task was not solved as efficiently as with the DQN, when
considering the episode length.

In light of these results, replace method has the stablest re-
sults among tested methods. Interestingly, Rusu et. al. (2016)
[6] found this method least effective in task-transfer scenario,
while our results find it most promising in action-space trans-
fer.

3.4. Robot experiments

Finally, we validate sim-to-sim experiments on a Turtlebot
robot. Based on the previous results, we chose DQN algo-
rithm with the replace method for these experiments. We se-
lected DQN model 3 as the source model, due to its fastest
learning in the replace method experiment. The agent was
trained for 20, 000 steps or until the agent’s performance did
not increase. Turtlebot takes approximately two actions per
second, which translated to 4−5 hours of wall-clock time per
one experiment, including the time to reset the episode.



Table 1. Mean and standard deviation of final success rates from transferring three different source models with different
methods. Each result is based on average performance over last 10% training episodes and averaged over five repetitions.
Experiments with average success rate above 90% are highlighted.

Learning algorithm and source model
Method DQN PPO

1 2 3 1 2 3
Fine-tune 58.9 ± 28.7 100 ± 0.0 54.1 ± 26.7 46.8 ± 28.4 31.7 ± 14.6 52.7 ± 21.2
Replace 99.9 ± 0.5 100 ± 0.0 99.2 ± 3.0 95.2 ± 6.7 98.0 ± 2.3 95.9 ± 5.4
Replace w/
value func.

60.1 ± 33.6 95.7 ± 6.5 86.8 ± 9.5 98.0 ± 2.3 96.1 ± 3.5 98.0 ± 1.3

Adapter 66.3 ± 31.4 100 ± 0.0 88.9 ± 19.0 29.7 ± 8.7 30.0 ± 7.4 31.6 ± 7.8
Scratch 99.5 ± 1.1 56.0 ± 25.4
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Fig. 4. Length of episode of the two Turtlebot experiment
runs in different colors. Lower is better. Curves are averaged
with rolling average of 50 steps. Dashed line represents the
performance of the best model obtained during training.

We conducted two training runs with the Turtlebot. The
model of first run had success rate of 80% and mean episode
length 50.1 with the best model (Figure 4). Second training
run had mean success rate of 100% and episode length 16.0.
Subjectively, the first model was attracted by the goal but re-
peatedly chose to reverse away from the goal. The second
agent rotated in place until red pillar appeared to its field-of-
view and began moving towards to goal, doing small fine-
adjustments to stay on correct path and utilizing newly avail-
able actions appropriately.

3.5. Experiments with removed actions

In practical situations, changes to action space may occur
from faulty or invalid hardware, preventing from executing
specific actions. To study how our approach would perform
in this situation, we conducted sim-to-sim transfer using DQN
source model 3 with replace method with the same setup as
previously. However, now one or two of the original four ac-
tions were disabled, so the agent had to find a different way
to complete the task.

The results show that even if one of the turn actions or
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Fig. 5. Agent’s performance with action space where some of
the previous actions are removed. Episode length is measured
in time steps and the letters in labels correspond to button
presses of each action (W = move forward, A = turn left, S =
move backward, D = turn right).

move backward action was removed, the agent still learned
the new action space robustly in 20, 000 training steps (Fig-
ure 5). This result suggests that with the replace method, the
agent can learn the task so that it is able to adapt to action
space where some of the initial actions are removed. Only
when the action “move forward” was removed, the agent
could not learn the task. This was expected, as agent does not
have memory it is unable to navigate by reversing.

4. CONCLUSIONS

In this work we show how freezing most of the pre-trained
neural network parameters can be used to effectively transfer
a policy from a video game to a robot, despite the differences
in action spaces between these two environments. We trained
a policy on raw image data to solve a simple navigation task
in Doom video game, and then successfully transferred it to a
robot with a different action space where it was able to com-
plete the same task with relatively little amount of training, in-
cluding when number of available actions was reduced. These



methods have promise to utilize crude simulations like video
games to train policies for robots with different physical prop-
erties.

The future work could extend the present work in terms
of learning complicated abstract task in video game and then
transferring to the vastly different action space structure in
the physical robot. We also plan to study if Bayesian methods
could be used to find good priors for the network parameters,
to further speed up the learning process of new action space.
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