
15

APPENDIX A
BACKPROPAGATION FOR NON-DECOMPOSABLE OBJECTIVES

It worth to mention that the original backpropagation [73] is applicable to objective function, which value on the whole
training dataset (or mini-batch) T can be approximated by the averaged value on every single sample. This is possible due to
the stochastic approximation theory [74]

E(T) =
1

N

∑
(x,y)∈T

E (x,y), (23)

where E is the objective function, pair (x,y) is a sample and its label. These objective functions (23) are known as the
decomposable [75]. In machine learning we usually apply indirect optimization, regarding the objective function. Technically
we try to improve a particular performance measure P (for some practical application), which is calculated on the test dataset.
Whereas, during training stage, we optimize model parameters using different objective function E in the hope that in general it
will improve performance P . This is indirect optimization, since such metrics are intractable or also known as non-decomposable
functions. Another ambiguity is that we often optimize the same objective function (MSE, cross-entropy, KL-divergence, e.t.c.)
for a different applications and for different performance metrics.

Definition. 1 Non-decomposable objective function is not decomposed into expectations over individual examples [76]. For
example, these functions are F1-score, Precision/Recall Break Even Point (PRBEP), Precision at k (Prec@k), ROCArea, EER,
e.t.c.

For a non-decomposable objective functions, parameters updating rule of backpropagation algorithm is assumed to be the
same as for decomposable functions, except that error signal δn is calculated on the whole mini-batch T

Wn ←Wn − η
∂E (T)

∂Wn
= Wn − ηδn (T)

∂zn

∂Wn
, where (24)

δn (T) =
∂E (T)

∂zn
,

here Wn are neural network parameters for a range of n = 0, L number of layers; E is a non-decomposable objective function;
zn is a pre-activation output or output of n-th layer of network before applying activation function; η is a learning rate. In the
decomposable objective function case (23), we can represent the gradient of the function as the averaged gradient calculated
per-sample [74]. Whereas, for non-decomposable functions in (24), it is similar to the original backpropagation with SGD [73]
calculated on a single sample, here as a single sample we treat the whole mini-batch T. It is very rough assumption, though
it works in practice with adaptive learning rate methods.

A. Backpropagation for MFoM-micro-F1

The micro-F1 objective function for multiclass case of M classes in terms of discrete counts true positive (TP), false positive
(FP) and false negative (FN)

F1 =
2TP

FP + 2TP + FN
=

2
M∑

k=1

TPk

M∑
k=1

FPk + 2
M∑

k=1

TPk +
M∑

k=1

FNk

. (25)

The problem with micro-F1 is that it is the discrete function, thus we can not directly differentiate and optimize it. After
introducing the MFoM framework: the terms of discriminative functions (2), misclassification measure (4) and smooth error
function (6), - we are ready to represent micro-F1 as the smooth continues function F̂1 and then optimize it. We use smooth
error function (6) in order to approximate the discrete counts on a mini-batch T

TP ≈ T̂P
∆
=

M∑
k=1

T̂Pk =

M∑
k=1

∑
x∈T

(1− lk (z)) · yk, (26)

FP ≈ F̂P
∆
=

M∑
k=1

F̂Pk =

M∑
k=1

∑
x∈T

(1− lk (z)) · ȳk, (27)

FN ≈ F̂N
∆
=

M∑
k=1

F̂Nk =

M∑
k=1

∑
x∈T

lk (z) · yk, (28)

where yk and ȳk are labels of the corresponding sample x or

16

yk = 1 (x ∈ Ck) =

{
1, if x ∈ Ck,
0, if x /∈ Ck.

(29)

and
ȳk = 1 (x /∈ Ck) =

{
0, if x ∈ Ck,
1, if x /∈ Ck.

(30)

where Ck is the set of samples where kth label is “on” (label k equals 1), indicator functions are 1 (·). We denote the sum of
T̂P and F̂N as

|C| ∆
=

M∑
k=1

|Ck| =
M∑
k=1

T̂Pk + F̂Nk =

=
M∑
k=1

∑
x∈T

(1− lk (z)) · yk + lk (z) · yk =
M∑
k=1

∑
x∈T

yk,

(31)

Therefore, the term |C| is the count of unit “1” labels of samples x across all mini-batch T, i.e. the number of positive labels.
The |C| is a constant value for the current mini-batch T, because we calculate it one time for the whole T.

Finally, we get the approximation of discrete micro-F1 from (25), we call it MFoM-micro-F1 objective function

F1 ≈ F̂1 =
2T̂P

F̂P + T̂P + |C|
(32)

Our task is to minimize the objective function

E = 1− F̂1 → arg min
W

, (33)

where a parameter set W =
{

Wn|n = 0, L
}

of the network consisting of L + 1 layers. We are able to calculate the partial
derivatives of all network parameters W, if we find the network error signal term δn (T), starting from the output layer n = L

δL(T) =
∂E

∂z
= −∂F̂1

∂z
= −

[
2T̂P

F̂P + T̂P + |C|

]′
z

=

= −
2T̂P

′
·
(

F̂P + T̂P + |C|
)
− 2T̂P ·

(
F̂P
′
+ T̂P

′)
(

F̂P + T̂P + |C|
)2 =

= −2T̂P
′
· F̂P + 2T̂P

′
· |C| − 2T̂P · F̂P

′(
F̂P + T̂P + |C|

)2 =

= −−2F̂N
′
· F̂P− 2F̂N

′
· |C| − 2T̂P · F̂P

′(
F̂P + T̂P + |C|

)2 =

=
2 ·
[(
|C|+ F̂P

)
· F̂N

′
+ T̂P · F̂P

′]
(

F̂P + T̂P + |C|
)2 .

Thus,

δL(T) =
∂E

∂z
= A

(
w1
∂F̂N

∂z
+ w2

∂F̂P

∂z

)
, (34)

where constants, which are calculated on the whole current mini-batch T

A =
2(

F̂P + T̂P + |C|
)2 , w1 = |C|+ F̂P, w2 = T̂P. (35)

If we plug in the F̂P and F̂N from (27) and (28) to the δL in eq. (34)

δL(T) = A
(
w1

∂F̂N
∂z + w2

∂F̂P
∂z

)
=

= A

(
w1 ·

M∑
k=1

∑
x∈T

∂lk(z)
∂z · yk − w2 ·

M∑
k=1

∑
x∈T

∂lk(z)
∂z · ȳk

)
=

17

= A

(∑
x∈T

M∑
k=1

∂lk(z)
∂z [w1 · yk − w2 · ȳk]

)
,

It means that if kth label of a sample x is unit (i.e., yk = 1 and ȳk = 0), then we multiply by the weight constant w1,
otherwise by the constant −w2. Then we rewrite in the vector form the last result

δL(T) = A
∑
x∈T

(
∂l1 (z)

∂z
, . . . ,

∂lk (z)

∂z
, . . . ,

∂lM (z)

∂z

)
·


w1 · y1 − w2 · ȳ1

· · ·
w1 · yk − w2 · ȳk

. . .
w1 · yM − w2 · ȳM

 . (36)

In (36), the left vector under the sum is the transposed Jacobian, because we find the partial derivatives with respect to the
vector of multiple variables z = (z1, . . . , zm, . . . , zM)

>

J>z L =
(
∂l1(z)
∂z , . . . , ∂lk(z)

∂z , . . . , ∂lM (z)
∂z

)
=

=


∂l1(z)
∂z1

. . . ∂lM (z)
∂z1

. . . ∂lk(z)
∂zm

. . .
∂l1(z)
∂zM

. . . ∂lM (z)
∂zM

 ,
(37)

where m = 1,M is the row index of the variables zm and k = 1,M is the column index for the functions lk(z).

δL(T) = A ·
∑

(x,y)∈T

J>z L(x) · (w1 · y − w2 · ȳ). (38)

NOTE: we can interpret (38) as for every pair (x,y) from mini-batch T we calculate the value of the transposed Jacobian and
find the weighted linear combination of its columns with w1 or −w2. The weight constants w1 or w2 are defined by the labels
yk or ȳk of sample. Then we sum up all weighted Jacobians across all samples in a mini-batch T. Thus, we get “decomposed”
error signal δL per each sample x, i.e. MFoM framework allowed us to archive it.

B. Jacobian for the Units-vs-Zeros Misclassification Measure

In this section, we infer a Jacobian for the units-vs-zeros misclassification measure (4). Units-vs-zeros misclassification
measure was adopted for multi-label classification and proposed in [32]. First, we consider the example A.1 of the units-vs-
zeros misclassification measure with sample x having multiple label vector y.

Example A.1 Let we have training pair (x, y) and y = (1, 1, 0, 0)>, see Fig. 8. Then, we have units-vs-zeros misclassification
as

ψ1 (z) = −g1 + ln
[

1
2 (eg3 + eg4)

]
,

ψ2 (z) = −g2 + ln
[

1
2 (eg3 + eg4)

]
,

ψ3 (z) = −g3 + ln
[

1
2 (eg1 + eg2)

]
,

ψ4 (z) = −g4 + ln
[

1
2 (eg1 + eg2)

]
,

where gk is the output score of a neural network.

The units-vs-zeros misclassification measure (4) can be rewritten in the convenient form for inference of derivatives

ψk (z) = −gk + yk · u+ yk · v, (39)

where Kolmogorov f-mean of unit models

u = ln

 1
M∑
i=1

yi

· 〈y, exp (g)〉

 = ln

 1
M∑
i=1

yi

· (y1e
g1 + . . .+ yke

gk + . . .+ yMe
gM)

 , (40)

and Kolmogorov f-mean of zero models

v = ln

 1
M∑
i=1

yi

· 〈y, exp (g)〉

 = ln

 1
M∑
i=1

yi

· (y1e
g1 + . . .+ yke

gk + . . .+ yMe
gM)

 , (41)

18

x

. . .

DNN part

→z1 g1

→z2 g2

→z3 g3

→z4 g4

layer L

(z)ψ1

(z)ψ2

(z)ψ3

(z)ψ4

()l1 ψ1

()l2 ψ2

()l3 ψ3

()l4 ψ4

E

ΨJz JΨ EJ

MFoM party

1

1

0

0

Fig. 8. Example of the extended DNN with the MFoM objective function and units-vs-zeros misclassification measure: Ψ is the vector of misclassification
measure, L is the vector of smooth error count, E is the smoothed MFoM-based objective; JLE, JΨL, JzΨ are Jacobians.

where binary vector of labels is y and its inverse is y. Thus, if the current sample x is labeled as 1 in the ground-truth for the
class Ck (i.e. yk = 1 or yk = 0), the competing models will be considered only those with labels 0, and we find an average
of these competing zero models, i.e. it is the equation (41). The misclassification measure for that sample is calculated as

ψk (z) = −gk + yk · v. (42)

Otherwise, if the sample x is labeled as 0 in the ground-truth (i.e. yk = 0 or yk = 1) for the class Ck, the competing models
are with labels 1, and we find average of these, i.e. the equation (40) and

ψk (z) = −gk + yk · u. (43)

We denote Jacobian matrix for units-vs-zeros misclassification measure as JzΨ. Further, we find the partial derivatives ∂ψk(z)
∂zm

of the Jacobian JzΨ, we have two cases:
a) if m = k, diagonal elements of the Jacobian

∂ψk
∂zk

= −g′k + ȳk
∂u

∂zk
+ yk

∂v

∂zk
,

∂u

∂zk
=

1

〈y, exp (g)〉
· ykg′k exp (gk) ,

∂v

∂zk
=

1

〈y, exp (g)〉
· ykg′k exp (gk) .

then we get
∂ψk
∂zk

= −g′k, (44)

because ykyk = 0.
b) if m 6= k, off-diagonal elements

∂ψk
∂zm

= ȳk
∂u

∂zm
+ yk

∂v

∂zm
=

1

〈y, exp (g)〉
· ȳkymg′m exp (gm) +

1

〈y, exp (g)〉
ykymg

′
m exp (gm) =

= g′m exp (gm)

[
ȳkym

〈y, exp (g)〉
+

ykȳm
〈ȳ, exp (g)〉

]
Then, we get the Jacobian matrix

J>z Ψ =



−g′1 · · · g′1 exp (g1)
[
ȳky1
P + ykȳ1

B

]
· · · g′1 exp (g1)

[
ȳMy1
P + yM ȳ1

B

]
...

. . .
...

...
...

g′m exp (gm)
[
ȳ1ym
P + y1ȳm

B

]
· · · −g′k · · · g′m exp (gm)

[
ȳMym
P + yM ȳm

B

]
...

...
...

. . .
...

g′M exp (gM)
[
ȳ1yM
P + y1ȳM

B

]
· · · g′M exp (gM)

[
ȳkyM
P + ykȳM

B

]
· · · −g′M

 ,

19

where P = 〈y, exp (g)〉 and B = 〈ȳ, exp (g)〉. Extracting g′k, we get

J>z Ψ = diag (g′m) ·



−1 · · · exp (g1)
[
ȳky1
P + ykȳ1

B

]
· · · exp (g1)

[
ȳMy1
P + yM ȳ1

B

]
...

. . .
...

...
...

exp (gm)
[
ȳ1ym
P + y1ȳm

B

]
· · · −1 · · · exp (gm)

[
ȳMym
P + yM ȳm

B

]
...

...
...

. . .
...

exp (gM)
[
ȳ1yM
P + y1ȳM

B

]
· · · exp (gM)

[
ȳkyM
P + ykȳM

B

]
· · · −1

 =

= diag (g′m) ·G

Thus, backpropagation network error signal, using units-vs-zeros misclassification measure, is

δL (T) = A
∑

(x,y)∈T

J>z E(x) = A
∑

(x,y)∈T

J>z Ψ · J>ΨL · J>LE, (45)

where
J>z Ψ = diag (g′m) ·G
J>ΨL = diag (l′k)
J>LE = (w1y − w2ȳ)

(46)

	Appendix A: Backpropagation for Non-decomposable Objectives
	Backpropagation for MFoM-micro-F1
	Jacobian for the Units-vs-Zeros Misclassification Measure

