Appendix A

Backpropagation for Non-decomposable Objectives

It worth to mention that the original backpropagation [73] is applicable to objective function, which value on the whole training dataset (or mini-batch) \mathbb{T} can be approximated by the averaged value on every single sample. This is possible due to the stochastic approximation theory [74]

$$
\begin{equation*}
E(\mathbb{T})=\frac{1}{N} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathbb{T}} E(\mathbf{x}, \mathbf{y}) \tag{23}
\end{equation*}
$$

where E is the objective function, pair (\mathbf{x}, \mathbf{y}) is a sample and its label. These objective functions 23) are known as the decomposable [75]. In machine learning we usually apply indirect optimization, regarding the objective function. Technically we try to improve a particular performance measure P (for some practical application), which is calculated on the test dataset. Whereas, during training stage, we optimize model parameters using different objective function E in the hope that in general it will improve performance P. This is indirect optimization, since such metrics are intractable or also known as non-decomposable functions. Another ambiguity is that we often optimize the same objective function (MSE, cross-entropy, KL-divergence, e.t.c.) for a different applications and for different performance metrics.

Definition. 1 Non-decomposable objective function is not decomposed into expectations over individual examples [76]. For example, these functions are F1-score, Precision/Recall Break Even Point (PRBEP), Precision at k (Prec@k), ROCArea, EER, e.t.c.

For a non-decomposable objective functions, parameters updating rule of backpropagation algorithm is assumed to be the same as for decomposable functions, except that error signal δ^{n} is calculated on the whole mini-batch \mathbb{T}

$$
\begin{gather*}
\mathbf{W}_{n} \leftarrow \mathbf{W}_{n}-\eta \frac{\partial E(\mathbb{T})}{\partial \mathbf{W}_{n}}=\mathbf{W}_{n}-\eta \delta^{n}(\mathbb{T}) \frac{\partial \mathbf{z}^{n}}{\partial \mathbf{W}_{n}}, \text { where } \tag{24}\\
\delta^{n}(\mathbb{T})=\frac{\partial E(\mathbb{T})}{\partial \mathbf{z}^{n}}
\end{gather*}
$$

here \mathbf{W}_{n} are neural network parameters for a range of $n=\overline{0, L}$ number of layers; E is a non-decomposable objective function; \mathbf{z}^{n} is a pre-activation output or output of n-th layer of network before applying activation function; η is a learning rate. In the decomposable objective function case (23], we can represent the gradient of the function as the averaged gradient calculated per-sample [74]. Whereas, for non-decomposable functions in (24), it is similar to the original backpropagation with SGD [73] calculated on a single sample, here as a single sample we treat the whole mini-batch \mathbb{T}. It is very rough assumption, though it works in practice with adaptive learning rate methods.

A. Backpropagation for MFoM-micro-F1

The micro-F1 objective function for multiclass case of M classes in terms of discrete counts true positive (TP), false positive (FP) and false negative (FN)

$$
\begin{equation*}
\mathrm{F}_{1}=\frac{2 \mathrm{TP}}{\mathrm{FP}+2 \mathrm{TP}+\mathrm{FN}}=\frac{2 \sum_{\mathrm{k}=1}^{\mathrm{M}} \mathrm{TP}_{\mathrm{k}}}{\sum_{\mathrm{k}=1}^{\mathrm{M}} \mathrm{FP}_{\mathrm{k}}+2 \sum_{\mathrm{k}=1}^{\mathrm{M}} \mathrm{TP}_{\mathrm{k}}+\sum_{\mathrm{k}=1}^{\mathrm{M}} \mathrm{FN}_{\mathrm{k}}} \tag{25}
\end{equation*}
$$

The problem with micro-F1 is that it is the discrete function, thus we can not directly differentiate and optimize it. After introducing the MFoM framework: the terms of discriminative functions (2), misclassification measure (4) and smooth error function 6, - we are ready to represent micro-F1 as the smooth continues function \widehat{F}_{1} and then optimize it. We use smooth error function (6) in order to approximate the discrete counts on a mini-batch \mathbb{T}

$$
\begin{align*}
& \mathrm{TP} \approx \widehat{\mathrm{TP}} \triangleq \sum_{\mathrm{k}=1}^{\mathrm{M}} \widehat{\mathrm{TP}}_{\mathrm{k}}=\sum_{\mathrm{k}=1}^{\mathrm{M}} \sum_{\mathbf{x} \in \mathbb{T}}\left(1-\mathrm{l}_{\mathrm{k}}(\mathbf{z})\right) \cdot \mathrm{y}_{\mathrm{k}} \tag{26}\\
& \mathrm{FP} \approx \widehat{\mathrm{FP}} \triangleq \sum_{\mathrm{k}=1}^{\mathrm{M}} \widehat{\mathrm{FP}}_{\mathrm{k}}=\sum_{\mathrm{k}=1}^{\mathrm{M}} \sum_{\mathbf{x} \in \mathbb{T}}\left(1-\mathrm{l}_{\mathrm{k}}(\mathbf{z})\right) \cdot \overline{\mathrm{y}}_{\mathrm{k}} \tag{27}\\
& \mathrm{FN} \approx \widehat{\mathrm{FN}} \triangleq \sum_{\mathrm{k}=1}^{\mathrm{M}} \widehat{\mathrm{FN}}_{\mathrm{k}}=\sum_{\mathrm{k}=1}^{\mathrm{M}} \sum_{\mathbf{x} \in \mathbb{T}} \mathrm{l}_{\mathrm{k}}(\mathbf{z}) \cdot \mathrm{y}_{\mathrm{k}} \tag{28}
\end{align*}
$$

where y_{k} and \bar{y}_{k} are labels of the corresponding sample \mathbf{x} or

$$
y_{k}=\mathbf{1}\left(x \in C_{k}\right)=\left\{\begin{array}{l}
1, \text { if } x \in C_{k}, \tag{29}\\
0, \text { if } x \notin C_{k} .
\end{array}\right.
$$

and

$$
\bar{y}_{k}=\mathbf{1}\left(x \notin C_{k}\right)=\left\{\begin{array}{l}
0, \text { if } x \in C_{k} \tag{30}\\
1, \text { if } x \notin C_{k} .
\end{array}\right.
$$

where C_{k} is the set of samples where $k^{t h}$ label is "on" (label k equals 1), indicator functions are $1(\cdot)$. We denote the sum of $\widehat{\mathrm{TP}}$ and $\widehat{\mathrm{FN}}$ as

$$
\begin{align*}
& |C| \triangleq \sum_{k=1}^{M}\left|C_{k}\right|=\sum_{k=1}^{M} \widehat{\mathrm{TP}}_{k}+\widehat{\mathrm{FN}}_{k}= \\
& =\sum_{k=1}^{M} \sum_{\mathbf{x} \in \mathbb{T}}\left(1-l_{k}(\mathbf{z})\right) \cdot y_{k}+l_{k}(\mathbf{z}) \cdot y_{k}=\sum_{k=1}^{M} \sum_{\mathbf{x} \in \mathbb{T}} y_{k}, \tag{31}
\end{align*}
$$

Therefore, the term $|C|$ is the count of unit " 1 " labels of samples \mathbf{x} across all mini-batch \mathbb{T}, i.e. the number of positive labels. The $|C|$ is a constant value for the current mini-batch \mathbb{T}, because we calculate it one time for the whole \mathbb{T}.

Finally, we get the approximation of discrete micro-F1 from (25), we call it MFoM-micro-F1 objective function

$$
\begin{equation*}
\mathrm{F}_{1} \approx \widehat{\mathrm{~F}}_{1}=\frac{2 \widehat{\mathrm{TP}}}{\widehat{\mathrm{FP}}+\widehat{\mathrm{TP}}+|\mathrm{C}|} \tag{32}
\end{equation*}
$$

Our task is to minimize the objective function

$$
\begin{equation*}
E=1-\widehat{\mathrm{F}}_{1} \rightarrow \underset{\mathbb{W}}{\arg \min } \tag{33}
\end{equation*}
$$

where a parameter set $\mathbb{W}=\left\{\mathbf{W}_{n} \mid n=\overline{0, L}\right\}$ of the network consisting of $L+1$ layers. We are able to calculate the partial derivatives of all network parameters \mathbb{W}, if we find the network error signal term $\delta^{n}(\mathbb{T})$, starting from the output layer $n=L$

$$
\begin{gathered}
\delta^{L}(\mathbb{T})=\frac{\partial E}{\partial \mathbf{z}}=-\frac{\partial \widehat{\mathrm{F}}_{1}}{\partial \mathbf{z}}=-\left[\frac{2 \widehat{\mathrm{TP}}}{\widehat{\mathrm{FP}}+\widehat{\mathrm{TP}}+|C|}\right]_{\mathbf{z}}^{\prime}= \\
=-\frac{2 \widehat{\mathrm{TP}}^{\prime} \cdot(\widehat{\mathrm{FP}}+\widehat{\mathrm{TP}}+|C|)-2 \widehat{\mathrm{TP}} \cdot\left(\widehat{\mathrm{FP}}^{\prime}+\widehat{\mathrm{TP}}^{\prime}\right)}{(\widehat{\mathrm{FP}}+\widehat{\mathrm{TP}}+|C|)^{2}}= \\
=-\frac{2 \widehat{\mathrm{TP}}^{\prime} \cdot \widehat{\mathrm{FP}}+2 \widehat{\mathrm{TP}}^{\prime} \cdot|C|-2 \widehat{\mathrm{TP}} \cdot \widehat{\mathrm{FP}}^{\prime}}{(\widehat{\mathrm{FP}}+\widehat{\mathrm{TP}}+|C|)^{2}}= \\
=-\frac{-2 \widehat{\mathrm{FN}}^{\prime} \cdot \widehat{\mathrm{FP}}-2 \widehat{\mathrm{FN}}^{\prime} \cdot|C|-2 \widehat{\mathrm{TP}} \cdot \widehat{\mathrm{FP}}^{\prime}}{(\widehat{\mathrm{FP}}+\widehat{\mathrm{TP}}+|C|)^{2}}= \\
=\frac{2 \cdot\left[(|C|+\widehat{\mathrm{FP}}) \cdot \widehat{\mathrm{FN}}+\widehat{\mathrm{TP}} \cdot \widehat{\mathrm{FP}}^{\prime}\right]}{(\widehat{\mathrm{FP}}+\widehat{\mathrm{TP}}+|C|)^{2}}
\end{gathered}
$$

Thus,

$$
\begin{equation*}
\delta^{L}(\mathbb{T})=\frac{\partial E}{\partial \mathbf{z}}=A\left(w_{1} \frac{\partial \widehat{\mathrm{FN}}}{\partial \mathbf{z}}+w_{2} \frac{\partial \widehat{\mathrm{FP}}}{\partial \mathbf{z}}\right) \tag{34}
\end{equation*}
$$

where constants, which are calculated on the whole current mini-batch \mathbb{T}

$$
\begin{equation*}
A=\frac{2}{(\widehat{\mathrm{FP}}+\widehat{\mathrm{TP}}+|C|)^{2}}, \quad w_{1}=|C|+\widehat{\mathrm{FP}}, \quad w_{2}=\widehat{\mathrm{TP}} \tag{35}
\end{equation*}
$$

If we plug in the $\widehat{\mathrm{FP}}$ and $\widehat{\mathrm{FN}}$ from 27 and 28 to the δ^{L} in eq. 34

$$
\begin{gathered}
\delta^{L}(\mathbb{T})=A\left(w_{1} \frac{\partial \widehat{\mathrm{FN}}}{\partial \mathbf{z}}+w_{2} \frac{\partial \widehat{\mathrm{FP}}}{\partial \mathbf{z}}\right)= \\
=A\left(w_{1} \cdot \sum_{k=1}^{M} \sum_{\mathbf{x} \in \mathbb{T}} \frac{\partial l_{k}(\mathbf{z})}{\partial \mathbf{z}} \cdot y_{k}-w_{2} \cdot \sum_{k=1}^{M} \sum_{\mathbf{x} \in \mathbb{T}} \frac{\partial l_{k}(\mathbf{z})}{\partial \mathbf{z}} \cdot \bar{y}_{k}\right)=
\end{gathered}
$$

$$
=A\left(\sum_{\mathbf{x} \in \mathbb{T}} \sum_{k=1}^{M} \frac{\partial l_{k}(\mathbf{z})}{\partial \mathbf{z}}\left[w_{1} \cdot y_{k}-w_{2} \cdot \bar{y}_{k}\right]\right)
$$

It means that if $k^{t h}$ label of a sample \mathbf{x} is unit (i.e., $y_{k}=1$ and $\bar{y}_{k}=0$), then we multiply by the weight constant w_{1}, otherwise by the constant $-w_{2}$. Then we rewrite in the vector form the last result

$$
\delta^{L}(\mathbb{T})=A \sum_{\mathbf{x} \in \mathbb{T}}\left(\frac{\partial l_{1}(\mathbf{z})}{\partial \mathbf{z}}, \ldots, \frac{\partial l_{k}(\mathbf{z})}{\partial \mathbf{z}}, \ldots, \frac{\partial l_{M}(\mathbf{z})}{\partial \mathbf{z}}\right) \cdot\left(\begin{array}{c}
w_{1} \cdot y_{1}-w_{2} \cdot \bar{y}_{1} \tag{36}\\
\ldots \\
w_{1} \cdot y_{k}-w_{2} \cdot \bar{y}_{k} \\
\ldots \\
w_{1} \cdot y_{M}-w_{2} \cdot \bar{y}_{M}
\end{array}\right)
$$

In (36), the left vector under the sum is the transposed Jacobian, because we find the partial derivatives with respect to the vector of multiple variables $\mathbf{z}=\left(z_{1}, \ldots, z_{m}, \ldots, z_{M}\right)^{\top}$

$$
\begin{align*}
J_{\mathbf{z}}^{\top} \mathcal{L} & =\left(\frac{\partial l_{1}(\mathbf{z})}{\partial \mathbf{z}}, \ldots, \frac{\partial l_{k}(\mathbf{z})}{\partial \mathbf{z}}, \ldots, \frac{\partial l_{M}(\mathbf{z})}{\partial \mathbf{z}}\right)= \\
& =\left(\begin{array}{ccc}
\frac{\partial l_{1}(\mathbf{z})}{\partial z_{1}} & \ldots & \frac{\partial l_{M}(\mathbf{z})}{\partial z_{1}} \\
\ldots & \frac{\partial l_{k}(\mathbf{z})}{\partial z_{m}} & \ldots \\
\frac{\partial l_{1}(\mathbf{z})}{\partial z_{M}} & \cdots & \frac{\partial l_{M}(\mathbf{z})}{\partial z_{M}}
\end{array}\right) \tag{37}
\end{align*}
$$

where $m=\overline{1, M}$ is the row index of the variables z_{m} and $k=\overline{1, M}$ is the column index for the functions $l_{k}(\mathbf{z})$.

$$
\begin{equation*}
\delta^{L}(\mathbb{T})=A \cdot \sum_{(\mathbf{x}, \mathbf{y}) \in \mathbb{T}} J_{\mathbf{z}}^{\top} \mathcal{L}(\mathbf{x}) \cdot\left(w_{1} \cdot \mathbf{y}-w_{2} \cdot \overline{\mathbf{y}}\right) \tag{38}
\end{equation*}
$$

NOTE: we can interpret 38 as for every pair (\mathbf{x}, \mathbf{y}) from mini-batch \mathbb{T} we calculate the value of the transposed Jacobian and find the weighted linear combination of its columns with w_{1} or $-w_{2}$. The weight constants w_{1} or w_{2} are defined by the labels y_{k} or \bar{y}_{k} of sample. Then we sum up all weighted Jacobians across all samples in a mini-batch \mathbb{T}. Thus, we get "decomposed" error signal δ^{L} per each sample \mathbf{x}, i.e. MFoM framework allowed us to archive it.

B. Jacobian for the Units-vs-Zeros Misclassification Measure

In this section, we infer a Jacobian for the units-vs-zeros misclassification measure (4). Units-vs-zeros misclassification measure was adopted for multi-label classification and proposed in [32]. First, we consider the example A.1] of the units-vszeros misclassification measure with sample \mathbf{x} having multiple label vector \mathbf{y}.
Example A. 1 Let we have training pair $(\boldsymbol{x}, \boldsymbol{y})$ and $\boldsymbol{y}=(1,1,0,0)^{\top}$, see Fig. 8 . Then, we have units-vs-zeros misclassification as

$$
\begin{aligned}
& \psi_{1}(\mathbf{z})=-g_{1}+\ln \left[\frac{1}{2}\left(e^{g_{3}}+e^{g_{4}}\right)\right], \\
& \psi_{2}(\mathbf{z})=-g_{2}+\ln \left[\frac{1}{2}\left(e^{g_{3}}+e^{g_{4}}\right)\right), \\
& \psi_{3}(\mathbf{z})=-g_{3}+\ln \left[\frac{1}{2}\left(e^{g_{1}}+e^{g_{2}}\right)\right], \\
& \psi_{4}(\mathbf{z})=-g_{4}+\ln \left[\frac{1}{2}\left(e^{g_{1}}+e^{g_{2}}\right)\right],
\end{aligned}
$$

where g_{k} is the output score of a neural network.
The units-vs-zeros misclassification measure (4) can be rewritten in the convenient form for inference of derivatives

$$
\begin{equation*}
\psi_{k}(\mathbf{z})=-g_{k}+\bar{y}_{k} \cdot u+y_{k} \cdot v \tag{39}
\end{equation*}
$$

where Kolmogorov f-mean of unit models

$$
\begin{equation*}
u=\ln \left[\frac{1}{\sum_{i=1}^{M} y_{i}} \cdot\langle\mathbf{y}, \exp (\mathbf{g})\rangle\right]=\ln \left[\frac{1}{\sum_{i=1}^{M} y_{i}} \cdot\left(y_{1} e^{g_{1}}+\ldots+y_{k} e^{g_{k}}+\ldots+y_{M} e^{g_{M}}\right)\right] \tag{40}
\end{equation*}
$$

and Kolmogorov f-mean of zero models

$$
\begin{equation*}
v=\ln \left[\frac{1}{\sum_{i=1}^{M} \bar{y}_{i}} \cdot\langle\overline{\mathbf{y}}, \exp (\mathbf{g})\rangle\right]=\ln \left[\frac{1}{\sum_{i=1}^{M} \bar{y}_{i}} \cdot\left(\bar{y}_{1} e^{g_{1}}+\ldots+\bar{y}_{k} e^{g_{k}}+\ldots+\bar{y}_{M} e^{g_{M}}\right)\right] \tag{41}
\end{equation*}
$$

Fig. 8. Example of the extended DNN with the MFoM objective function and units-vs-zeros misclassification measure: Ψ is the vector of misclassification measure, \mathcal{L} is the vector of smooth error count, E is the smoothed MFoM-based objective; $J_{\mathcal{L}} E, J_{\Psi} \mathcal{L}, J_{\mathbf{z}} \Psi$ are Jacobians.
where binary vector of labels is \mathbf{y} and its inverse is $\overline{\mathbf{y}}$. Thus, if the current sample \mathbf{x} is labeled as 1 in the ground-truth for the class C_{k} (i.e. $y_{k}=1$ or $\bar{y}_{k}=0$), the competing models will be considered only those with labels 0 , and we find an average of these competing zero models, i.e. it is the equation 41. The misclassification measure for that sample is calculated as

$$
\begin{equation*}
\psi_{k}(\mathbf{z})=-g_{k}+y_{k} \cdot v \tag{42}
\end{equation*}
$$

Otherwise, if the sample \mathbf{x} is labeled as 0 in the ground-truth (i.e. $y_{k}=0$ or $\bar{y}_{k}=1$) for the class C_{k}, the competing models are with labels 1 , and we find average of these, i.e. the equation 40 and

$$
\begin{equation*}
\psi_{k}(\mathbf{z})=-g_{k}+\bar{y}_{k} \cdot u . \tag{43}
\end{equation*}
$$

We denote Jacobian matrix for units-vs-zeros misclassification measure as $J_{\mathbf{z}} \Psi$. Further, we find the partial derivatives $\frac{\partial \psi_{k}(\mathbf{z})}{\partial z_{m}}$ of the Jacobian $J_{\mathbf{z}} \Psi$, we have two cases:
a) if $m=k$, diagonal elements of the Jacobian

$$
\begin{gathered}
\frac{\partial \psi_{k}}{\partial z_{k}}=-g_{k}^{\prime}+\bar{y}_{k} \frac{\partial u}{\partial z_{k}}+y_{k} \frac{\partial v}{\partial z_{k}} \\
\frac{\partial u}{\partial z_{k}}=\frac{1}{\langle\mathbf{y}, \exp (\mathbf{g})\rangle} \cdot y_{k} g_{k}^{\prime} \exp \left(g_{k}\right) \\
\frac{\partial v}{\partial z_{k}}=\frac{1}{\langle\overline{\mathbf{y}}, \exp (\mathbf{g})\rangle} \cdot \bar{y}_{k} g_{k}^{\prime} \exp \left(g_{k}\right) .
\end{gathered}
$$

then we get

$$
\begin{equation*}
\frac{\partial \psi_{k}}{\partial z_{k}}=-g_{k}^{\prime} \tag{44}
\end{equation*}
$$

because $y_{k} \bar{y}_{k}=0$.
b) if $m \neq k$, off-diagonal elements

$$
\begin{aligned}
\frac{\partial \psi_{k}}{\partial z_{m}}=\bar{y}_{k} \frac{\partial u}{\partial z_{m}}+y_{k} \frac{\partial v}{\partial z_{m}} & =\frac{1}{\langle\mathbf{y}, \exp (\mathbf{g})\rangle} \cdot \bar{y}_{k} y_{m} g_{m}^{\prime} \exp \left(g_{m}\right)+\frac{1}{\langle\overline{\mathbf{y}}, \exp (\mathbf{g})\rangle} y_{k} \bar{y}_{m} g_{m}^{\prime} \exp \left(g_{m}\right)= \\
& =g_{m}^{\prime} \exp \left(g_{m}\right)\left[\frac{\bar{y}_{k} y_{m}}{\langle\mathbf{y}, \exp (\mathbf{g})\rangle}+\frac{y_{k} \bar{y}_{m}}{\langle\overline{\mathbf{y}}, \exp (\mathbf{g})\rangle}\right]
\end{aligned}
$$

Then, we get the Jacobian matrix

$$
J_{\mathbf{z}}^{\top} \Psi=\left(\begin{array}{ccccc}
-g_{1}^{\prime} & \cdots & g_{1}^{\prime} \exp \left(g_{1}\right)\left[\frac{\bar{y}_{k} y_{1}}{P}+\frac{y_{k} \bar{y}_{1}}{B}\right] & \cdots & g_{1}^{\prime} \exp \left(g_{1}\right)\left[\frac{\bar{y}_{M} y_{1}}{P}+\frac{y_{M} \bar{y}_{1}}{B}\right] \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
g_{m}^{\prime} \exp \left(g_{m}\right)\left[\frac{\bar{y}_{1} y_{m}}{P}+\frac{y_{1} \bar{y}_{m}}{B}\right] & \cdots & -g_{k}^{\prime} & \cdots & g_{m}^{\prime} \exp \left(g_{m}\right)\left[\frac{\bar{y}_{M} y_{m}}{P}+\frac{y_{M} \bar{y}_{m}}{B}\right] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_{M}^{\prime} \exp \left(g_{M}\right)\left[\frac{\bar{y}_{1} y_{M}}{P}+\frac{y_{1} \bar{y}_{M}}{B}\right] & \cdots & g_{M}^{\prime} \exp \left(g_{M}\right)\left[\frac{\bar{y}_{k} y_{M}}{P}+\frac{y_{k} \bar{y}_{M}}{B}\right] & \cdots & -g_{M}^{\prime}
\end{array}\right)
$$

where $P=\langle\mathbf{y}, \exp (\mathbf{g})\rangle$ and $B=\langle\overline{\mathbf{y}}, \exp (\mathbf{g})\rangle$. Extracting g_{k}^{\prime}, we get

$$
J_{\mathbf{z}}^{\top} \Psi=\operatorname{diag}\left(g_{m}^{\prime}\right) \cdot\left(\begin{array}{ccccc}
-1 & \cdots & \exp \left(g_{1}\right)\left[\frac{\bar{y}_{k} y_{1}}{P}+\frac{y_{k} \bar{y}_{1}}{B}\right] & \cdots & \exp \left(g_{1}\right)\left[\frac{\bar{y}_{M} y_{1}}{P}+\frac{y_{M} \bar{y}_{1}}{B}\right] \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
\exp \left(g_{m}\right)\left[\frac{\bar{y}_{1} y_{m}}{P}+\frac{y_{1} \bar{y}_{m}}{B}\right] & \cdots & -1 & \cdots & \exp \left(g_{m}\right)\left[\frac{\left[\bar{y}_{M} y_{m}\right.}{P}+\frac{y_{M} \bar{y}_{m}}{B}\right] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\exp \left(g_{M}\right)\left[\frac{\bar{y}_{1} y_{M}}{P}+\frac{y_{1} \bar{y}_{M}}{B}\right] & \cdots & \exp \left(g_{M}\right)\left[\frac{\bar{y}_{k} y_{M}}{P}+\frac{y_{k} \bar{y}_{M}}{B}\right] & \cdots & -1 \\
& =\operatorname{diag}\left(g_{m}^{\prime}\right) \cdot \mathbf{G}
\end{array}\right.
$$

where

$$
\begin{align*}
& J_{\mathbb{Z}}^{\top} \Psi=\operatorname{diag}\left(g_{m}^{\prime}\right) \cdot \mathbf{G} \\
& J_{\mathcal{U}^{\top}} \mathcal{L}=\operatorname{diag}\left(l_{k}^{\prime}\right) \tag{46}\\
& J_{\mathcal{L}}^{\top} E=\left(w_{1} \mathbf{y}-w_{2} \overline{\mathbf{y}}\right)
\end{align*}
$$

