APPENDIX A
BACKPROPAGATION FOR NON-DECOMPOSABLE OBJECTIVES

It worth to mention that the original backpropagation [73]] is applicable to objective function, which value on the whole
training dataset (or mini-batch) T can be approximated by the averaged value on every single sample. This is possible due to
the stochastic approximation theory [74]]

1
BT =~ Y Exy) (23)
(x,y)eT

where F is the objective function, pair (x,y) is a sample and its label. These objective functions are known as the
decomposable [13]. In machine learning we usually apply indirect optimization, regarding the objective function. Technically
we try to improve a particular performance measure P (for some practical application), which is calculated on the test dataset.
Whereas, during training stage, we optimize model parameters using different objective function E in the hope that in general it
will improve performance P. This is indirect optimization, since such metrics are intractable or also known as non-decomposable
functions. Another ambiguity is that we often optimize the same objective function (MSE, cross-entropy, KL-divergence, e.t.c.)
for a different applications and for different performance metrics.

Definition. 1 Non-decomposable objective function is not decomposed into expectations over individual examples [76)]. For
example, these functions are Fl-score, Precision/Recall Break Even Point (PRBEP), Precision at k (Prec@k), ROCArea, EER,
et.c.

For a non-decomposable objective functions, parameters updating rule of backpropagation algorithm is assumed to be the
same as for decomposable functions, except that error signal 6" is calculated on the whole mini-batch T

OE(T) n oz"
W, + W, —n W, W, —né" (T) W where (24)
OE (T
(=220,

here W,, are neural network parameters for a range of n = 0, L number of layers; E is a non-decomposable objective function;
z" is a pre-activation output or output of n-th layer of network before applying activation function; 7 is a learning rate. In the
decomposable objective function case (23]), we can represent the gradient of the function as the averaged gradient calculated
per-sample [74]. Whereas, for non-decomposable functions in (24), it is similar to the original backpropagation with SGD [73]]
calculated on a single sample, here as a single sample we treat the whole mini-batch T. It is very rough assumption, though
it works in practice with adaptive learning rate methods.

A. Backpropagation for MFoM-micro-F1

The micro-F1 objective function for multiclass case of M classes in terms of discrete counts true positive (TP), false positive
(FP) and false negative (FN)

M
23" TP
i 2TP B Z)
'""FP+2TP+FN M M M '
Z FPy +2 Z TPy, + ZFNk
k=1 k=1 k=1

The problem with micro-F1 is that it is the discrete function, thus we can not directly differentiate and optimize it. After
introducing the MFoM framework: the terms of discriminative functions (2)), misclassification measure and smooth error
function l@) - we are ready to represent micro-F1 as the smooth continues function F} and then optimize it. We use smooth
error function () in order to approximate the discrete counts on a mini-batch T

M M
TP~TP2Y TP => Y (1-k(2) v (26)
k=1 k=1xeT
__ A M - M
FP~FP =Y FPe=> > (1-1(2)) ¥ 27)
k=1 k=1 xeT
. M - M
FN~FN2 Y FNe =YYl (2) -y, (28)
k=1 k=1 xeT

where y; and g, are labels of the corresponding sample x or

1, if x € Cy,
yk:1($€Ck):{0 ifigcﬁ. (29)

and 0 if o
_ o , I xely,

where C is the set of samples where k" label is “on” (label k equals 1), indicator functions are 1 (-). We denote the sum of
TP and FN as

A M M —~
IC]= > |Ck] = > TPy + FNg =
k=1 k=1 v (31)
Z =1 (2) yr + 1 (2) -y = > >y,
k=1xeT k=1x€eT

Therefore, the term |C| is the count of unit “1” labels of samples x across all mini-batch T, i.e. the number of positive labels.
The |C| is a constant value for the current mini-batch T, because we calculate it one time for the whole T.
Finally, we get the approximation of discrete micro-F1 from (25), we call it MFoM-micro-F1 objective function

- 2TP
Fl ~ Fl = = (32)
FP + TP + |C]
Our task is to minimize the objective function
E=1-F; — argmin, (33)
W

where a parameter set W = {Wn| n= 0,7} of the network consisting of L + 1 layers. We are able to calculate the partial
derivatives of all network parameters W, if we find the network error signal term §™ (T), starting from the output layer n = L
— /
2TP
FP+TP +|C| |,

OF OF
L _ gz 9rr
5(T)_8z 0z

2@'-(ﬁ3+ﬁ3+\0|)—2ﬁ3-(ﬁ3/+ﬁ")

—~ —~ 2
(FP+TP +|C))
2TD . P 4 279 - |0| - 2P . TP
- — - 2
(FP + TP+ |C\>

_of - F _ 2 - 0| — 2T . P
—~ —~ 2
(FP + TP+ |C\)

2. {(\C|+ﬁ?)-ﬁ\1’+ﬁ>-ﬁ3’}

—~ —~ 2
(FP + TP+ |C\)

Thus,
OE OFN OFP
L = — = —_— -
6%(T) = 0z 4 (wl 0z tws 0z) ’ (34)
where constants, which are calculated on the whole current mini-batch T
2 ~ —
A= wy = |C|+FP, wy="TP. (35)

—~ —~ 27
(FP + TP+ |C|)
If we plug in the FP and FN from and (28) to the 6% in eq. (34)
Loy — OFN oFP\ _
6(T)—A<w + ws az)

AT o R o

=1x€eT =1x€eT

QE\
v
Il

_ X 0l (2) .
=A ZZ 9z [wl'yk_wQ'yk])

xeT k=1

It means that if k" label of a sample x is unit (i.e., y» = 1 and 7 = 0), then we multiply by the weight constant w,
otherwise by the constant —ws. Then we rewrite in the vector form the last result

w1 Y1 — W2 Y1

STy =AY (“;;Z%...,@lk (=) . O (Z>) | wg—wee |- (36)

= Oz Oz

w1 YM — W2 - Ym
In (36), the left vector under the sum is the transposed Jacobian, because we find the partial derivatives with respect to the
vector of multiple variables z = (21, ..., Zm, ..., ,zM)T

T, (0li(2) Al (z) la(z)\
JiL = (o yle))

s T 9z vt oz
all(z) BlM(z)
r oo o2
B 21 Ol () 21 37
= e I e 5
8ll(z) alM(Z)
Ozm e Ozm

where m = 1, M is the row index of the variables z,, and k = 1, M is the column index for the functions Ij(z).

M) =A- Y T LX) (wi-y —ws - F). (38)
(xy)€T
NOTE: we can interpret as for every pair (x,y) from mini-batch T we calculate the value of the transposed Jacobian and
find the weighted linear combination of its columns with w; or —ws. The weight constants w; or wy are defined by the labels
Yy, or ¥ of sample. Then we sum up all weighted Jacobians across all samples in a mini-batch T. Thus, we get “decomposed”
error signal 6% per each sample x, i.e. MFoM framework allowed us to archive it.

B. Jacobian for the Units-vs-Zeros Misclassification Measure

In this section, we infer a Jacobian for the units-vs-zeros misclassification measure (@). Units-vs-zeros misclassification
measure was adopted for multi-label classification and proposed in [32]. First, we consider the example |A.1| of the units-vs-
zeros misclassification measure with sample x having multiple label vector y.

Example A.1 Let we have training pair (x,y) andy = (1,1,0,0)7, see Fig. E?l Then, we have units-vs-zeros misclassification

as
1/)1 (Z) = —g1 + In % (693 + 694) ,
(C» (Z) =—go+In ? (693 + 694) ,
Y3 (z) = —g3 +1n ? (e9t + e92)],
Y4 (z) = —gs +1n 5 (e9 + e92)]

where gy, is the output score of a neural network.

The units-vs-zeros misclassification measure (@) can be rewritten in the convenient form for inference of derivatives

Vi (2) = =gk + g - u+ g - v, (39
where Kolmogorov f-mean of unit models
=1 1 =1 1 g1 Ik gm 40
u=In T~<y,exp(g)> =In T~(yle + .ot yked 4+ ypet™) | (40)
> Yi > Yi
1=1 Li=1 i
and Kolmogorov f-mean of zero models
1 _ 1 _ _ _
v=In|— (Vexp(g))| =In | 57— @e” +...+pe? + ... +Yye?™) |, (41
;?i ;?i

18

DNN part MFoM part

-y w0 .

layer L J. Y Jy L JrE

b (llfz) .

Fig. 8. Example of the extended DNN with the MFoM objective function and units-vs-zeros misclassification measure: W is the vector of misclassification
measure, L is the vector of smooth error count, E is the smoothed MFoM-based objective; J. E, Jy L, J; ¥ are Jacobians.

where binary vector of labels is y and its inverse is y. Thus, if the current sample x is labeled as 1 in the ground-truth for the
class C (i.e. yr = 1 or 7, = 0), the competing models will be considered only those with labels 0, and we find an average
of these competing zero models, i.e. it is the equation (#I). The misclassification measure for that sample is calculated as

Ui (2) = —gk + yi - v. (42)

Otherwise, if the sample x is labeled as O in the ground-truth (i.e. y; = 0 or 7, = 1) for the class C, the competing models
are with labels 1, and we find average of these, i.e. the equation 0) and

Vi (2) = =gk + 7y, - u- (43)

We denote Jacobian matrix for units-vs-zeros misclassification measure as J, V. Further, we find the partial derivatives %(z)
of the Jacobian J,W¥, we have two cases:
a) if m = k, diagonal elements of the Jacobian

oy, . , ~ Ou ov
921 9 T+ Yk Ep + Yk P

ou 1 ,

8_zk = m *Ykgy €Xp (gk),

v 1 _ .,

a_zk = m “TrJr exp (gr) -
then we get -

k /
= 44
azk gk? ()
because yiy;, = 0.
b) if m # k, off-diagonal elements
8wk _ ou v 1 _ / I
=Yk + Yk = “YkYmGm €XP (Im) + 7= Yk YmIm €XP (gm) =
o~ "5z, s, T Ty @) 9m) + 35 o @) (gn)
_ g/ exp (g) YkYm YkYm
" (v,exp(g)) (¥,exp(g))
Then, we get the Jacobian matrix
—9 o grexp(gn) [B3 4+ B giexp(gr) [BE + B
JoU=| g exp(gm) L=+ L] .. —h gl exp (gm) (B 4 wegn] |

ghrexp (gar) [BEL + L] oo gl exp (gar) [ZeL 4 Selar] —gl,

where P = (y,exp(g)) and B = (¥, exp (g)). Extracting g;,, we get

-1 exp (1) [gk—Pyl+ %] —oexp(g1) [sz][g% + yyéﬂl]
JZT\I/ = d]ag (g;n) . exp (gm) I:fglj'gm + ygm} . -1 e exp (gnL) [f‘jMPym + yA%z]m] —
exp (gar) [51% + %} o exp(gm) [@k% 4 %] 1

= diag (g,,,) - G
Thus, backpropagation network error signal, using units-vs-zeros misclassification measure, is
(M =AY JJEx)=A > J v-J5L JLE, (45)
(x,y)€T (x,y)€T

where
JT = diag (g],) - G
Jg £ = diag (1}) (46)
JLE = (w1y — wa¥)

	Appendix A: Backpropagation for Non-decomposable Objectives
	Backpropagation for MFoM-micro-F1
	Jacobian for the Units-vs-Zeros Misclassification Measure

