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The availability of multiple utterances (and hence, i-vectors) for speaker enrollment brings up several
alternatives for their utilization with probabilistic linear discriminant analysis (PLDA). This paper provides
an overview of their effective utilization, from a practical viewpoint. We derive expressions for the
evaluation of the likelihood ratio for the multi-enrollment case, with details on the computation of
the required matrix inversions and determinants. The performance of five different scoring methods,
and the effect of i-vector length normalization is compared experimentally. We conclude that length
normalization is a useful technique for all but one of the scoring methods considered, and averaging
i-vectors is the most effective out of the methods compared. We also study the application of
multicondition training on the PLDA model. Our experiments indicate that multicondition training is
more effective in estimating PLDA hyperparameters than it is for likelihood computation. Finally, we
look at the effect of the configuration of the enrollment data on PLDA scoring, studying the properties
of conditional dependence and number-of-enrollment-utterances per target speaker. Our experiments
indicate that these properties affect the performance of the PLDA model. These results further support
the conclusion that i-vector averaging is a simple and effective way to process multiple enrollment
utterances.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The i-vector representation [1] followed by probabilistic linear
discriminant analysis (PLDA) [2] has become state-of-the-art in
speaker verification systems over the past few years. In a typical
speaker verification trial, there are two i-vectors; one represents
the enrollment utterance of a given speaker, and the other a test
utterance. When speech utterances are represented as i-vectors,
the speaker verification problem is simply to determine if the
i-vectors share the same speaker information or not.

The most recent 2012 NIST speaker recognition evaluation (SRE)
allows for multiple enrollment utterances (and hence i-vectors) for
a given target speaker. In principle, the availability of more en-
rollment data can help in enhancing system performance, but it is
not obvious how this can be achieved in practice. Although mul-
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tiple i-vectors can be integrated directly into the PLDA model [3],
approximate methods like i-vector averaging have been shown to
be effective [4]. The PLDA model assumes statistical independence
among enrollment i-vectors, which may be difficult to achieve in
practice. Enrollment i-vectors from a given target speaker might
share common attributes like acoustic content, transmission chan-
nel etc., thus invalidating the independence assumption. Scoring
methods which do not have the independence assumption are of-
ten more effective in dealing with multiple enrollment i-vectors.
Multiple enrollment utterances also occur in the context of mul-
ticondition training, which has been successful in improving noise
robustness of both classical [5] and modern speaker recognition
systems [6].

Previous studies on the i-vector PLDA system have investigated
the effect of utterance duration [7] and mismatched duration [8,
9]. The effect of using multiple speech sources (including tele-
phone, interview and microphone speech) has been studied in [10].
Most of these studies have looked at the effect of variations begin-
ning with the estimation of i-vector hyperparameters. On the other
hand, in this paper, our focus is solely on the enrollment stage and
generative model represented by PLDA; the i-vector hyperparame-
ters are left unchanged.
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In [11], the authors propose a multi-channel version of PLDA
with channel-specific generative model for i-vectors. Varying utter-
ance duration was compensated for by calibrating the PLDA score
in [12], and by exploiting the uncertainty in the i-vector in [13].
The effect of noise on PLDA-based systems is studied in [14]. The
experimental protocol in most of the above mentioned works in-
volved a single i-vector for enrollment. Other studies have looked
at explicitly incorporating multiple enrollment i-vectors into the
PLDA model (the so-called ‘by-the-book’ scoring or multi-session
scoring). The study [15] looked at multi-session scoring in with a
partially open set speaker population, in the context of the NIST
2012 SRE. Further, [16] incorporated utterance duration as obser-
vation noise in a supervector generative model, leading to an in-
vestigation of different scoring methods using multiple enrollment
utterances. Performance of i-vector averaging and multi-session
scoring is also studied in [4], whereas [17] includes a comparison
of score-averaging and multi-session scoring. In the context of face
recognition, a scalable formulation of PLDA is described in detail
in [18].

Despite the recent advances in PLDA-based speaker verification,
an insightful survey of the basic scoring techniques is missing. The
present study, targeted for practitioners, is intended to be a self-
contained tutorial for PLDA scoring involving multiple enrollment
utterances. It extends our preliminary study in [19]. The current
study involves three major contributions. Firstly, we elaborate on
the mathematical details involved in the practical computation of
the determinants and inverses of the large matrices required by
PLDA scoring. In particular, we concentrate our effort on a simpli-
fied version of PLDA, which is described in [20,21,11]. Our second
contribution is a detailed experimental comparison of five straight-
forward scoring strategies. Three of them – multi-session scoring,
i-vector averaging and score averaging, have been reported else-
where but not compared within a single study. The two remain-
ing methods, are maximum score and pooled-sessions scoring. We
compare each scoring variant with and without i-vector length
normalization [21] and provide a recommended choice for practi-
tioners. Furthermore, we restrict our focus to PLDA scoring variants
that require only the enrollment and test i-vectors. Alternatively,
more advanced techniques may utilize either a priori known or
estimated channel labels (for example, see [11]) to tackle the con-
ditional independence assumption of standard PLDA scoring. As
such, these techniques require either supplementary metadata or
estimated channel/microphone labels produced by another classi-
fier, leading to more complex design with increased computations
or added human effort.

We also address the question regarding multicondition train-
ing: should multicondition training be applied to the enrollment
i-vectors, the PLDA hyperparameter training, or both? The last and
most interesting contribution, extending a previously noted prob-
lem of PLDA scoring dependency on the number of enrollment
utterances [15,4], proposes to partially overcome the conditional
independence assumption of PLDA. We address scoring in the situ-
ation when the number of enrollment utterances is not fixed but a
random variable, providing new insights on the preferred ways to
prepare enrollment i-vectors.

The topics studied in this paper are illustrated in Fig. 1. The ex-
periments are carried out on two up-to-date sets of data: a subset
of the I4U consortium dataset [22] and a subset of the NIST 2012
SRE data.

2. i-vector representation

In this section, we give an overview of the i-vector PLDA system
utilized for the studies in this paper.
Fig. 1. Figure representing i-vector PLDA representation. Experimental studies in this
paper are indicated in boldface.

2.1. The i-vector representation

The i-vector representation [1] is a fixed-length representation
of speech utterances, which usually consist of variable number of
acoustic feature vectors. Given an F M × 1 supervector of means μ
from a universal background model (UBM), a speaker and record-
ing specific supervector s is assumed to be of the form

s = μ + Tw. (1)

Here, the acoustic feature vector is F -dimensional, the UBM has M
components, T is an F M × D low-rank matrix whose columns span
the major variability in the supervector space, and w is a D × 1
dimensional latent vector with a standard normal distribution; i.e.
w ∼N (0, I). The i-vector representation of an utterance is defined
as the mean of the posterior distribution of w, given the utterance.
To estimate the i-vector, cepstral coefficients extracted from the
speech utterance are represented in terms of zero- and first-order
Baum–Welch statistics, with respect to the UBM. T is the i-vector
extractor, and the resulting i-vectors are of much lower dimension
(typically between 400 and 600) than the supervector. The UBM
and the i-vector extractor are estimated from appropriate training
corpora. Methods to train the i-vector extractor and estimate the
i-vectors can be found in [1,23].

3. PLDA model

Originally applied to face recognition [2], PLDA has been ap-
plied successfully to specify a generative model of the i-vector
representation [20]. For the ith speaker, the i-vector wi, j repre-
senting the jth recording can be represented as,

wi, j = m + Sxi + Gyi, j + ε i, j. (2)

Here, m + Sxi is the speaker-dependent part, and Gyi, j + ε i, j is the
recording-dependent part. m is a global offset, S is a set of ba-
sis vectors for the speaker subspace, representing between-speaker
variability, and G is a set of basis vectors representing the chan-
nel subspace, representing within-speaker variability. The remain-
ing residual variability is represented by ε i, j . The latent variables
x and y are assumed to have standard normal distributions, and re-
spectively represent a particular speaker and channel. The residual
term ε is assumed to have a normal distribution with a diagonal
covariance matrix.

In this paper, we focus on a simplified variant of PLDA [20],
termed as either Gaussian PLDA [21] or simplified PLDA [11]. Here,
the within-speaker variability is modeled by a full-covariance
residual term, which allows us to omit the channel subspace. The
generative model for the i-vector is now represented by

wi, j = m + Sxi + ε i, j. (3)

The residual term ε representing the within-speaker variability is
assumed to have a normal distribution with full covariance matrix
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Σ . A special case of the simplified PLDA model where the speaker
factors S is full-rank is termed as the two-covariance model in
[24,25].

3.1. Length normalization

Although the PLDA model assumes Gaussian behavior, there
is empirical evidence that channel- and speaker- effects result in
i-vectors that are non-Gaussian. By replacing the Gaussian assump-
tions of the PLDA model with a Student’s t-distribution, improved
performance was obtained in [20]. Since these are more compli-
cated to apply in practice, a straightforward non-linear transforma-
tion of the i-vectors was proposed in [21]. This involves whitening
the i-vectors followed by normalizing their length. This technique,
called radial Gaussianisation, restores the Gaussian assumptions of
the PLDA model, and is a popular pre-processing step.2 It is be-
lieved that session variability affects only the i-vector length, and
hence length normalization improves robustness to session effects.

4. Likelihood computation

We next examine various scoring strategies for utilizing the
PLDA model to get a likelihood ratio for a given speaker verifi-
cation trial.

4.1. Two i-vector scoring

Given two i-vectors w1 (for enrollment) and wt (for test), the
PLDA framework forms the verification score slin(w1,wt) by deter-
mining the likelihood ratio given by,

slin(w1,wt) = p(w1,wt |H1)

p(w1|H0)p(wt |H0)
. (4)

Here, the hypothesis H1 indicates that both i-vectors come from
the same speaker (and hence have the same speaker identity vari-
able x in Eq. (3)), and H0 indicates they come from different speak-
ers (and hence have independently drawn x). Given the Gaussian
assumptions above, and following [3], the log likelihood ratio can
be computed in closed form as,

slog(w1,wt) = logN
([

w1
wt

]
;
[

m
m

]
,

[
Σ + SST SST

SST Σ + SST

])
− logN

(
w1;m,Σ + SST )

− logN
(
wt;m,Σ + SST )

. (5)

After straightforward algebra, this turns out to be,

slog(w1,wt) = [ wT
1 wT

t ]

[
Σ + SST SST

SST Σ + SST

]−1

[ w1 wt ]

− wT
1

[
Σ + SST ]−1

w1 − wT
t

[
Σ + SST ]−1

wt

+ C, (6)

where all the constant terms have been incorporated into C , and
can be omitted for a given PLDA model.

4.2. Multi-session scoring

Eq. (6) gives a scoring formula to compare two i-vectors. When
multiple i-vectors w1,w2, . . . ,wN are available for enrollment, and
wt is the test i-vector, the scoring function can be generalized as
follows:

2 Although length normalization is one of the steps of the radial Gaussianisation
process, the latter is popularly called just ‘length normalization’.
slin(w1,w2, . . . ,wN ,wt) = p(w1,w2, . . . wN ,wt |H1)

p(w1,w2, . . . wN |H0)p(wt |H0)
. (7)

As earlier, the hypothesis H1 represents the sharing of the same
speaker variable between all the i-vectors, and H0 represents the
test i-vector having an independently drawn speaker variable. To
evaluate this expression, we first form an expression for the likeli-
hood when i-vectors w1,w2, . . . ,wN share the same speaker vari-
able x, by extending the case in [3]. We can write

p
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Computing the likelihood in Eq. (8) requires inverting and com-
puting the determinant of an N × N block matrix. Subtracting the
common mean m from all enroll and test i-vectors, and utilizing
the lemmas in Appendix A, we can write the log likelihood from
Eq. (8) as,

log p
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where

KN = −(
Σ + NSST )−1

SST Σ−1.

Noting that the numerator in Eq. (7) shares the same speaker
variable x for both the enroll and test i-vectors, and applying
Eq. (8), we can write the log likelihood ratio for the multi-session
case as
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− logN
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Eq. (10) can be evaluated by applying Eq. (9) with N + 1, N
and 1 i-vectors respectively. Additionally, terms that do not depend
on the enroll and test i-vectors can be removed. This yields the
following simplified expression for the log likelihood ratio:

slog(w1,w2, . . . ,wN ,wt)

= −δ(N + 1) −
(

N∑
i=1

wi + wt

)T

KN+1

(
N∑
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)

+ δ(N) +
(
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(
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)
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2
wT

t K1wt + C, (11)

where we denoted the log determinant as

δ(N) = log
∣∣Σ + NSST

∣∣
and C represents the remaining constant terms that can be omit-
ted. It can be shown that Eq. (6) is a special case of Eq. (11) with
N = 1.

4.3. Alternatives to multi-session scoring

The likelihood ratio score for multiple enrollment i-vectors, as
defined mathematically (Eq. (7)), assumes the enrollment i-vectors
to be statistically independent, given the speaker identity. The in-
dependence assumption is for mathematical convenience, rather
than reflecting physical reality. For instance, different i-vectors ob-
tained from the same target speaker might have more in common
than just the speaker identity (for instance, acoustic environment
or transmission channel). In general, i-vectors derived from human
speech signals cannot be considered truly statistically independent.
This is the reason why the multi-session likelihood ratio computa-
tion will be sub-optimal in a practical setting. As a result, other
heuristic scoring methods are used for handling multiple enroll-
ment i-vectors.

A popular scheme is i-vector averaging, in which a single i-vector
is obtained as the average of the enrollment i-vectors,

wavg = 1

N

N∑
i=1

wi, (12)

and then scored using the two i-vector scoring slog(wavg,wt) de-
scribed in Eq. (5). Another alternative is to use score fusion, in
which the individual enrollment i-vectors are scored using the two
i-vector scoring and then combined. One method for this is to use
score averaging, defined as

savg = 1

N

N∑
slog(wi,wt), (13)
i=1
and another is to use max-scoring, which is defined as

smax = max
1≤i≤N

slog(wi,wt). (14)

In contrast to utilizing multiple enrollment i-vectors, a single
enrollment i-vector can be obtained from multiple enrollment ut-
terances by pooling sessions. This is done by pooling acoustic fea-
ture vectors from all the utterances and estimating zeroth and first
order Baum–Welch statistics. A single enrollment i-vector then is
obtained as if only a single enrollment utterance was available, and
scored using the two i-vector scoring.

The above methods provide alternatives to the multi-session
scoring described in Eq. (7). We evaluate each of these methods
later in the paper.

4.4. Computational complexity

The computational complexities of each of the scoring meth-
ods vary considerably. For the methods utilizing a single i-vector
for enrollment (including i-vector averaging and pooling sessions),
three matrix-vector products need to be computed. This assumes
that the matrix inversion in Eq. (6) is constant across trials and can
thus be pre-computed, giving a complexity of O (D2), where D is
the i-vector dimension. For the score fusion, the two i-vector scor-
ing needs to be repeated N times (N is the number of enrollment
i-vectors in the given trial), giving a complexity of O (N D2). For
the multi-session likelihood computation in Eq. (11), the log de-
terminants and matrix inversions depend on N . Hence, in general,
multi-session likelihood computation has a complexity of O (D3),
representing the matrix inversion. If the number of enrollment ut-
terances are known in advance, the inverses and determinants can
be precomputed for each N , giving a complexity of O (N D2).

5. Experiments

5.1. Corpora for experiments

As part of the pre-evaluation activity for the NIST SRE 2012, the
I4U consortium3 developed a dataset based on previous years’ NIST
corpora. The EvalSet portion of the I4U dataset consists of data
drawn from the SRE 2006, 2008 and 2010 corpora. The data has
multiple channels and speaking styles, including telephone, micro-
phone and interview data, as determined from the keys released by
NIST. In addition to the utterances used as-such from these corpora
(henceforth termed original utterances), noisy versions of each ut-
terance were generated using FaNT.4 For each utterance, two noisy
versions at 6 dB and 15 dB signal-to-noise ratio (SNR) were gen-
erated using HVAC (heating, ventilation and air-conditioning) and
crowd noises. Thus, the data has three distinct SNR levels. The
number of enrollment utterances for target speakers varies from
3 to 108, with an average of 19 per speaker. More details about
the I4U dataset is provided in [22].

We perform the task of ‘speaker detection’, as described by NIST
in the evaluations prior to the year 2012 (see [26]). In the exper-
iments in the later part of the paper, performance is reported in
terms of the equal error rate (EER) and the normalized detection
cost function (DCF) given as

DCF = CDet/CDefault,

where

CDefault = min
{

CMiss × PTarget, CFalseAlarm × (1 − PTarget)
}
,

3 The I4U consortium consists of nine universities and research institutes.
4 FaNT – Filtering and Noise Adding Tool. Available: http://dnt.kr.hsnr.de/

download.html.

http://dnt.kr.hsnr.de/download.html
http://dnt.kr.hsnr.de/download.html
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Table 1
Summary of the data used for experiments, which is derived from the I4U EvalSet
and SRE 2012 data.

Male Female

Enroll/eval I4U subset
Num. target speakers 381 577
Num. enroll segments 15,057 21,903
Num. test speakers 302 459
Num. test segments 7,926 10,524
Num. target trials 7,926 10,524
Num. non-target trials 3,011,880 6,061,824

SRE12 condition 4 subset
Num. target speakers 381 577
Num. target trials 1,497 2,580
Num. non-target trials 60,930 145,086

PLDA training (no common speakers with the above)
Num. speakers 382 578
Num. training utt. 29,961 43,119

and

CDet = CMiss × PMiss|Target PTarget + CFalseAlarm

× PFalseAlarm|NonTarget × (1 − PTarget),

and the parameters CMiss = CFalseAlarm = 1 and PTarget = 0.001. This
gives CDefault = 0.001.

To adhere to the NIST protocol, it is ensured that the data uti-
lized for the PLDA training has no common speakers with the
enrollment and evaluation data. A portion of the I4U EvalSet, con-
sisting of 382 male speakers and 578 female speakers is used to
train the PLDA model. Data from the remaining speakers are used
for enrollment and evaluation. A ‘full-matrix’ of scores (all evalua-
tion segments against all enrollment speakers) is used to compute
the metrics, and the statistics are summarized in Table 1.

Results are also reported on the noisy telephone condition
(common condition 4) of the NIST 2012 data, using the SRE 2010
evaluation metrics as above. Evaluation is restricted to SRE 2012
trials involving claims from speakers appearing in the I4U enroll-
ment data. This results in evaluation of a subset of the SRE 2012
corpus. Filelists of the data used for the experiments have been
shared online.5

5.2. System description

The i-vector PLDA system used for our studies uses a standard
Mel frequency cepstral coefficient (MFCC) front-end with 30 ms
frame size and 15 ms shift. The MFCCs were obtained using a
27-channel mel-frequency filterbank followed by RASTA filtering,
adding delta and double deltas, frame dropping using SAD [27] and
utterance level cepstral mean and variance normalization (CMVN),
in this order. The 1024-mixture UBM is trained with data from
NIST 2004, 2005, 2006 SRE, whereas the i-vector extractor from
NIST 2004, 2005, 2006, Fisher and Switchboard data. The i-vector
dimension D is 600, with a gender-dependent UBM and i-vector
extractor.

5.3. Effect of multicondition training

Multicondition training [5,6] is a popular method to enhance
noise robustness in speaker verification systems. In a multicondi-
tion setup, multiple noisy versions of the training data are avail-
able.

Each utterance in the I4U dataset has two noisy versions, at
6 dB and 15 dB SNR. The multiple versions of the enrollment

5 The filelists for the data used in this paper is available from: http://cs.uef.fi/~
paddy/public/pldaDSP2014filelist.tgz.
Table 2
Effect of using multicondition training for likelihood computation, PLDA hyperpa-
rameter estimation, or both. ‘MC’ stands for multicondition training. The perfor-
mance is in terms of EER (DCF).

MC enroll MC PLDA hyperparam Male Female

No No 2.22 (0.26) 2.02 (0.30)
Yes No 1.86 (0.33) 2.23 (0.34)
No Yes 1.39 (0.17) 1.32 (0.21)
Yes Yes 1.32 (0.17) 1.32 (0.20)

Table 3
Comparison of SNR-wise analysis of matched and multicondition train/test. Analysis
done on female data from I4U dataset. The performance is in terms of EER (DCF).

Enroll and PLDA Test data

Orig. 15 dB 6 dB

Orig. only 0.72 (0.12) 1.40 (0.21) 3.52 (0.53)
15 dB only 1.10 (0.17) 1.28 (0.17) 2.16 (0.33)
6 dB only 1.58 (0.29) 1.58 (0.24) 1.85 (0.31)

Orig. + 15 dB + 6 dB 1.01 (0.16) 1.35 (0.20) 2.06 (0.32)

utterances can be used for multicondition training during PLDA
hyperparameter estimation, during likelihood evaluation, or both.
These cases are evaluated in Table 2. Following [6], pooled multi-
condition training is done to estimate the PLDA hyperparameters.
Thus, this model assumes that all of the N enrollment i-vectors
w1, . . . ,wN for a given speaker are generated by the same hyper-
parameters in Eq. (3). In this experiment, for simplicity, we use
i-vector averaging for estimating the enrollment i-vector.

As expected, multicondition training improves verification per-
formance. An interesting observation is that multicondition train-
ing brings considerable improvement when applied to PLDA hyper-
parameter estimation. This indicates that, once the PLDA hyperpa-
rameters are estimated in this manner, multicondition enrollment
does not provide major additional robustness to the system. We
provide more insight into this observation later in the paper.

5.4. Effect of matched-SNR for PLDA training

Matched SNR conditions between enroll and test data are gen-
erally expected to perform better than mismatched conditions. To
verify this, experiments were carried out on the female trials using
the three SNRs of the evaluation data, and are tabulated in Table 3.
I-vector averaging is used to compute the enrollment i-vector. For
the first three rows, the enrollment data and PLDA training data
comprises of a single SNR. In the last row, both PLDA training and
enrollment is performed with multicondition data. The amount of
enrollment/PLDA training data is the same for each row. It is to be
noted that the number of enrollment i-vectors per speaker varies.

From each column of Table 3, we infer that matched condi-
tions for enrollment/PLDA training and the test data result in bet-
ter performance as opposed to multicondition (the last row). But
since the operating noise condition/SNR is rarely known before-
hand in practice, multicondition enrollment/training is an effective
workaround. Multicondition training results in only a minor degra-
dation in performance when compared to the matched SNR case.

5.5. Likelihood computation with multiple enrollment i-vectors

We next study the effect of i-vector length normalization and
the various methods for computing the likelihood ratio, given mul-
tiple enrollment utterances. Performance obtained for the various
methods outlined in Section 4 are given in Table 4. Based on the
performance on the I4U dataset, the likelihood computation is also
repeated on the noisy-telephone condition (common condition 4)
of the NIST 2012 SRE dataset (see [28]).

From Table 4 we find that i-vector length normalization im-
proves performance for all the scoring methods, except for the

http://cs.uef.fi/~paddy/public/pldaDSP2014filelist.tgz
http://cs.uef.fi/~paddy/public/pldaDSP2014filelist.tgz
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Table 4
Effect of length normalization on different scoring methods. LN = i-vector length
normalization. For the SRE 2012 data, LN is applied to all methods except the
pooled sessions method. The performance is in terms of EER (DCF).

Method I4U EvalSet SRE 2012 cond.
4 subsetNo LN With LN

Male
Multi-session 3.22 (0.40) 1.60 (0.18) 11.86 (0.68)

I-vec avg. 2.84 (0.32) 1.32 (0.17) 4.85 (0.51)

Score avg. 3.28 (0.40) 1.65 (0.28) 9.39 (0.82)

Max. score 2.75 (0.40) 1.34 (0.26) 10.18 (0.81)

Pooled session 2.72 (0.30) 3.18 (0.30) 5.18 (0.65)

Female
Multi-session 3.18 (0.43) 1.57 (0.21) 9.50 (0.71)

I-vec avg. 2.71 (0.32) 1.32 (0.20) 3.62 (0.51)

Score avg. 3.15 (0.39) 1.76 (0.32) 5.01 (0.59)

Max. score 2.48 (0.34) 1.26 (0.28) 4.09 (0.58)

Pooled session 2.65 (0.33) 3.56 (0.36) 4.18 (0.60)

Table 5
Relative performance of whitening transformation and making i-vectors unit length.
Analysis in terms of EER on i-vector averaging on I4U data.

Whitening Length norm Male Female

No No 2.84 2.71
No Yes 1.63 1.67
Yes No 2.84 2.70
Yes Yes 1.32 1.32

pooled-sessions scoring. For i-vector averaging, the enrollment
i-vectors are first length normalized, then averaged into a single
i-vector. Multi-session scoring of i-vectors does not work as well
as the rest of the scoring methods considered, confirming the inde-
pendent observations of [15] and [4]. In particular, with length nor-
malization enabled, i-vector averaging outperforms the other com-
pared methods (except for the max-scoring method for the female
case). The max-scoring method gives very similar performance, but
is computationally more expensive. The score-averaging method is
poorer in performance, and again, is computationally more expen-
sive.

The pooled session scoring method degrades in performance
when length normalization is applied. The pooled session enroll-
ment i-vector is obtained from statistics derived from multiple ses-
sions. Thus the pooled i-vector represents an average of multiple
channels and acoustic content. Applying length normalization on
this i-vector possibly results in a mismatch with the test i-vector,
which is from a single session.

The different scoring methods give more variation in perfor-
mance on the SRE 2012 data. Here again, i-vector averaging gives
the best performance. The relative difference in performance be-
tween i-vector averaging and multi-session scoring is almost 60%.
Max-scoring does not fare well in the male case, but does well for
the female case. As inferred from the performance on I4U data,
i-vector length normalization is applied to all methods except the
pooled sessions method.

Applying length normalization involves whitening the i-vectors
and then making them unit length. The relative merit of each step
on i-vector averaging for the I4U data, in terms of EER, is tabulated
in Table 5. From these results, we conclude that, when applied in
isolation, making the i-vectors unit length is more effective than
whitening them. This is due to the possible mismatch between the
data used to estimate the whitening matrix and the enrollment
i-vectors. Applying both steps provide the largest improvement.

5.6. Factors affecting multi-session scoring

The above results suggest that multi-session scoring is inferior
to other methods which do not process all the enrollment i-vectors
Fig. 2. Illustration of four different enrollment scenarios involving conditional de-
pendence and number of enrollment utterances per speaker. Each row represents
an enrollment scenario: (a) conditionally less-dependent, same number of enroll-
ment utterances per target speaker (b) conditionally more-dependent, same number
of utterances, (c) conditionally less-dependent, variable number utterances, (d) con-
ditionally more-dependent, variable number of utterances.

simultaneously. To study this in more detail, we take two factors
into account. The first is a by-product of the design of the I4U
dataset: different target speakers have different numbers of enroll-
ment utterances. This results in a different value of N in Eq. (7)
for trials involving different target speakers. The second factor is
that the PLDA model assumes that the i-vectors are conditionally
independent given the latent speaker variable x [3].

The multicondition enrollment data in the I4U dataset do not
satisfy the conditional independence assumption. This is because
the individual noisy versions of an enrollment i-vector are derived
from the same original utterance (by adding noise, as explained in
Section 5.1). Hence, these i-vectors share more than just the same
speaker identity, invalidating the independence assumption. On the
other hand, enrollment i-vectors derived from different utterances
(with different speech content, but from the same speaker) can be
considered ‘less-dependent’ than the former.

Another factor is that the likelihood scores computed with dif-
ferent numbers of enrollment utterances exhibit different numeri-
cal ranges, making the scores inconsistent across trials [15,4]. This
can be viewed as a score calibration problem. To study these two
effects in greater detail, we derive a smaller dataset from the I4U
EvalSet. This dataset consists of 106 female speakers, and consists
of 5031 target trials and 528,255 non-target trials.

We simulate four different enrollment scenarios using this
dataset, varying the properties of ‘conditional dependence’ and
‘same number of enrollment utterances’. Enabling or disabling one
of these properties results in a different enrollment scenario. To
make the scenarios comparable, care is taken so that the average
number of enrollment utterances per speaker is the same for all
scenarios. These are illustrated for three speakers in Fig. 2. Each
vertical line represents an enrollment utterance, and utterances
labeled with the same character represent conditionally ‘more-
dependent’ versions (for example, the utterance ‘a’ and ‘a1’ rep-
resent original and noisy versions of the same utterance, as used
in multicondition training). Thus, the first row in Fig. 2 represents
the scenario where all speakers have the same number (three, in
this case) of conditionally less-dependent enrollment utterances.
Similarly, the last row represents conditionally more-dependent,
varying number of enrollment utterances (an average of three per
speaker).

To simulate a statistically robust analysis, the enrollment utter-
ances of a given target speaker is a random variable: it is a random
subset of all the enrollment utterances of the speaker. Fifty random
draws are made for each enrollment scenario, resulting in different
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Fig. 3. Comparing performance of i-vector averaging and multi-session scoring. Box
plots are shown for four enrollment scenarios, as given in Fig. 2. The top panel has
3 enrollment utterances on average per speaker, whereas bottom panel has 12.

enrollment subsets for target speakers. In other words, each ran-
dom draw results in different utterances making up an enrollment
scenario. Results of each scenario (processed from the fifty random
draws), for i-vector averaging and multi-session scoring are plotted
in Fig. 3, as box plots. The line inside the box represents the me-
dian, with the edges representing the 25 and 75 percentiles of the
EERs observed, and the ‘whiskers’ represent the extreme values not
considered outliers. Thus, the difference can be inferred as signifi-
cant if boxes have no overlap along the vertical axis.

Comparing the top and bottom panels in Fig. 3, we find that the
error rate reduces with increase in the average number of enroll-
ment utterances, as expected. Having the same number of enroll-
ment utterances, which are also conditionally less-dependent, for
each target speaker is the optimal enrollment configuration. In the
other cases, performance degrades gradually, with varying num-
ber of conditionally more-dependent enrollment utterances giving
maximum error. Moreover, these results suggest that for smaller
number of enrollment utterances per speaker, it is better to make
them conditionally less-dependent as far as possible. In almost all
the compared scenarios, i-vector averaging systematically outper-
forms multi-session scoring (the exception is the third scenario in
the top panel). Moreover, both these scoring methods show similar
trend in the different enrollment scenarios, meaning that the en-
rollment utterances need to be chosen with care for either scoring
method.

6. Conclusions

We provided a review and an experimental evaluation of the
i-vector PLDA framework in the context of multiple enrollment ut-
terances. Our main findings, useful from a practical viewpoint, are:

1. Applying multicondition training (Table 2): Confirming the
findings of [6], multicondition training is a useful technique
to improve noise robustness. Applying it to the enrollment
utterances (i.e. for likelihood computation) provided relative
decrease of 16% and 9% in EER for males and females, respec-
tively. Applying it to PLDA hyperparameter training stage in-
stead provided corresponding relative decrements of 37% and
40%. Combining the two only increased computations without
major added benefits. We therefore recommend applying mul-
ticondition data to PLDA training stage only.

2. Multicondition versus matched-SNR training (Table 3): When
the operating SNR is not known in advance, multicondition
training of the PLDA model is an effective way to add noise
robustness. A relatively minor degradation of 8% EER is ob-
tained in noisy conditions when multicondition data is used,
when compared to the matched-SNR case.
3. Length normalization (Table 4): I-vector length normalization
is a simple and effective technique, confirming the earlier find-
ings reported by many others. Making i-vectors unit length
provided the bulk of the improvement in length normalization.
In our experiments, it provided relative decreases ranging from
50% to 40% in EER for all the scoring methods considered; the
only exception was pooled-session scoring that was degraded
by length-normalization.

4. Choice of the scoring method (Table 4): The performance of
the scoring methods differ. The mathematically correct multi-
session scoring, in general, did not perform consistently. On
the I4U data, i-vector averaging reduced the EER by almost
16%, relative to multi-session scoring when length normal-
ization was applied. Maximum-scoring provided performance
comparable to i-vector averaging (in fact, the least error for
the female case), but at the cost of increased computation. For
SRE 2012 data, the various scoring methods exhibit consider-
able variation, with i-vector averaging providing improvement
ranging from nearly 60% to 6% for male data, and from 60% to
11% for female data. Pooled session scoring did not perform
consistently. Based on all these observations, for practitioners
we recommend i-vector averaging.

5. Scoring dependence on the enrollment utterances: A closer
look at factors affecting enrollment data reveals that condi-
tional dependence and varying number of utterances per tar-
get speaker have a major impact on the performance. Having
the same number of utterances per target speaker, which are
also conditionally less-dependent, is a desirable configuration.
Moreover, when having less enrollment utterances, it is useful
to reduce their conditional dependence as much as possible.
In practice, this means avoiding the use of both clean and
noisy versions of the same utterance for likelihood compu-
tation. Since i-vector averaging sidesteps these issues, this is
again a good reason for using it in practice.

This paper has provided insights into factors relevant for han-
dling multiple enrollment i-vectors with probabilistic linear dis-
criminant analysis. Future work will look at more effective mea-
sures on utilizing all available training and enrollment data, and
the utilization of supplementary metadata.
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Appendix A. Computational issues

To evaluate the logarithm of likelihood given by Eq. (8), we
utilize two lemmas described below. We note that we need to
compute the determinant and the inverse of a block matrix of
size N × N , where each block is a matrix of size D × D . We ex-
ploit the special structure of the matrix in the computations. Since
the number of enrollment i-vectors N is dependent on the target
speaker, this expression has to be evaluated separately for each
target speaker.

Lemma 1. Let matrix M has the form

M =

⎡
⎢⎢⎣

A + B B . . . B
B A + B . . . B
...

...
. . .

...

B B . . . A + B

⎤
⎥⎥⎦ ,

where M is a block matrix of size N × N, and each element of M is a
matrix of size D × D. Moreover, we assume that matrices A and NB + A
are invertible. Then the inverse of matrix M is
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M−1 =

⎡
⎢⎢⎣

P + Q Q . . . Q
Q P + Q . . . Q
...

...
. . .

...

Q Q . . . P + Q

⎤
⎥⎥⎦ ,

where P = A−1 and Q = −(NB + A)−1BA−1 .

Proof. It is easy to see that the inverse matrix M−1 has to have
the same form: it is invariant under all transformations replacing
blocks inside diagonal or outside (to ensure one can apply such
transformations to the identity MM−1 = I). Let us denote the non-
diagonal blocks of M−1 by Q and diagonal blocks by P + Q. Then
the following identity holds:⎡
⎢⎢⎣

A + B B . . . B
B A + B . . . B
...

...
. . .

...

B B . . . A + B

⎤
⎥⎥⎦

⎡
⎢⎢⎣

P + Q Q . . . Q
Q P + Q . . . Q
...

...
. . .

...

Q Q . . . P + Q

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

I 0 . . . 0
0 I . . . 0
...

...
. . .

...

0 0 . . . I

⎤
⎥⎥⎦

Multiplying, we obtain:

AP + AQ + BP+NBQ = I

Substituting P = A−1, we have,

AQ + BP + NBQ = 0,

which gives

Q = −(NB + A)−1BA−1. �
Lemma 2. Let matrix M have the form

M =

⎡
⎢⎢⎣

A + B B . . . B
B A + B . . . B
...

...
. . .

...

B B . . . A + B

⎤
⎥⎥⎦ ,

where M is a block matrix of size N × N, and each element of M is a
matrix of size D × D. Then the determinant |M| is equal to |A|N−1|A +
NB|.

Proof. We use the fact the determinant is invariant under elemen-
tary transformations. We subtract the second row from the others⎡
⎢⎢⎢⎢⎢⎢⎣

A + B B B B . . . B
B A + B B B . . . B
B B A + B B . . . B
B B B A + B . . . B
...

...
...

...
. . .

...

B B B B . . . A + B

⎤
⎥⎥⎥⎥⎥⎥⎦

∼

⎡
⎢⎢⎢⎢⎢⎢⎣

A −A 0 0 . . . 0
B A + B B B . . . B
0 −A A 0 . . . 0
0 −A 0 A . . . 0
...

...
...

...
. . .

...

0 −A 0 0 . . . A

⎤
⎥⎥⎥⎥⎥⎥⎦

Then we add the first row multiplied by −A−1B to the second
row:
⎡
⎢⎢⎢⎢⎢⎢⎣

A −A 0 0 . . . 0
0 A + 2B B B . . . B
0 −A A 0 . . . 0
0 −A 0 A . . . 0
...

...
...

...
. . .

...

0 −A 0 0 . . . A

⎤
⎥⎥⎥⎥⎥⎥⎦

Next we add all columns from third to Nth to the second:⎡
⎢⎢⎢⎢⎢⎢⎣

A −A 0 0 . . . 0
0 A + NB B B . . . B
0 0 A 0 . . . 0
0 0 0 A . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . A

⎤
⎥⎥⎥⎥⎥⎥⎦

Being a block-triangular matrix, the determinant of is now
equal to the product of the block determinants. Thus, |M| =
|A|N−1|A + NB|. �
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