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Abstract   In this paper, we tackle the challenge of identifying dialects using deep 
learning for under-resourced languages. Recent advances in spoken dialogue tech-
nology have been strongly influenced by the availability of big corpora, while our 
goal is to work on the spoken interactive application for the North Sami language, 
which is classified as one of the less-resourced languages spoken in Northern Eu-
rope. North Sami has various variations and dialects which are influenced by the 
majority languages of the areas in which it is spoken: Finnish and Norwegian. To 
provide reliable and accurate speech components for an interactive system, it is 
important to recognize the speakers with their Finnish or Norwegian accent. Con-
ventional approaches compute universal statistical models which require a large 
amount of data to form reliable statistics, and thus they are vulnerable to small da-
ta where there is only a limited number of utterances and speakers available. In 
this paper we will discuss dialect and accent recognition in under-resourced con-
text, and focus on training an attentive network for leveraging unlabeled data in a 
semi-supervised scenario for robust feature learning. Validation of our approach is 
done via two DigiSami datasets: conversational and read corpus. 

1 Introduction 

Recent advances in dialect and accent recognition have been strongly influenced 
by the availability of big corpora for popular languages. Dialogue technology ap-
plications for major languages are widely available, but for many languages this is 
not the case: there is no commercial interest in developing speech technology nor 
corpora or resources to enable further development in interactive applications. It is 
thus important to study how to create such technology for languages which are 
under-resourced in that the available data is not large or it is not in the digital for-



mat ready to be used for technical applications. The lack of digital "presence" can 
be threatening to such languages as the speakers are forced to compromise and 
trade off their native language for languages which provide better and wider 
communication with the world and the society. The recent interest in revitalizing 
such languages has initiated both general and scientific effort to collect and devel-
op tools and applications for less-resourced languages (Crystal 2000; Besacier et 
al. 2014; Jokinen 2014). From the research and development point of view, the fo-
cus has been on enabling technology which allows creating applications and tech-
nology given low data resources and shortage of staff, bringing in questions of 
how to best address basic speech technology needs with minimum effort available.  

Robot systems are getting popular as communicating devices, and there is a 
wide range of applications from small sociable robotic devices to advanced inter-
active applications such as WikiTalk (Wilcock and Jokinen 2014) and ERIKA 
(Kawahara et al. 2016) which enable natural language human-robot dialogues. 
Much research goes into development of speech technology, but applications in 
social robotics with the human-centered view as the core concept to support natu-
ral interaction capabilities have gradually been brought into the center of dialogue 
system development. The main hypothesis is that the more engaging the interac-
tion is in terms of communicative competence, the better results are obtained by 
the system in terms of enjoyment and reliability. Concerning under-resourced lan-
guages, new technology can play a pivotal role in boosting revitalization of threat-
ened languages, as the language users can see the language as a meaningful and 
useful part in the globalized and technologized world, cf. Ó Laoire (2008). 

Multilingual aspects have been addressed by Laxström et al. (2016), who point 
out the need for software localization and internationalization to produce systems 
that can be used in different language and cultural contexts. Multilingualism re-
lates to the need to cater for speakers with different dialects and speech accents so 
as to allow the spoken interaction to proceed smoothly. In real world applications, 
dialect and accent recognition contributes to the performance of speech processing 
systems, and the task has attracted increased attention in the speech community. 
Spoken dialogue systems are typical applications which can benefit from en-
hanced multilingualism: if they can recognize the user’s language preferences, 
they can customize the interface to digital services accordingly (Dehak et al. 
2011). The models can enhance the performance of processing tasks such as SR 
and ASR, and contribute positively to the performance of the whole system, and 
consequently, to the user experience and evaluation. 

In our previous work, we studied North Sami spoken variation in Finland and 
in the Finnmark area in Norway (Jokinen et al. 2016). We chose North Sami as 
our target language, since it is the object of research in the DigiSami project (Jok-
inen et al. 2017), which concerns speech and language technology to support small 
Finno-Ugric language communities. North Sami is an official language in the six 
northernmost counties in Norway, and legally recognized in Finland and Sweden. 
The Sami speakers are at least bilingual and can also speak the majority language 
of the country they live in (Norwegian, Swedish or Finnish), while North Sami is 
used as a lingua franca among the Sami people (Jokinen et al. 2017). The speaker's 



country of origin can be fairly easily distinguished based on their speaking man-
ner. In Jokinen et al. (2016), we hypothesized that the variation in North Sami dia-
lects is due to the majority language, rather than individual variation, i.e. that there 
is more variation among the speakers of North Sami who live in the different ma-
jority language locations in Norway and in Finland, than among the speakers who 
live in different location within the same majority language context.  

In this paper we continue the work on language change, assimilation, and dia-
lect variation based on the North Sami data. We address the challenge of identify-
ing minority dialects in a restricted data context using deep learning. Our approach 
augments neural architecture to form a robust and consistent dialect representation 
from a small corpus, while keeping an end-to-end design to maximize the poten-
tial application to similar problems. Specifically, the experiments establish two 
crucial situations recognizing minority languages. First, the set of samples is 
available only for development and consists of a small number of samples from 
different sources which were gathered from distinct contexts and speakers. Sec-
ond, a partial set of dialects is presented during the training process, and the algo-
rithm performs semi-supervised learning to efficiently recognize new dialects dur-
ing the test time. We validate our approach through systematic experiments on 
two DigiSami datasets: conversational and read corpus. Our experimental findings 
are corroborated by outperforming the recent state-of-the-art i-vector approach. 

The paper is structured as follows. We discuss the DigiSami datasets and visu-
alise their properties in Section 2. We describe the Deep Learning method focus-
ing on its use for small corpus dialect recognition in Section 3. We present our ex-
periments and results in Section 4, and conclude with future views in Section 5. 

2 DigiSami datasets  

Availability of large corpora in speech processing has been one of the major 
driving forces advancing speech technologies. This has allowed recent state-of-
the-art systems to obtain impressive performance in recognizing spoken languages 
(Lee et al. 2016, Li et al. 2013, Amodei et al. 2015). As for under-resourced lan-
guages, research is carried out in several projects and initiatives which focus on 
data collection and speech technology development. Most of the development for 
those languages have been concentrated on two directions: bootstrapping the sys-
tem using adaptation of pre-trained model (Thomas et al. 2013), and introducing 
closely related ``out-of-languages'' data (Besacier 2014). These approaches require 
additional corpus, which is problematic for under-resourced languages. 

The DigiSami project (Jokinen et al. 2017) aims to study the effect of digitali-
sation on small endangered languages, and to support visibility and revitalisation 
of Finno-Ugric language communities by creating digital content as well as devel-
oping language and speech technology tools, resources, and applications that can 
be used for automatic speech and language processing. The project focuses on the 
North Sami language, the largest of the Sami languages with about 20000 speak-



ers, and explores various spoken language issues (speaker identification, multi-
modal conversation analysis, laughing), with the challenging goal of demonstrat-
ing viability of an interactive dialogue system in the North Sami language, 
SamiTalk, following the multilingual open-domain robot application WikiTalk 
(Wilcock et al. 2017). WikiTalk is an interactive robot application that enables us-
ers to find out more about subjects that interest them by discussing with the hu-
manoid robot. They can navigate through the Wikipedia articles, ask for more in-
formation on interesting subjects, and get the robot to read the related Wikipedia 
article for them (Jokinen and Wilcock, 2012, 2013).  

The project organized Sami language data collection and Wikipedia article 
writing through series of community events in the central Sami speaking areas. 
The participants took part in three different tasks: discussion and writing Wikipe-
dia articles, reading aloud of existing Wikipedia texts, and taking part in a free 
conversation which was video recorded. Locations were selected to represent dif-
ferent North Sami dialects, and consisted of three villages in Finland: Utsjoki 
(Ohcejohka), Inari (Anár) and Ivalo (Avvil), and two villages in Norway: Kau-
tokeino (Guovdageaid) and Karasjoki (Kárásjohka). See more of the DigiSami da-
ta and data collection in (Jokinen 2014; Jokinen & Wilcock 2014). 

There were 28 participants, 10 men and 18 women with age range 16-65 years. 
They (or their parents in case of under-aged participants) gave explicit agreement 
to allow the data to be used for research purposes. All the participants were native 
speakers of North Sami, and almost all (26) reported using North Sami daily. All 
participants were bilingual and spoke either Finnish (Utsjoki, Ivalo, Inari), or 
Norwegian (Kautokeino and Karasjoki). Most participants had lived their life in 
the Sápmi area, although not in the same place. Ten participants had also lived in 
bigger cities in the southern part of the area for a short period of time.  

The read speech part of the corpus contains speech samples from 28 partici-
pants who read Wikipedia articles written in North Sami. The conversational cor-
pus has eight casual conversations with two or three participants, and the topics 
vary from everyday life (next vacation, driving school, cars) to translation be-
tween Sami and other languages and to technological tools that have been made to 
help writing North Sami more correctly. Annotation of the corpus was done with 
Praat and consists of 5 time-aligned tiers: a phonological/phonetic transcription, 
the words, the sentence in orthographic form, a Finnish translation, and remarks 
on things like dialectal variation. Conversations are also annotated with respect to 
topics and laughter (Hiovain and Jokinen 2016). The corpus has been made avail-
able for general use through the CSC website.  

Overview of the datasets is given in Table 1, and Figure 1 visualizes the close-
ness of the dialects in the read and conversational corpora. There is a separation 
between read speech and conversational speech. We observe that conversational 
speech is more separated than read speech in the majority languages (Finnish and 
Norwegian), which can be explained by the formal mode of speaking in the read 
speech versus informality of the conversational speech. We also noticed occasion-
al code-switching in conversational speech to majority language. The samples 
group into isolated regions, but dialects do not form clearly separated clusters. The 



same dialect can form multiple clusters, which possibly represent the effect of 
unwanted variation (i.e. speaker variation, recording variation, etc). 

 
Table 1 DigiSami data overview. 

 
Figure 1 t-SNE visualization of MFCCs features with 10 frames for left and right context 
for the conversational corpus (dot) and read corpus (triangle). Left figure highlights the 

majority languages, Right one illustrates five different North Sami dialects. 

3 Deep learning for small corpus dialect recognition 

We tackle the problem discriminative learning for a small corpus in dialect recog-
nition by addressing certain challenges. First, the complexity of speech signal is 
emphasized in the small dataset, with a limited number of utterances per speaker. 
Conventional approaches to dialect recognition compute universal background 
models from closely related languages (Lee et al 2016; Amodei et al. 2015; Rich-
ardson et al. 2015), and as a result, the system requires big data to compute relia-
ble statistics. For minority languages, collecting additional data is difficult, and as 
the language is typically distinguishable from the prominent language groups, in-
troducing external corpus might lead to an unpredictable bias (Thomas et al. 2013). 
Moreover, separating feature learning and discriminative learning can lead to an 
unoptimized representation for the classification objective. We thus simplified our 
approach by constructing an end-to-end trained deep neural network that takes in-
to account the channel variation to learn robust dialect representation.  



Second, deep networks confront two crucial issues as non-linear models. Theo-
retically, neural networks can approximate Bayesian posterior probabilities under 
the assumptions which concern accurate estimation: the number of parameters is 
enough, there are enough training examples, and the priori class distribution of 
training set must be representative for the whole data set (Zhang and Quin 2013; 
Morin and Bengio 2005; Kirkpatrick et al. 2017). In recent years, much effort has 
been directed to advance neural architectures and optimization algorithms for deep 
learning (Ngo Trong et al. 2016; Dalyac et al. 2014; Zhang et al. 2016; Prechelt 
2012). However, the issue concerning small, imbalanced datasets remains open. 
Inspired by the new perspective in understanding generalizability of deep network 
(Sainath et al. 2014), we employ the implicit regularization techniques to directly 
combat overfitting within the network architectures. 

3.1 Supervised attention for language identification 
We improve the language identification accuracy by forcing the model attended to 
speech segments within the utterances. Since the speech was recorded in various 
conditions, from conversations with ambient noise to formal reading sessions. 
There are differences among the dialect distribution of training and evaluation da-
ta, and the limited amount of training requires that the training process extracts a 
more precise representation. On the other hand, conventional attention-based ap-
proaches require large datasets since the attended weights are automatically learnt 
together with the main task objective (Xu et al. 2015; Bahdanau et al. 2015). We 
introduce a supervised attention algorithm for the speech processing task as in-
spired from (Mi et al. 2016). We compute the distance between the machine atten-
tions and the “true” alignments of speech segments, and integrate the cost to the 
LID objective. The energy-based Voice Activities Detection (VAD) is used to 
generate the labels to supervise the attention network. Also, soft attention mecha-
nism (Xu et al. 2015) is implemented to handle uncertainty of the VAD labels.  

3.2 Semi-supervised end-to-end learning 
Fig. 2 (next page) shows the proposed architecture for semi-supervised end-to-

end (SSEE) learning. The design is composed of three deep learning architectures: 
convolutional neural network (CNN), long short-term memory network (LSTM), 
and fully connected network (FNN) (LeCun, 2015). The semi-supervised function 
is introduced by the convolutional decoder which learns to reconstruct the original 
signal. We do not apply decoding process after LSTM, since the recurrent neural 
network learns temporal patterns, and decoding of temporal signals involves 
alignment of long sequences which requires additional constraints and weakens 
our main objective to learn a robust features representation. Moreover, the weights 
of the decoder and encoder are tied, and random Gaussian noise is presented in the 
encoder during the training process. The learning process is a joint optimization of 
discriminative objective and reconstruction cost balanced by the hyperparameter α 

 



 
Figure 2 Architecture of a semi-supervised end-to-end dialect recognition system with the 

different algorithms. A fully-supervised network can be achieved by removing the decoder. 

By including the second term, and the weight of encoder and decoder are tied, 
optimizing the objective also denoises the corrupted encoder. In order to stabilize 
the optimization process and enforce the network learning robust statistics from 
training set, we introduce batch normalization after each layer using Eq. 2 where 
batch normalization BNγ,β is given by Eq. 3. As a result, the network seeks for the 
optimal weights and layers statistics that preserve the most representative features 
within its convolutional structures. 

 

3.3 Compensate channel variances using implicit regularization 
Regularization is used to prevent the learning algorithm from overfitting the train-
ing and thus boost the model’s generalizability. The two main strategies for regu-
larizing a neural network are explicit regularization and implicit regularization 
(Zhang et al. 2016). Explicit regularization applies prior to constraint network pa-
rameters (e.g. norm constraint, dropout) and concentrates on penalizing the algo-
rithm from overfitting; the resulted model is neither necessary nor sufficiently 
generalized. Implicit regularization considers the mismatch between the training 
set and the population, and integrates its policies into the optimization process. 
Early stopping and batch normalization (BN) have shown to be effective ap-
proaches to implicit regularization. We use generalization loss (GL) as early stop-
ping criterion (Prechelt 2012) and decrease learning rate by 2 whenever the net-
work drops its validating score. We also modify BN to include internal noise as 
suggested in (Radford et al. 2015) and shown in formula (3) 

 
where ε is a residual term that explaines the differences between training and 
evaluation data. It is represented as Gaussian noise, and added to the normalized 
input before applying activation to force BN to learn a more robust normalized 



space. Conversely, the approach in Eq. 4 creates instable statistics and decelerates 
convergent process. 

 

   

3.4 Bayesian cross-entropy objective 
The modified cross-entropy (Dalyac et al. 2014) takes into account prior distribu-
tion of training set, and scales the loss value appropriately for each class  

 
n is the number of training examples, K is the number of classes, and p(yi) is the 
probability of class yi given our training set. This objective heavily relies on the 
assumption that the training set encapsulates the same distribution as the popula-
tion. Since the assumption is unlikely to be sound for small datasets, we use mini 
batch statistics to aggregate the prior probability of each class, i.e. 

 
This approach has been proved to stabilize the gradients and lead to better results 
in our experiments. We also found out that softmax activation outperforms other 
activation functions (i.e. sigmoid, rectifier, tanh), and is more stable for learning 
imbalanced data due to its normalization term, the gradients are equally distributed 
to anti-model neurons. Consequently, the deep network becomes a probabilistic 
inference model, since the parameters define a probability distribution of discrete 
random variable for each class conditional on the training data. 

4 Experiments in dialect recognition 

All the experiments were repeated three times to minimize the effect of random 
initialisation, and the final reported numbers are the mean and the standard devia-
tion of the experiments. All the audio files were down-sampled to 16 kHz and par-
titioned into 30 seconds chunks. Our experiments have showed that log mel-filter 
banks features with Δ and Δ Δ are more suitable for deep network, and the same 
observation has been found in (Ossama et al. 2014, Trong et al. 2016). Using RNN 
enables us to leverage longer temporal windows, we segment each utterance into 
chunks of 200 consecutive frames, and each chunk is shifted forward 100 frames 
to form the next sample. One may finds augmenting the data by decreasing the 
shift distance, however, our experiments had provided no improvement with 
smaller distance. As suggested in (LeCun et al. 1998), we normalize our speech 
frames using global mean and variance calculated from given training set. 



4.1 Evaluation metrics  
Results are reported in terms of average detection cost (Cavg) which is the mean 

of all the binary detection cost (CDET) for each language. CDET is defined as in (Li 
et al. 2013):  

  
where Pmiss denotes the miss probability (or false rejection rate), i.e., a test 

segment of dialect Li is rejected as being in that dialect. Pfa(Li; Lk) is the probabil-
ity of a test segment of dialect Lk accepted as being of dialect Li. The costs, Cmiss 
and Cfa are both set to 1 and Ptar, the prior probability of a target accent, is set to 
0.5 as in (Li et al. 2013). 

4.2 Baseline system 
We impose the state-of-the-art i-vector approach to LID as our baseline (Lee et 

al. 2015; Richardson et al. 2015), the system has been implemented for our task in 
(Jokinen et al. 2016). An utterance is represented using the fixed length and low-
dimensional latent variable vector in the total variability space (Dehak et al. 2011). 
This is commonly called an i-vector, and it contains the variability in the utter-
ance, such as dialect, speaker and the recording session. The Gaussian mixture 
model (GMM) supervector, M, of an utterance is represented as 

 
where m is the utterance independent component (the universal background 

model or UBM supervector), T is a rectangular low rank matrix and w is an inde-
pendent random vector of distribution N(0; I). T represents the captured variabili-
ties in the supervector space. It is estimated by the expectation maximization (EM) 
algorithm similar to estimating the V matrix in joint factor analysis (JFA) (Ma-
trouf et al. 2007), with the exception that every training utterance of a given model 
is treated as belonging to a different class. The extracted i-vector is then the mean 
of the posterior distribution of w.  

As the extracted i-vectors contain both intra- and inter-dialect variability, we 
use heteroscedastic linear discriminant analysis (HLDA) to project i-vectors onto a 
space where inter-dialect variability is maximized and intra-dialect variability is 
minimized. In standard HLDA technique, the vectors of size n are projected into 
subspace p < n, using HLDA matrix 

  
Within-class covariance normalization (WCCN) is used to compensate unwanted 
intra-class variations in the variability space (Behravan et al. 2015). Given two i-
vectors wtest and wdtarget for dialect d, cosine similarity score t is computed: 

 
where  

       



Further, wd
target is the average i-vector over all the training utterances in dialect 

d. This score a calculated for all target languages, and the dialect is identified by 
the highest degree of similarity. Only the dialect labels are involved in computing 
HLDA, hence, the system doesn’t know which utterances belong to Norwegian or 
Finnish, and provides unbiased results concerned the effect of majority languages. 

4.3 End-to-end deep learning systems 
Following (Trong et al. 2016, Sainath et al. 2015), we design our network using 
multiple neural architectures which are complementary in their modelling capabil-
ities to capture different patterns. Figure 2 presented the architecture and the dif-
ferent algorithms used.  

While FNN using multiple processing layers is able to extract hierarchical rep-
resentations that benefit the discriminative objective, CNN has ability to extract 
local invariant features in both time and frequency domain (Ganapathy et al. 2014). 
RNN combines the input vector xt (i.e. t-th frames of utterances) with their internal 
state vector to exhibit dynamic temporal pattern in signal. As sequence-training is 
critical for speech processing, conventional FNN approaches have been proven in-
efficient in both language and speaker identification task (Lopez-Moreno 2014, 
Ganapathy et al. 2014). Our observation shows that DigiSami datasets contains 
long conversation with continual silence between each talk, hence, the frames-
level features extracted by FNN can introduce extra biases and noises to the net-
work. As a result, our algorithm focuses on adapting CNN and RNN architectures 
to address the difference between distribution of training and evaluation data. We 
further compare our networks to the approaches in (Lopez-Moreno et al. 2014, 
Gonzalez-Dominguez et al. 2014, and (Ganapathy et al. 2014), where the net-
works’ hyperparameters (i.e. number of layers, number of hidden units, activation 
function, and parameters initialization) are fine-tuned for our task. The designs of 
the networks are shown in Table 2. 

Network Design # of parameters 

FNN (1) FNN(2560-2560-1024) 2.8 x 106 

CNN (2) CNN(32-64-128-256) 2.4 x 105 

LSTM (3) RNN(512) 6.1 x 106 

Our system CNN(32-64);RNN(256-256);FNN(512) 3.2 x 106 

Table 2 Different end-to-end neural architectures. (1) = Lopez-Moreno et al. (2014), 
(2) = Ganapathy et al. (2014), (3) = Gonzalez-Dominguez et al. (2014). 

4.4 Supervised language identification 
The algorithms are developed on the read speech corpus using a restricted closed 
training set, and their performance is verified on both read and conversational 
speech corpus. For training, we randomly split the read speech corpus into three 
datasets: training set (50% of the corpus), validation set and test set (25% each). 
The segmentation process ignores speaker information, and so the three sets con-
tain three disjoint sets of utterances from the shared speaker space. Validation set 
is used for early-stopping. The test set from the read speech corpus is used for test-



ing, together with the conversational speech corpus which is not used for training. 
Table 3 shows the results of the four different architectures. All the systems seem 
to generaliz well, however, they are overfitting to individual speakers which is in-
dicated by poor performance on conversational data.  

However, the result in Table 3 show the effect of channel variation as the data 
splitting used a shared speaker set. We thus split the development data so that one 
speaker from each dialect is randomly selected for validation and another speaker 
for testing, cf. (Jokinen et al. 2016, Behravan et al. 2016). The remaining speakers 
are used for training the classifier. The results of the LOSO (leave-one-speaker-
out) method are shown in Table 4, and they are comparable to our previous i-
vector approach (Jokinen et al. 2016). Table 4 emphasizes the importance of im-
plicit regularization and the multiple-architecture design for end-to-end learning. 
Moreover, the best network outperforms i-vector system in both datasets. 

 Cavg x 100 

Networks Read speech (test set) Conversational speech 

FNN (1) 2.56 +/- 0.25 22.60 +/- 2.42 

CNN (2) 0 17.76 +/- 0.84 

LSTM (3) 0 15.60 +/- 1.1 

Our system 0 21.05 +/- 0.25 

Table 3 Performance of the different network designs on a shared speaker set. (1) = Lopez-
Moreno et al. (2014), (2) = Ganapathy et al. (2014), (3) = Gonzalez-Dominguez et al. (2014). 

 Cavg x 100 

Networks Read speech (test set) Conversational speech 

FNN (1) 32.30 +/- 1.60 24.67 +/- 2.36 

CNN (2) 26.06 +/- 1.97 23.82 +/- 2.52 

LSTM (3) 25.77 +/- 2.69 21.03 +/- 1.85 

Our (Eq. 3) 14.68 +/- 0.42 19.78 +/- 3.48 

Our (Eq. 4) 18.98 +/- 1.22 22.08 +/- 2.32 

Our (crossentropy) 18.49 +/- 1.75 19.26 +/- 1.34 

i-vector (4) 17.79 - 

Table 4 Performance of different network designs using LOSO. . (1) = Lopez-Moreno et 
al. (2014), (2) = Ganapathy et al. (2014), (3) = Gonzalez-Dominguez et al. (2014 

4.5 Semi-supervised scenario 
We also compared the performance of a semi-supervised and full-supervised sys-
tem. We used the same configuration as described in the LOSO experiment except 
that we removed the label from the validation set and feed it into the unsupervised 
system as unsupervised samples. Both the labelled and unlabelled data are shuf-
fled and mixed into mini-batches for training.  

Table 6 shows the results on both data sets and emphasizes the role of α in bal-
ancing the supervised and unsupervised objectives for the final performance. It 
should be noted that the value of α also variates depending on the ratio between 
the amount of supervised and unsupervised data available during training process. 



We chose the optimized α = 0.5 for our SSEE system. The results in Table 7 
indicate that semi-supervised system outperforms the supervised one in both da-
taset. As a result, we conclude that SSEE has learnt an internal structure within the 
unsupervised samples to support the discriminative task of dialect recognition. 

α Read speech (test set) Conversational speech 

0.1 24.68 +/- 0.22 22.42 +/- 1.91 

0.2 22.12 +/- 3.26 18.83 +/- 2.13 

0.5 19.78 +/- 3.48 16.52 +/- 1.33 

0.8 29.51 +/- 1.21 25.12 +/- 1.84 

Table 5 Semi-supervised learning with different α values. 

 Fully supervised Semi-supervised 

Read speech (test set) 14.68 +/- 0.42 12.42 +/- 1.79 

Conversational speech 19.78 +/- 3.48 16.52 +/- 1.33 

Table 6 Performance of different network designs on LOSO configurations. 

5 Discussion and conclusion 

The goal of the study is to enable automatic spoken interaction in the less-
resourced North Sami language. We have focused on the dialect recognition task, 
which is one of the main issues in speech technology in general. In this paper we 
presented the first profound study concerning end-to-end learning on a small cor-
pus for dialect recognition. Our results indicate the potential of end-to-end deep 
learning approach, and also validate the possibility of applying semi-supervised 
learning for auditory signal to improve the performance in restricted data context. 

The results also support localization of speech applications to endangered lan-
guages. Such applications can be beneficial to these languages in multiple ways. 
They can provide motivation to use the language and have a favourable effect on 
the prestige of the language. For instance, there exists a growing number of Wik-
ipedia articles in North Sami, and the SamiTalk application, based on the existing 
WikiTalk technology (Jokinen and Wilcock 2012), allows the user to use North 
Sami Wikipedia by conducting a conversation with a humanoid robot in North 
Sami. The speech components need to be integrated and tested on the robot soft-
ware. They are being developed separately: the DigiSami project worked on speech 
recognition (Leinonen 2015), and recently a commercial company has started a 
project on North Sami speech recognition. The dialect recognition component de-
scribed in this paper is one of the enabling technologies that can be used in the de-
velopment of interactive applications for North Sami.  
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