APPENDIX A
BACKPROPAGATION FOR NON-DECOMPOSABLE OBJECTIVES

It worth to mention that the original backpropagation [73]] is applicable to objective function, which value on the whole
training dataset (or mini-batch) T can be approximated by the averaged value on every single sample. This is possible due to
the stochastic approximation theory [74]]
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where F is the objective function, pair (x,y) is a sample and its label. These objective functions are known as the
decomposable [13]. In machine learning we usually apply indirect optimization, regarding the objective function. Technically
we try to improve a particular performance measure P (for some practical application), which is calculated on the test dataset.
Whereas, during training stage, we optimize model parameters using different objective function E in the hope that in general it
will improve performance P. This is indirect optimization, since such metrics are intractable or also known as non-decomposable
functions. Another ambiguity is that we often optimize the same objective function (MSE, cross-entropy, KL-divergence, e.t.c.)
for a different applications and for different performance metrics.

Definition. 1 Non-decomposable objective function is not decomposed into expectations over individual examples [76)]. For
example, these functions are Fl-score, Precision/Recall Break Even Point (PRBEP), Precision at k (Prec@k), ROCArea, EER,
et.c.

For a non-decomposable objective functions, parameters updating rule of backpropagation algorithm is assumed to be the
same as for decomposable functions, except that error signal 6" is calculated on the whole mini-batch T
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here W,, are neural network parameters for a range of n = 0, L number of layers; E is a non-decomposable objective function;
z" is a pre-activation output or output of n-th layer of network before applying activation function; 7 is a learning rate. In the
decomposable objective function case (23]), we can represent the gradient of the function as the averaged gradient calculated
per-sample [74]. Whereas, for non-decomposable functions in (24), it is similar to the original backpropagation with SGD [73]]
calculated on a single sample, here as a single sample we treat the whole mini-batch T. It is very rough assumption, though
it works in practice with adaptive learning rate methods.

A. Backpropagation for MFoM-micro-F1

The micro-F1 objective function for multiclass case of M classes in terms of discrete counts true positive (TP), false positive
(FP) and false negative (FN)
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The problem with micro-F1 is that it is the discrete function, thus we can not directly differentiate and optimize it. After
introducing the MFoM framework: the terms of discriminative functions (2)), misclassification measure and smooth error
function l@) - we are ready to represent micro-F1 as the smooth continues function F} and then optimize it. We use smooth
error function () in order to approximate the discrete counts on a mini-batch T
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where y; and g, are labels of the corresponding sample x or
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where C is the set of samples where k" label is “on” (label k equals 1), indicator functions are 1 (-). We denote the sum of
TP and FN as
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Therefore, the term |C| is the count of unit “1” labels of samples x across all mini-batch T, i.e. the number of positive labels.
The |C| is a constant value for the current mini-batch T, because we calculate it one time for the whole T.
Finally, we get the approximation of discrete micro-F1 from (25), we call it MFoM-micro-F1 objective function
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Our task is to minimize the objective function
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where a parameter set W = {Wn| n= 0,7} of the network consisting of L + 1 layers. We are able to calculate the partial
derivatives of all network parameters W, if we find the network error signal term §™ (T), starting from the output layer n = L
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where constants, which are calculated on the whole current mini-batch T
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If we plug in the FP and FN from and (28) to the 6% in eq. (34)
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It means that if k" label of a sample x is unit (i.e., y» = 1 and 7 = 0), then we multiply by the weight constant w,
otherwise by the constant —ws. Then we rewrite in the vector form the last result
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In (36), the left vector under the sum is the transposed Jacobian, because we find the partial derivatives with respect to the
vector of multiple variables z = (21, ..., Zm, ..., ,zM)T
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where m = 1, M is the row index of the variables z,, and k = 1, M is the column index for the functions Ij(z).
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NOTE: we can interpret as for every pair (x,y) from mini-batch T we calculate the value of the transposed Jacobian and
find the weighted linear combination of its columns with w; or —ws. The weight constants w; or wy are defined by the labels
Yy, or ¥ of sample. Then we sum up all weighted Jacobians across all samples in a mini-batch T. Thus, we get “decomposed”
error signal 6% per each sample x, i.e. MFoM framework allowed us to archive it.

B. Jacobian for the Units-vs-Zeros Misclassification Measure

In this section, we infer a Jacobian for the units-vs-zeros misclassification measure (@). Units-vs-zeros misclassification
measure was adopted for multi-label classification and proposed in [32]. First, we consider the example |A.1| of the units-vs-
zeros misclassification measure with sample x having multiple label vector y.

Example A.1 Let we have training pair (x,y) andy = (1,1,0,0)7, see Fig. E?l Then, we have units-vs-zeros misclassification

as
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where gy, is the output score of a neural network.

The units-vs-zeros misclassification measure (@) can be rewritten in the convenient form for inference of derivatives
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Fig. 8. Example of the extended DNN with the MFoM objective function and units-vs-zeros misclassification measure: W is the vector of misclassification
measure, L is the vector of smooth error count, E is the smoothed MFoM-based objective; J. E, Jy L, J; ¥ are Jacobians.

where binary vector of labels is y and its inverse is y. Thus, if the current sample x is labeled as 1 in the ground-truth for the
class C (i.e. yr = 1 or 7, = 0), the competing models will be considered only those with labels 0, and we find an average
of these competing zero models, i.e. it is the equation (#I). The misclassification measure for that sample is calculated as

Ui (2) = —gk + yi - v. (42)

Otherwise, if the sample x is labeled as O in the ground-truth (i.e. y; = 0 or 7, = 1) for the class C, the competing models
are with labels 1, and we find average of these, i.e. the equation 0) and
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We denote Jacobian matrix for units-vs-zeros misclassification measure as J, V. Further, we find the partial derivatives %(z)
of the Jacobian J,W¥, we have two cases:
a) if m = k, diagonal elements of the Jacobian
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b) if m # k, off-diagonal elements
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Then, we get the Jacobian matrix
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where P = (y,exp(g)) and B = (¥, exp (g)). Extracting g;,, we get
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Thus, backpropagation network error signal, using units-vs-zeros misclassification measure, is
(M =AY JJEx)=A > J v-J5L JLE, (45)
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where
JT = diag (g],) - G
Jg £ = diag (1}) (46)
JLE = (w1y — wa¥)
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